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Abstract

What makes a problem easy or hard for a genetic algorithm (GA)? Much previous work
on this question has studied the relationship between GA performance and the structure of
a given fitness function when it is is expressed as a Walsh polynomial. The work of Bethke,
Goldberg, and others has produced certain theoretical results about this relationship. In this
paper we review these theoretical results, and then discuss a number of seemingly anomalous
experimental results reported by Tanese concerning the performance of the GA on a subclass
of Walsh polynomials, some members of which were expected to be easy for the GA to
optimize. Tanese found that the GA was poor at optimizing all functions in this subclass, that
a partitioning of a single large population into a number of smaller independent populations
seemed to improve performance, and that hillclimbing outperformed both the original and
partitioned forms of the GA on these functions. These results seemed to contradict several
commonly held expectations about GAs.

We begin by reviewing schema processing in GAs, and give an informal description of
how Walsh analysis and Bethke's Walsh-schema transform relate to GA performance. We
then describe Tanese's surprising results, examine them experimentally and theoretically,
and propose and evaluate some explanations. These explanations lead to a number of funda
mental questions about GAs: in particular, what are the features of problems that determine
the likelihood of successful GA performance, and what should "successful GA performance"
mean?

1. Introduction

The genetic algorithm (GA) is a machine learning technique, originated by Holland [25],
loosely based on the principles of genetic variation and natural selection. GAs have become
increasingly popular in recent years as a method for solving complex search problems in a
large number of different disciplines. The appeal of GAs comes from their simplicity and
elegance as algorithms as well as from their apparent power to rapidly discover good solutions
to difficult high-dimensional problems. In addition, GAs are idealized computational models
of evolution that are being used to gain insight into certain questions in evolutionary biology
and population genetics [4J.
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In the simplest form of the GA, bit strings play the role of chromosomes, with individual
bits playing the role of genes. An initial population of individuals (bit strings) is generated
randomly, and each individual receives a numerical "fitness" value--often via an external
"fitness function"-which is then used to make multiple copies of higher-fitness individuals
and eliminate lower-fitness individuals. Genetic operators such as mutation (flipping indi
vidual bits) and crossover (exchanging substrings of two parents to obtain two offspring) are
then applied probabilistically to the population to produce a new population (or generation)
of individuals. The GA is considered to be successful if a population of highly fit individuals
evolves as a result of iterating this procedure. When the GA is used as a function optimizer,
it is considered to be successful if it discovers a single bit string that represents a value
yielding an optimum (or near optimum) of the given function. In some other contexts, the
GA is viewed as being successful if the entire population evolves a collective solution-for
example, when the GA is used to evolve classifier systems the goal is a useful collection of
rules, not one super-rule. An introduction to GAs and GA theory is given in [16], and many
of the results concerning GA theory and applications can be found in the various ICGA
proceedings volumes [21, 22, 34, 3] and in [7] and [8].

GAs have been successfully applied to many multi-parameter optimization problems (see,
for example, [8, 7, 16]), as well as to a number of more open-ended settings (e.g., [1,2,24,29]),
but there have been some disappointing results as well (e.g., [37]). In cases both of success
and failure there is often little detailed understanding of why the GA succeeded or failed.
Given the recent interest in applying the GA to an ever wider range of problems, it is essential
for the theory of GA's to be more completely developed so that we can better understand
how the GA works and when it will be likely to succeed.

In this paper we describe and explain a number of anomalous results that were encoun
tered in a set of experiments performed by Tanese [37, 36] using the GA to optimize a
particular subset of Walsh polynomials. These polynomials were chosen because of the re
lationship between GAs and Walsh functions (see Section 3), and were expected to present
a spectrum of difficulty for the GA. However, the results of running the GA on these poly
nomials were not at all as expected: the GA's performance was strikingly poor on all of
the functions included in Tanese's experiments, and was significantly worse than the per
formance of a simple iterated hillclimbing algorithm. Our analysis in this paper of these
surprising results explains the failure of the GA on these specific functions, and it makes
the following more general contributions: (1) identifying some previously ignored features of
functions that can lead to GA failure, (2) demonstrating that there are a number of different,
independent factors that contribute to the difficulty of search for a GA, and (3) concluding
that any successful research effort into the theory of GA performance must take into account
this multiplicity rather than concentrating on only one factor (e.g., deception [15, 31, 39, 6]).

In the following sections we review schema processing in GAs, give an overview of the
relationship between schema processing and Walsh polynomials, and describe how Walsh
analysis has been used to partially characterize the difficulty of functions for the GA. We
then describe the particular functions Tanese used in her experiments (the Tanese junctions),
and discuss and explain some of her anomalous results. We then discuss the general questions
of (1) how to characterize functions in terms of the likelihood of successful GA performance
on them (and the role of the notion of GA-deception in such a characterization), and (2) what
"successful GA performance" should mean. This paper presents details from the experiments
that were summarized in [10].
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Figure 1: Schemas define hyperplanes in the search space.

2. Genetic Algorithms and Schema Processing

The notion of a schema is central to understanding how GAs work. A schema is a template,
defined over the alphabet {O, 1, *}, that describes a pattern of bit strings in the search space
{O, I}', (the set of bit strings oflength I). For each ofthe I bit-positions, the template either
specifies the value (allele) at that position (lor 0), or indicates by the symbol * (referred to
as don't care) that either value is allowed.

For example, consider the two strings A and B:

A = 100111
B = 010011

There are eight schemas that describe the patterns these two strings have in common, in
cluding:

****11
**0***
**0**1
**0*11.

A bit string x that matches a schema s's pattern is said to be an instance of s (sometimes
written as xes); for example, 00 and 10 are both instances of *0. In schemas, 1's and O's are
referred to as defined bits; the order of a schema is simply the number of defined bits in that
schema. The defining length of a schema is the distance between the leftmost and rightmost
defined bits in the string. For example, the defining length of **0*11 is 3, and the defining
length of **0*** is o.

Schemas can be viewed as defining hyperplanes in the search space {O, I}', as shown in
Figure 1. Figure 1 shows four hyperplanes (corresponding to the schemas 0****, 1****,
*0***, and *1***). Any point in the space is simultaneously an instance of two of these
schemas. For example, the point in the figure is a member of both 1**** and *0*** (and
also of 10***).

The fitness of any bit string in the population gives some information about the average
fitness of the 2' different schemas of which it is an instance (where I is the length of the
string), so an explicit evaluation of a population of M individual strings is also an implicit
evaluation of a much larger number of schemas. Thus, at the explicit level the GA searches
through populations of bit strings, but we can also view the GA's search as an implicit
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schema sampling process. At the implicit level, feedback from the fitness function, combined
with selection and recombination, biases the sampling procedure over time away from those
hyperplanes that give negative feedback (low average fitness) and towards those that give
positive feedback (high average fitness).

According to the building blocks hypothesis [25, 16], the GA initially detects biases in low
order schemas (those with a small number of defined bits), and converges on this part of the
search space. Over time, it detects biases in higher-order schemas by combining information
from low-order schemas via crossover, and (if this process succeeds), it eventually converges
on the part of the search space that is most fit. The building blocks hypothesis states that
this process is the source of the GA's power as a search and optimization method. An
important theoretical result about GAs is the Schema Theorem [25, 16], which guarantees
that over time the observed best schemas will receive an exponentially increasing number of
samples.

The GA therefore exploits biases that it finds by focusing its search more and more
narrowly on instances of fit schemas, and it explores the search space using the heuristic
that higher-order schemas with high average fitness are likely to be built out of lower-order
schemas with high average fitness. Reproduction is the exploitation mechanism, and genetic
operators-usually crossover and mutation-are the exploration mechanisms. (Holland pro
poses that mutation serves as a much less powerful exploration mechanism than crossover,
effectively preventing genetic material from being permanently lost from the population [25]).
According to the Schema Theorem, exploration predominates early on in a run of the GA,
but over time, the GA converges more and more rapidly on what it has detected as the most
fit schemas, and exploitation becomes the predominate mode of behavior.

This strong convergence property of the GA is a two-edged sword. On the one hand,
the fact that the GA can close in on the fittest part of the space very quickly is a powerful
propertYi on the other hand, since the GA always operates on finite size populations, there is
inherently some sampling error in the search, and in some cases the GA can magnify a small
sampling error, causing premature convergence [16]. Also, in some cases strong convergence
is inappropriate, for example, in classifier systems [26], in which the GA is trying to evolve
a set of co-adapted rules, each one specialized for a specific but different task, rather than a
population of similar rules.

As an example of the relevance of schemas to function optimization, consider the function
shown in Figure 2. The function is defined over the interval [0,32) (here, I = 5), so the x
axis represents the bit string argument (input to the function) and the y-axis shows the
function's value, or fitness. In this example the x value will always be between 0 and 31.
For example, the string 10000 would be interpreted as 16, and 01000 would be interpreted
as 8. Likewise, the schema 0**** (indicated with a dotted line) includes all points less than
16, the schema 1**** (indicated with a dotted line) includes all points greater than or equal
to 16, and the schema *0*** (indicated with dashed lines) specifies the intervals [0,8) and
[16,24). Using this example it is easy to see how an individual that was an instance of the
schema 0**** could be combined through crossover with an instance of the schema *0*** to
yield an instance of 00***, which corresponds to the most fit region of the space (the shaded
region in Figure 2). That is, 0**** and *0*** are partial solutions.

Schemas induce a partitioning of the search space [27]. For example, as seen in Figure 1,
the partition d**** (where "d" means "defined bit") divides the search space into two halves,
corresponding to the schemas 1**** and 0****. That is, the notation d**** represents the
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Figure 2: Example Function. The solid line indicates the function and
the dashed/dotted lines indicate some schemas. The shaded region is
the most fit region of the space.
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partitioning that divides the space into two halves consisting of schemas with a single defined
bit in the leftmost position. Similarly, the partition *d*** divides the search space into a
different two halves, corresponding to the schemas *1*** and *0***. The partition dd***
represents a division of the space into four quarters, each of which corresponds to a schema
with the leftmost two bits defined. Any partitioning of the search space can be written as a
string in {d, *}', where the order of the partition is the number of defined bits (number of
d's). Each partitioning of n defined bits contains 2n partition elements; a partition element
corresponds to a schema. Each different partitioning of the search space can be indexed by
a unique bit string in which 1's correspond to the partition's defined bits and O's correspond
to the non-defined bits. For example, under this enumeration, the partition d***... * has
index j = 1000 ... 0, and the partition dd***... * has index j = HOOO ... O.

3. Walsh-Schema Analysis

Two goals for a theory of genetic algorithms are (1) to describe in detail how schemas are
processed; and (2) to predict the degree to which a given problem will be easy or difficult for
the GA. Bethke's 1980 dissertation [5] addressed these issues by applying Walsh functions
[38] to the study of schema processing in GAs. In particular, Bethke developed the Walsh
Schema transform, in which discrete versions of Walsh functions are used to calculate schema
average fitnesses efficiently. He then used this transform to partially characterize functions
as easy or hard for the GA to optimize. Bethke's work was further developed and explicated
by Goldberg [14, 15]. In this section we introduce Walsh functions and Walsh polynomials,
review how the Walsh schema transform can be used to understand the workings of GAs, and
sketch Bethke's use of this transform for characterizing different functions. Our discussion
is similar to that given by Goldberg [14].

3.1 Walsh Functions, Walsh Decompositions, and Walsh Polynomials

Walsh functions are a complete orthogonal set of basis functions that induce transforms sim
ilar to Fourier transforms. However, Walsh functions differ from other bases (e.g., trigono
metric functions or complex exponentials) in that they take on only two values, +1 and -1.
Bethke demonstrated how to use these basis functions to construct functions with varying
degrees of difficulty for the GA. In order to do this, Bethke used a discrete version of Walsh's
original continuous functions. These functions form an orthogonal basis for real-valued func
tions defined on {0,1}'.

The discrete Walsh functions map bit strings x into {I, -I}. Each Walsh function is asso
ciated with a particular partitioning of the search space. The Walsh function corresponding
to the jlk partition (where, as described above, the index j is a bit string) is defined as
follows [5, 37]:

,p'(x) = {I if x II j. has even parity (i.e., an even number of l's)
J -1 otherwIse.

Here, II stands for logical AND. Notice that ,pj(x) has the property that the only bits in
x that contribute to its value are those that correspond to 1's in j.

Plots of the four Walsh functions defined on two bits are given in Figure 3.
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Figure 3: Plots of the fOUf Walsh functions defined on two bits.
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Since the Walsh functions form a basis set, any function F(x) defined on {0,1}1 can be
written as a linear combination of Walsh functions:

2l _1

F(x) = L Wj'I/Ji(X)
j=O

where x is a bit string, l is its length, and each Wj is a real-valued coefficient called a Walsh
coefficient. For example, the function shown in Figure 2 can be written as

F(x) = 2,pOlOOO(X) + ,plOOOO(X).

The Walsh coefficients Wj of a given function F can be obtained via the Walsh transform,
which is similar to a Fourier transform. The representation of a function F in terms of a set
of Walsh coefficients Wj is called F's Walsh decomposition. In this and the next subsection,
we will explain how the Walsh transform works and discuss the close relationship between
Walsh analysis and schemas.

As a simple example of the Walsh transform, consider the function F(x) = x2
, where x

is a 2-bit string. The space of 2-bit strings can be partitioned into sets of schemas in four
different ways, as illustrated in Figure 4.

The Walsh transform works by transforming F(x) into the summed series of Walsh terms
F(x) = '£;~(} Wj,pj(x), in which increasingly longer partial sums provide progressively better
estimates of the value of F(x). The terms in the sum are obtained from the average values
of F in progressively smaller partition elements.

Consider first the average value of F on the entire space, which is the same as the average
fitness u(**) of the schema ** in the partition j = 00 (part A of Figure 4):

u(**) = F = (F(OO) +F(Ol) +F(10) +F(11))/4 = 14/4.

Let Woo = u(**) = F. This could be said to be a "zeroth order" estimate of F(x) for any x.
Now to get a better estimate for, say, F(l1), some corrections needs to be made to the

zeroth order estimate. One way to do this is to look at the average value of F in a smaller
partition element containing F(l1)-say, *1 (the right-hand element shown in part B of
Figure 4). The average value of the schema *1 is

that is, it is equal to the average of the entire space minus the deviation of u(*I) from the
global average. Likewise, the average value of the complement schema *0 is

u(*0) = Woo + deviation.!>

since u(*1) + u(*0) = 2u(**) = 2woo. (The assignment of + or - to deviation'l here is
arbitrary; it could have been reversed.) The magnitude of the deviation is the same for both
schemas (*1 and *0) in partition *d. Call this magnitude WOl' A better estimate for F(l1)
is then woo - WOl.

The same thing can be done for the other order-l schema containing 11: 1*. Let WlO be
the deviation of the average value in d* from the global average. Then,

u(h) = Woo - WlO'
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A. Partition = **, j = 00

B. Partition = *d, j = 01

00 01

10 11

C. Partition = d*, j = 10

00 01

10 11

D. Partition = dd, j = 11

/' "00 01

Figure 4: Four clifferent partitionings of the space of 2-bit strings.
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An even better estimate for F(ll) is Woo - WOl - WlO. This is a first-order estimate (based on
I-bit schemas). The two deviation terms are independent of each other, since they correct
for differences in average values of schemas defined on different bits, so we subtract them
both.

Finally, one additional correction needs to be made to account for the difference between
this estimate and the average of the order-2 schema, the string 11 itself. There is a difference
because the function is nonlinear. If the function were linear, then we could get all the
necessary information from the combined corrections for the order-l schemas. But under
F(x) = x2

, the fitness of 11 is higher than is given by the first-order estimate, so we need an
additional correction term:

F(l1) = Woo - WOl - WlO +correctionn .

The magnitude of the order-2 correction term is the same for each F(x). This can be
shown as follows. We know that

F(l1) = woo - WOl - WlO + correctionn ,

and by a similar analysis,

F(lO) = woo + WOl - WlO + correctionlO.

Adding both sides of these two equations, we get,

F(l1) + F(lO) = 2woo - 2WlO + correctionn + correetionlO.

But F(l1) + F(lO) = 2u(h) (by definition of u(h)), so we have:

F(l1) + F(lO) = 2u(h) = 2woo - 2WlO,

since, as was discussed above, u(1*) = woo - WlO. Thus, correctionn = -correetionlO.
Similarly,

F(Ol) = woo - WOl +WlO +correctionOl'

so,
F(l1) + F(Ol) = 2woo - 2WOl + correctionn + correetionOl'

and since
F(l1) +F(Ol) = 2u(*1) = 2woo - 2WOl'

we have correctionn = -correctionOl.
Finally,

F(OO) = woo + WOl + WlO + correctionoo,

so,
F(OO) + F(Ol) = 2woo + 2WlO + correctionn + correetionOl'

and since
F(OO) +F(Ol) = 2u(0*) = 2woo +2WlO,

we have correetionoo = -correctionOl. Thus the magnitudes of the second-order correction
terms are all equal. Call this common magnitude Wn.
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F(OO) = woo + WQ1 + WlO + Wu.

F(01) = woo - WOl +WlO - Wu.

F(10) = Woo +WQ1 - WlO - Wu.

F(ll) = Woo - WQ1 - WlO +Wu.

Table 1: Expressions for F(x) for each u{O, 1}2

We have shown that, for this simple function, each partition jf has a single Wj' associated
with it, representing the deviation of the real average fitness of each schema in partition jf
from the estimates given by the combinations of lower-order w/s. The magnitude of this
deviation is the same for all schemas in partition j'. This was easy to see for the first-order
partitions, and we showed that it is also true for the second-order partitions (the highest order
partitions in our simple function). In general, for any partition j, the average fitnesses of
schemas are mutually constrained in ways similar to those shown above, and the uniqueness
of Wj can be similarly demonstrated for j's of any order.

Table 1 gives the exact Walsh decomposition for each F(x).
We have now shown how function values can be calculated in terms of Walsh coefficients,

which represent progressively finer correction terms to lower-order estimates in terms of
schema averages. A converse analysis demonstrates how the Wj'S are calculated:

Woo - u(**)
(0+1+4+9)/4

- 14/4.
WQ1 Woo - u(*1)

- (0+ 1 +4+ 9)/4 - (1 +9)/2
(0 - 1+ 4 - 9)/4

- -6/4.
WlO Woo - u(1*)

(0+ 1 +4+9)/4 - (4 +9)/2
- (0+1-4-9)/4

-12/4.
Wu F(l1) - first-order estimate

F(l1) - (woo - WQ1 - WlO)

- 9 - (14/4 + 6/4 + 12/4)
- 4/4.

And to check:

F(l1) = Woo - WQ1 - WlO + Wu = 14/4 + 6/4 + 12/4 + 4/4 = 9.

In general,
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1 2'-1

Wj = 2/ 2: F(x),pj(X).
x=o

This is the Walsh transform (it is derived more formally in [14]). Once the w/s have
been determined, F can be calculated as

21_1

F(x) = 2: Wj,pj(X).
j=o

This expression is called the Walsh polynomial representing F(x).
How does one decide whether or not a deviation term Wj is added or subtracted in this

expression? The answer to this question depends on some conventions: e.g., whether u(*l)
is said to be woo - W01 or woo + W01' Once these conventions are decided, they impose
constraints on whether higher-order Walsh coefficients will be added or subtracted in the
expression for F(x). If x happens to be an member of a schema s whose average deviates in
a positive way from the lower-order estimate, then the positive value of the Wj corresponding
to s's partition goes into the sum. All that is needed is a consistent way of assigning these
signs, depending on the partition j and what element of j a given bit string x is in. The
purpose of the Walsh functions ,p;(x) is to provide such a consistent way of assigning signs
to w/s, via logical AND and parity. This is not the only possible method; a slightly different
method is given by Holland for his hyperplane transform [27]-an alternative formulation of
the Walsh-schema transform.

Many aspects of Walsh analysis that have been discussed in this section are shown graph
ically in Figure 5.

3.2 The Walsh-Schema Transform

There is a close connection between the Walsh transform and schemas. In the following
paragraphs we review the Walsh-Schema transform, which formalizes this connection. Using
Walsh coefficients we can calculate a function's value on a given argument x using the
average fitnesses of schemas of which that x is an instance. We have shown that F(ll) can
be calculated as a sum of the global average of F and progressively finer-tuned correction
terms that corresponded to deviations from lower-order estimates of F(ll). An analogous
method, proposed by Bethke [5], can be used to calculate the average fitness u(s) of a
given schema s, e.g., *1. Bethke termed this method the Walsh-schema transform. This
transform gives some insight into how schema processing is thought to occur in the GA. It
also allowed Bethke to state some conditions under which a function will be easy for the GA
to optimize, and allowed him to construct functions that are difficult for the GA because
low-order schemas lead the search in the wrong direction.

Formal derivations of the Walsh-schema transform are given in [5, 14, 37]. Here we
present the transform informally.

Using the same example as before (illustrated in Figure 5), the average fitness of the
schema *1 is u(*l) = woo - W01; this comes from the definition of W01' The value of u(*l)
does not depend on, say, WlO; it depends only on Walsh coefficients of partitions that either
contain *1 or contain a superset of *l--e.g., ** ::J *1. In general, a partition j is said to
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Partition = **; j = 00

u(**) = 0+114+9 = 1
4
4

= Woo

Partition = *d; j = 01

u(*O) = 0!4 = ~

= Woo +WOl = Woo - WOl

Partition = d*; j = 10

00 01

10 11 (1) ill 13 -
U * = 2 =2-WOO-WlO

Partition = dd; j = 11

u(OO) = 0
= Woo +W01 +WlO +Wn 00 01

u(Ol) = 1
= Woo - W01 +WlO - Wn

u(10) = 4
= Woo +WOl - WlO - Wn

u(l1) =9
= Woo - W01 - WlO +Wn

Figure 5: Summary of the steps in the Walsh analysis of F(x) = x2
•
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subsume a schema s if it contains some schema s' such that s' :2 s. For example, the 3
bit schema 10* is subsumed by four partitions: dd*, d**, *d*, and ***, which correspond
respectively to the j values 110, 100, 010, and ODD.

The Walsh-schema transform expresses the fitness of a schema s as a sum of progressively
higher-order Walsh coefficients Wj, analogous to the expression of F(x) as a sum of progres
sively higher-order w/s. Just as each Wj in the expression for F(x) is a correction term for the
average fitness of some schema in partition j containing x, each Wj in the expression for u(s)
is a correction term, correcting the estimate given by some lower-order subsuming schema.
The difference is that for F(x), all 2/ partition coefficients must be summed (although some
of them may be zero). But to calculate u(s), only coefficients of the subsuming partitions
("subsuming coefficients") need to be summed.

The example 2-bit function given above was too simple to illustrate these ideas, but an
extension to three bits suffices. Let F(x) = x2 , but let x be defined over 3-bits instead of 2.
The average fitness of the schema *01 is a sum of the coefficients of partitions that contain
the schemas ***, **1, *0*, and *01. The sign given to a subsuming coefficient Wj depends
on the sign given to the correction term for the schema s' in partition j that contains s. An
easy way to determine the sign is to take any instance of s, and to compute ,pj(x). This
value will be the same for all XES, as long as j is a subsuming partition, since all the l's in
j are matched with the same bits in any instance of s. For example, j = 001 subsumes *11,
and ,pOO1(X) = -1 for any XE * 11. Thus,

u(*11) = WOOD - WOOl - WOlD + WOll'

In general,
u(s) =

j:j subsumes s

where 1J!j(s) is the value of ,pj(x) (+1 or -1) for any XES.

The sum
u(*l1) = wOOD - WOOl - WOlD +WOll'

gives the flavor of how the GA actually goes about estimating u(*l1). To review, a population
of strings in a GA can be thought of as a number of samples of various schemas, and the
GA works by using the fitness of the strings in the population to estimate the fitness of
schemas. It exploits fit schemas via reproduction by allocating more samples to them, and
it explores new schemas via crossover by combining fit low-order schemas to sample higher
order schemas that will hopefully also be fit. In general there are many more instances
of low-order schemas in a given population than high-order schemas (e.g., in a randomly
generated population, about half the strings will be instances of 1**...*, but very few, if any
will be instances of 111...1). Thus accurate fitness estimates will be obtained much earlier
for low-order schemas than for high-order schemas. The GA's estimate of a given schema
s can thus be thought of as a process of gradual refinement, where the algorithm initially
bases its estimate on information about the low-order schemas containing s, and gradually
refines this estimate from information about higher and higher order schemas containing s.
Likewise, the terms in the sum above represent increasing refinements to the estimate of
how good the schema *11 is. The term WOOD gives the population average (corresponding
to the average fitness of the schema ***) and the increasingly higher-order wj's in the sum
represent higher-order refinements of the estimate of *l1's fitness, where the refinements are
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obtained by summing wi's corresponding to higher and higher order partitions j containing
*11.

With the following analysis in mind, the GA's operation, given fitness function F, could
be described as making progressively deeper estimates of what F's Walsh coefficients are,
and biasing the search towards partitions j with high-magnitude WjS, and to the partition
elements (schemas) for which these correction terms are positive.

3.3 The Walsh-Schema Transform and GA-Deceptive Functions

Bethke [5] used Walsh analysis to partially characterize functions that will be easy for the
GA to optimize. This characterization comes from two facts about the average fitness of a
schema s. First, since u(s) depends only on wi's for which j subsumes s, then if the order
of j (i.e., the number of 1's in j) exceeds the order of s (i.e., the number of defined bits
in s), then Wj does not affect u(s). For example, W111 does not affect u(*ll): u(*ll)'s two
instances 011 and 111 receive opposite-sign contributions from Wll1. Second, if the defining
length of j (i.e., the distance between the leftmost and rightmost 1's in j) is greater than
the defining length of s (i.e., the distance between the leftmost and rightmost defined bits in
s), then u(s) does not depend on Wj. For example, WIDI does not affect u(*ll), again, since
u(*ll)'s two instances receive opposite-sign contributions from WIDI'

Bethke suggested that if the Walsh coefficients of a function decrease rapidly with in
creasing order and defining length of the j's-that is, the most important coefficients are
associated with short, low-order partitions-then the function will be easy for the GA to
optimize. In such cases, the location of the global optimum can be determined from the
estimated average fitness of low order, low-defining-length schemas. Such schemas receive
many more samples than higher-order, longer-defining-length schemas: low order means that
they define larger subsets of the search space and short defining length means that they tend
to be kept intact under crossover. Thus the GA can estimate their average fitnesses more
quickly than those of higher-order, longer-defining-length schemas.

Thus, all else being equal, a function whose Walsh-polynomial decomposition involves
high-order j's with significant coefficients should be harder for the GA to optimize than a
function with only lower-order j's, since the GA will have a harder time constructing good
estimates of the higher-order schemas belonging to the higher-order partitions j.

Bethke's analysis was not intended as a practical tool for use in deciding whether a
given function will be hard or easy for the GA. A Walsh transform of a function F requires
evaluating F at every point in its argument space (this is also true for the "Fast Walsh
Transform" [14]) and is thus an infeasible operation for most fitness functions of interest-it is
much more efficient to actually run the GA on a given function and measure its performance
directly than to decompose the function into Walsh coefficients and then determine from
those coefficients the likelihood of GA success. However, Walsh analysis can be used as a
theoretical tool for understanding the types of properties that can make a function hard
for the GA. Bethke used the Walsh-schema transform to construct functions that mislead
the GA, by directly assigning the values of Walsh coefficients in such a way so that the
average values of low-order schemas give misleading information about the average values of
higher-order subsumed schemas. Specifically, Bethke chose coefficients so that some short,
low-order schemas had relatively low average fitness, and then chose other coefficients so as
to make these low-fitness schemas actually contain the global optimum. Such functions were
later termed "deceptive" by Goldberg [13, 15, 18], who carried out a number of theoretical
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studies of such functions. In Section 9, we further discuss this notion and its relation to the
goal of characterizing functions as hard or easy for the GA.

4. Tanese Functions

Bethke's method of creating functions by directly assigning the values of Walsh coefficients
permitted the straightforward construction of "GA-Easy" and "GA-Hard" functions. Tanese
also used this method in her 1989 doctoral dissertation [37, 36], in which she presented a
comparative study of the performance of a number of variants of the GA. In particular,
this study compared the variants' performance in optimizing particular classes of Walsh
polynomials that were constructed to present various levels of difficulty to the GAl.

Tanese compared the behavior of the "traditional" GA with a "partitioned" GA, in which
the single large population of the traditional GA was subdivided into a number of smaller
subpopulations that independently worked to optimize a given objective function. Tanese
also studied a partitioned GA in which individuals in various subpopulations were allowed
to "migrate" to other subpopulations during a run (she called this GA "distributed").

For her experiments comparing the performance of GA variants Tanese wanted to be
able to automatically generate a number of classes of fitness functions, with different classes
having different levels of difficulty, but with each function in a given class having similar
levels of difficulty. She generated different classes of Walsh polynomials as follows. The
functions were defined over bit strings of length 32. Each fitness function F was generated
by randomly choosing 32 j's, all of the same order (e.g., 4). Tanese generated functions only
of even order for her experiments. The coefficient Wj for each of the 32 chosen j's was also
chosen randomly from the interval (0,5]. The fitness function consisted of the sum of these
32 terms. Once the 32 j's were chosen, a point x' was chosen randomly to be the global
optimum, and the sign of each non-zero wi's was adjusted so that the fitness of x' would be
L: IWj I. The order of F is defined as the common order of the j's in its terms.

For example,
F(x) = v>nno(x) + 2V>11101(X) - 3v>non(x)

is an order-4 function on 5-bits with three terms (rather than 32), with global optimum 6.
This Walsh polynomial, like those used by Tanese, has two special properties: (1) all the
non-zero terms in the polynomial are of the same even order; and (2) there exists a global
optimum x' whose fitness receives a positive contribution from each term in the polynomial.
Functions with these two properties will hereafter be called Tanese functions.

This method of constructing functions had several advantages: (1) it was easy to construct
random functions of similar difficulty, since functions of the same order were thought to be
of roughly the same difficulty for the GA; (2) functions of different degrees of difficulty could
be constructed by varying the order, since low-order functions of this sort should be easier
for the GA to optimize than high-order functions; and (3) the global optimum was known,
which made it possible to see how close the GA came to optimizing the function.

The results of Tanese's experiments were surprising, and seem to contradict several com
mon expectations about GAs. Specifically, Tanese's results show that for every Tanese
function she studied-including the low-order ones-the GA performed poorly, and that its
performance was often improved when the total population was split up into very small

1In her dissertation, Tanese describes experiments involving several fitness functions. In this paper we
consider only the results with respect to Walsh polynomials.
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subpopulations. Moreover, Tanese found that the performance of a simple iterated hill
climbing algorithm was significantly better on these functions than both the traditional and
partitioned forms of the GA. These results apparently contradict Bethke's analysis which
predicts that the low-order Tanese functions should be easy for the GA to optimize. These
results also apparently contradict some other beliefs about the GA-that it will routinely
outperform hillclimbing and other gradient descent methods on hard problems such as those
with nonlinear interactions [27]; and that a population must be of a sufficient size to support
effective schema processing [12, 17].

Tanese's results are provocative and have caused some researchers to question the general
effectiveness of GAs. These results thus deserve a careful explanation, and one purpose of
this paper is to provide such an explanation. These results also clearly illustrate the need
for a deeper understanding of what factors lead to a problem being difficult for the GA; the
identification of some of those factors is another purpose of this paper. In order to better
understand the sources of Tanese's results, we performed a number of additional experiments,
which are described in the following sections.

5. Experimental Setup

The experiments we report in this paper were performed with a similar GA and identical
parameter values to those used by Tanese [9, 37J. All of Tanese's experiments used strings
of length 32 and populations of 256 individuals. The population was sometimes subdivided
into a number of smaller subpopulations. Tanese's algorithm used a sigma scaling method,
in which the number of expected offspring allocated to each individual is a function of the
individual's fitness, the mean fitness of the population, and the standard deviation from the
mean. An individual with fitness one standard deviation above the population mean was
allocated two expected offspring, with a maximum of five expected offspring. Multipoint
crossover was used, with a crossover rate of 0.022 per bit (e.g., for 32-bit strings, there
were on average 0.7 crossovers per pair of parents). The crossover rate (per pair) was
interpreted as the mean of a Poisson distribution from which the actual number of crosses
was determined for each individual. The mutation probability was 0.005 per bit. With
the exceptions of sigma scaling and multipoint crossover, Tanese's GA was conventional
(proportional selection, complete replacement of the population on every time step, and no
creative operators besides crossover and mutation). Tanese ran each of her experiments
for 500 generations, whereas we ran each of ours for 200 generations, although this turned
out not to be an important difference. For some experiments we altered certain parameter
values; these exceptions will be noted explicitly.

Tanese conducted experiments on Walsh polynomials of orders 4, 8, 16, and 20. For
each experiment she randomly generated 64 functions of a given order, and compared the
performance of the traditional (single population) GA with a number of partitioned GAs,
in which the population of 256 individuals was subdivided into various numbers of smaller
subpopulations. In this paper, we discuss results only for functions of order 8, since these
were the functions Tanese analyzed in the greatest depth. All of our experiments involved
manipulations of parameters with the traditional GA; we did not do any experiments with
partitioned GAs. For each of our experiments, we ran the GA once on each of 20 different
randomly generated functions, for 200 generations each. Tanese carried each run out to
500 generations, but in each of our runs that used strings of length 32, the population had
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reached a more or less steady state by about generation 100, and the results would not
have changed significantly if the run had been extended. The shorter runs were sufficient
for determining the comparative effects of the various manipulations we performed on the
parameters.

6. Why does the GA perform poorly on the Tanese functions?

One of Tanese's most striking results was the poor performance of the GA (in both its
traditional and partitioned-population form) on the functions described above. In her ex
periments, the GA was run 5 times on each of the 64 randomly generated functions; each set
of 5 constitutes a trial. One of Tanese's primary criteria was the success rate: the number
of trials on which the global optimum was found at least once out of five times. On the 64
trials (i.e., 320 runs total) on randomly generated order-4 Walsh polynomials, the success
rate of the traditional GA was only 3 (the most successful partitioned algorithm's success
rate was only 15). On 320 runs on randomly generated order-8 Walsh polynomials, neither
the traditional nor the various partitioned GAs ever found the optimum.

In the following subsections, three possible explanations for the GA's poor performance
are discussed and evaluated: (1) crossover is ineffective on these functions because of the
lack of lower-order building blocks; (2) the average defining-lengths of the j's are very long
and thus good schemas tend to be broken up by crossover; and (3) the random generation of
32 j's over strings of length 32 results in a large number of correlated positions among the
j's, effectively making the functions very difficult.

6.1 Is crossover effective on these functions?

As was discussed in Section 2, the GA's power is thought to be due to its implicit search
though schemas in the search space, where more and more samples are given to fitter schemas,
and fit lower-order schemas are combined to produce higher-order schemas. Thus to under
stand the performance of the GA on a fitness function F, we must ask what types of schemas
will yield useful information to the GA and to what extent these schemas can be usefully
combined by crossover.

The fitness of a string x under a Tanese function F depends on the parity of x /\j for each
j in the terms of F. It can be shown that the only terms in F that contribute to a schema
s's average fitness are those whose j's are covered by s, where s covers j means that each 1
in j corresponds to a defined bit in s-e.g., s = *011 covers j = 0111 but not j = 0011. For
example, consider a Tanese function with only one order-2 term (with 1=4):

F(x) = 2.0,pnoo(x).

A schema s with only one defined bit (order 1) gives no information to the GA, since half
the instances of s will yield -2.0 and half will yield +2.0. This can be easily checked, for
example, with the schema 1***. Likewise, the schema 0*00, which does not cover j = 1100,
has the same property. In general, If a term Wj,pj(x) is not covered by s then half of s's
instances will yield -Wj and half will yield +Wj for that term, so if a schema s does not cover
any terms, then its average fitness is zero. This means that for a Tanese function of order n,
no schema of order less than n will give the GA any useful information about what parts of
the search space are likely to be more fit. This is because a schema of order less than n will
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have a * in some I-position of any order-n j. Thus crossover, one of the major strengths of
the GA, is not a useful tool for recombining building blocks until schemas that cover terms
in the fitness function have been discovered-such schemas must be of order at least as high
as that of the function. This means that the power of crossover-as a means of recombining
fit lower-order building blocks-is severely curtailed in these functions.

To verify this empirically, we ran the GA without crossover (i.e., crossover-rate = 0) on
20 randomly generated 32-bit order-8 functions. These results (along with results from all
experiments described in this paper) are summarized in Table 2; they are summarized under
the heading No Xover 32, and are to be compared with the values under Original, giving the
results from our replication of Tanese's traditional GA runs on order-8 functions. The GA's
performance was not impaired; the maximum fitness discovered and the mean population
fitness are not significantly different from the runs in which crossover was used (Original in
the table).

<8> n-I
-

1+1 n+1

where < 8 > is the expected defining length for a string with n I's in an I-bit string.
Thus, the expected defining length for an order-4 Tanese function (with strings of length
32) is approximately 20, and for an order-8 function it is approximately 26, a substantial
proportion of the entire string. This last estimate corresponds almost exactly with the
empirical data presented in Tanese's thesis ([37], Table 5.1) for one example order-8 Walsh
polynomial.

As was pointed out in the previous section, the only useful schemas are ones that cover
one or more of the terms in the fitness function. The calculation given above implies that
such schemas will, like the j's in the function's terms, tend to have long defining lengths.
As was discussed in Section 3.3, long defining lengths of j's (and thus of useful schemas)
can make a function hard for the GA because of the high probability of crossover disruption
of useful schemas, since the longer the defining length of a schema, the more likely it is to
be broken up under crossover [25, 16]. To what degree was this problem responsible for the
poor performance of the GA on these functions?

To answer this question, we ran the traditional GA with Tanese's parameters on 20
randomly generated order-8 functions, in which the j's were restricted to have a maximum
defining length of 10. That is, for each of the 32 j's" a randomly positioned window of 10
contiguous loci was chosen, and all eight l's were placed randomly inside this window.

The results are summarized in Table 2 under Def-Len: 10. Using the success-rate criterion
described above, the performance was identical to Tanese's original results: the traditional
GA never found the optimum. Other performance measures made it clear that limiting the
defining length improved the GA's performance only very slightly: the GA was able to find

6.2 Is the GA's poor performance due to long defining lengths of schemas?

The defining length of a partition index j is the distance between the leftmost and rightmost
1 in the string. For example, the defining length of the string 00100110 is 4, and the defining
length of the string 10000001 is 7.

In the Tanese functions, an order-n partition index j was constructed by randomly placing
n I's in a string of 32-bits. The e~pecteddefining length for such a j can be calculated using
Eq. (4) from [20] (p. 5):
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Times Average Average Average Max.
Optimum Max. Fit. Gen. of Mean Fit.

Found (% opt.) Max. Fit. (% opt.)
Original 0 88.1 (2.9) 31 (33) 85.1 (3.8)

No Xover 32 0 88.4 (2.7) 22 (28) 86.2 (2.6)
Def-Len: 10 0 92.3 (2.9) 41 (48) 89.2 (3.0)
Str-Len: 128 19 99.97 (0.13) 150 (30) 93.6 (1.3)
No Xover 128 17 99.85 (0.45) 72 (41) 93.9 (0.6)

Hill 32 0 95.4 (1.5) - -

Hill 128 20 100.0 (0.0) - -

Table 2: Summary of results of all experiments. The experiments
were all performed running the traditional GA (or, in one case, hiIl
climbing) on randomly generated order-8 Walsh polynomials. Each
result summarizes 20 runs of 200 generations each. The experiments
were; (1) Original (replicating Tanese's experiments); (2) No Xover
32 (same as Original but with no crossover); (3) Del-Len: 10 (limit
ing the defining length of partition indices to 10); (4) Str-Len: 128
(increasing the string length to 128 bits); (5) No Xover 128 (same
as Str-Len: 128 but with no crossover); (6) Hill 32 (hillclimbing on
32 bits); and (7) Hill 128 (hillclimbing on 128 bits) All runs except
the 128-bit runs used strings of length 32. The values given are (1)
the number of times the optimum was found; (2) the maximum fit
ness (% of optimum) found (averaged over 20 runs); (3) the average
generation at which the maximum fitness was first found; and (4) the
maximum population mean (% of optimum) during a run (averaged
over 20 runs). The numbers in parentheses are the standard devia
tions.

strings with slightly higher fitnesses (in terms of percent of optimum) and slightly higher
mean-population fitnesses. We conclude that the contribution of long defining lengths to the
GA's overall poor performance is not significant.

6.3 Is the GA's poor performance due to overlap among significant loci in the
partition indices?

Next, we considered the possibility that overlaps among I-positions j's (i.e., loci with l's)
were causing correlations among terms in a given fitness function, making the optimization
problem effectively higher-order. As a simple example of this, suppose that

DOll and OllO

are two order-2 j's that have non-zero positive coefficients. These j's overlap at bit position
2 since they both have value 1 at that locus. There are eight strings x that will cause ,pOOlI (x)
to be positive, corresponding to the schemas:

**00 and **ll.
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Likewise, there are eight strings that will cause ,pOllO(x) to be positive, corresponding to the
schemas:

*00* and *11*.

So, in order to find a point that gets a positive value from both ,pOllO(x) and ,pOOll(x), the GA
must discover either the schema *000 or the schema *111. This overlap has the effect that
three bits are effectively correlated instead of two, making the problem effectively order-3
instead of order-2. In the case of the Tanese functions, this is a likely source of difficulty;
for example, with order-8 functions, where 32 order-8 terms were randomly generated, each
1 in any given j will on average be a member of 7 other different j's, and thus the effective
linkage will be exceedingly high.

To assess the effect of overlaps, we ran the GA on strings of length 128 rather than
32, in order to reduce the number of overlaps. With a string length of 128, each defined
locus with allele 1 would participate on average in only 2 of the 32 j's As shown in Table 2
(under Str-Len: 128), the GA's performance was remarkably improved. The GA found the
optimum 19/20 times (compared with 0/20 for the 32-bit case), and came very close to
finding the optimum on the other run. In addition, the mean fitnesses of the population
were substantially higher than they were on the 32-bit functions. Of all the experiments we
tried, this caused the most dramatic improvement, leading us to conclude that the principle
reason the Tanese functions are difficult is because the short strings (32 bits) and relatively
high number of terms (32) causes nearly all 32 bits to be correlated, thus creating an order
32 problem. In the non-overlapping case, the order of the problem is much lower, and it is
possible for the GA to optimize each term of the function almost independently.

To further verify the ineffectiveness of crossover, we ran the GA without crossover on 20
randomly generated 128-bit order-8 functions. The results are summarized under No Xaver
128 in Table 2: the performance of the GA was not significantly different from the 128-bit
runs in which crossover was used (Str Len 128). With both the shorter and longer string
lengths (and thus with both large and small amounts of overlap), whether or not crossover
is used does not make a significant difference in the GA's performance on these functions.

The fact that overlap is much higher with 32-bit functions than with 128-bit functions
explains the strikingly different dynamics between runs of the GA on the former and latter
functions, as shown in Figures 6-11. These figures are explained below.

A Walsh polynomial F can be thought of as a "constraint satisfaction" problem in which
each term in F is a particular constraint. The goal is to find an individual x that satisfies
(i.e., receives positive values from) as many terms as possible, and preferably from terms
with high coefficients. In a typical run on 32-bit strings, the GA quickly finds its highest
fit individual, typically by generation 40 or so (see the "Average Gen. of Max. Fitness"
column in Table 2). Figure 6 plots the percentage of the optimum of the maximum fitness
in the population versus time for one typical run. As can be seen, the GA found its highest
fit individual by about generation 40, and this individual's fitness was about 90% of the
optimum.

Given an individual x in the population, each term Wj,pj( x) in the fitness function con
tributes either a positive or negative value to x's total fitness. If Wj,pj(x) contributes a
positive value, we call x a positive instance of that term; otherwise we call x a negative in
stance. Figure 7 shows, for this same run, how the percentages in the population of positive
and negative instances of each term vary over time. The y-axis consists of the 32 partition
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Figure 6: The percentage of the optimum of the maximum fitness

plotted over time for a typical run with string length 32. For this

plot, the maximum fitness was sampled every 10 generations.

coefficients Wj of the fitness function, in order of ascending magnitude (recall that these

coefficients were each chosen randomly in a range from 0.0 to 5.0, and then their signs were

adjusted). The x-axis consists of generation numbers, from 0 to 200. At any point in the

plot, the value of the gray-scale represents the percentage of individuals x in the population

that are positive instances of the given term at the given time. The darker the gray value,

the higher the percentage. As can be seen, very early on, a large subset of the terms have

80-100% as positive instances, and a smaller subset of terms have only a small number of

positive instances.
This result can be explained in terms of the constraint-satisfaction problem as follows.

Any individual x with suboptimal fitness receives positive values from only a subset of the

terms in the fitness function, leaving the rest of the terms "unsatisfied", that is, yielding

negative values on that individual. However, because of the high degree of overlap, the

constraint satisfaction problem here is very severe, and to discover an individual that receives

additional positive values from other terms -without losing too many of the currently held

positive values-is very difficult, especially since crossover does not help very much on these

functions (see Section 6.1). This is particularly true since, once individuals of relatively high

fitness are discovered, the diversity of the population falls very quickly. This can be seen

in Figure 8, which plots the number of distinct individuals in the population over time2.

As Figure 7 indicates, the population very quickly subdivides itself into a small number of

mutually exclusive sets: one large set of individuals receiving positive values from one subset

of the terms in the fitness function, and other, much smaller sets of individuals receiving

2We counted two individuals as being distinct only if they were different at some significant locus - that

is, at a locus in which one of the 32 j's had allele 1. As one would expect, with strings of length 32, every

locus was significant, which is not generally the case for strings of length 128.
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Figure 7: The percent of positive instances for each term in the fitness
function plotted over time for the same run with string length 32. The
coefficients on the y-axis are in order of increasing magnitude. The
darker the gray-value, the higher the percentage of positive instances.
The values plotted here were sampled every 10 generations.
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Figure 8: The number of distinct individuals in the population plotted
over time for the same run with string length 32. For this plot, the
number of distinct individuals were sampled every 10 generations.

positive values from the other terms in the fitness function.
To summarize, the GA stays stuck at a local optimum that is discovered early. It is

possible that raising crossover and mutation rates might improve the GA's performance on
such functions, since it would increase the amount of diversity in the population.

On a typical run involving strings of length 128, the situation is very different. Figures 9
11 plot the same quantities for one such run. As can be seen in Figure 9, the GA tends not
to discover its highest-fit individual until late in the run (on average, around generation
150), and, as can be seen in Figure 11, the diversity of the population remains relatively
high throughout the run. The continuing high diversity of the population is a result of
several factors, including the following: since the problem is less constrained, there are many
ways in which an individual can achieve relatively high fitness; and since the crossover rate
was defined on a per-allele basis, there are on average a greater number of crossovers per
chromosome here than in the 32-bit case. But the relative lack of constraints was the major
factor, since when crossover was turned off in the 128-bit case, the population diversity
remained considerably higher than for the 32-bit run described above, although it was less
than in the 128-bit case with crossover turned on. As can be seen in Figure 10, in the 128-bit
case the population does not segregate into mutually exclusive sets - throughout a typical
run, almost all of the terms in the fitness function provide positive values to a significant
fraction of the population.

Because of the relative lack of constraints in the 128-bit case, the population does not
quickly become locked into a local optimum, and is able both to continue exploring longer
than in the 32-bit case and to optimize each term of the fitness function more independently.

In short, these results indicate that the major cause of the GA's difficulty on Tanese's
original functions is the high-degree of overlap among significant loci in the j's, creating
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Figure 9: The percentage of the optimum of the maximum fitness
plotted over time for a typical run with string length 128. For this
plot, the maximum fitness was sampled every 10 generations.

problems of high effective order. A secondary cause of difficulty is the lack of information
from lower-order schemas, making crossover relatively ineffective on these functions.

Note that these two factors-overlaps and lack of information from lower-order schemas
do not imply that the Tanese functions are deceptive; these features are distinct from the
feature of deceptiveness. The Tanese functions thus provide an important counter-example
to a prevailing belief that deception is, if not the only, at least the most important feature
in characterizing what types of functions are difficult for the GA to optimize [6]. The notion
of deception and its relation to the Tanese functions and to GA performance in general is
discussed further in Section 9.

7. Why does subdividing the population seem to improve performance?

Although both the traditional and partitioned GAs performed poorly on the Tanese func
tions, the results reported by Tanese showed that the performance of most instances of the
partitioned GA was better than that of the traditional GA. This was the case even when the
population was subdivided into extremely small subpopulations, such as 64 subpopulations
of 4 individuals each, and, in some cases, even for 128 subpopulations of 2 individuals each.
For functions of order higher than 4, neither the traditional nor partitioned GA's ever found
the function optimum, so the difference between the two was measured only in terms of
proximity to the optimum of the best fitness discovered.

As Tanese points out, these results run against conventional wisdom about GAs: it has
been thought that on difficult problems a large population is needed for processing a sufficient
number of schemas [12].

Tanese proposes three main reasons for this surprising result.
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1. Tanese functions have a large number of local optima and the GA tends to converge
on one. Each of the smaller subpopulations of the partitioned GA will converge earlier
than a larger single population, but the subpopulations tend to converge on different
optima, and so are able to explore a greater number.

2. After the populations converge, the major adaptive force is mutation. Mutation will
be more effective in a smaller population than in a large population, since in a large
population, the greater number of mutations will drive up the standard deviation
of fitnesses in the population, making it less likely that fit mutations will be able
to produce enough offspring to spread in the population (recall that the expected
number of offspring is a function of the fitness and the standard deviation). In the
smaller population, fewer mutations will occur and the standard deviation will be lower,
allowing fit mutations to spread more effectively.

3. Since smaller populations tend to be more homogeneous (for the reasons given above),
fit mutations are less likely to be destroyed through crossover.

Explanation I seems correct, especially in light of the dynamics that were discussed in
Section 6.3. It seems that the traditional GA quickly finds a single local optimum that
satisfies a subset of terms in the Walsh polynomial, and cannot go beyond that point. Since
the number of different chromosomes in the population falls so quickly, the traditional GA
does not use the potential for diversity that its large population offers. This explains why
a number of small populations running in parallel would likely result in at least one way
of satisfying the constraints that was superior to local optimum found by a single large
population GA.
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Explanation 2 relies on the assumption that large populations tend to be more diverse
and have higher standard deviations than smaller ones. But as was seen in Figure 8, the
diversity of the large population with 32-bit strings falls very quickly, so this assumption
seems incorrect. We believe that the main factor keeping successful mutations at bay is the
degree to which the problem is constrained: once a local optimum is settled upon, it is very
unlikely that a single mutation (or a small set of mutations) will yield a fitter individual.

A similar point could be made with respect to Explanation 3. Given the homogeneity
that results even with a large population, it seems likely that this is not a significant factor
in the relative poor performance of the traditional GA.

lt is important to point out that the effects discussed here come about because of the
special characteristics of the fitness functions being used - in particular, the fact that the
single-order functions prevent the GA from exploiting information from lower-order building
blocks through crossover. For functions in which lower-order building blocks do yield useful
information, these effects might not be seen. The results and analysis for these functions
cannot be assumed to be applicable to all instances of Walsh polynomials.

8. Why does hillclimbing outperform the GA on these functions?

Another surprising result reported by Tanese is that iterated hillclimbing consistently out
performed the traditional GA on the Tanese functions. The iterated hillclimbing algorithm
works as follows [37].

Repeat the following until a specified number of function evaluations have been per
formed.

1. Choose a random string x in the search space, and calculate its fitness.

2. Calculate the fitness of everyone-bit mutation of x. If an improvement over x's fitness
is found, set x equal to the string with the highest fitness.

3. Repeat step 2 until no one-bit mutation yields an improvement. Save this "hilltop"
point.

4. Go to step 1.

Finally, return the highest hilltop.

In order to compare the performance of a run of iterated hillclimbing with that of a run
of the GA, Tanese ran the above algorithm until the number of function evaluations was
equal to that performed by the GA (the population size times the number of generations).
On 32-bit order-4 functions, the success rate of this hillclimbing algorithm was 23 out of 64
- almost eight times the success rate of the traditional GA and more than one and a half
times the success rate of the best partitioned GA. Hillclimbing, like both the traditional and
partitioned GAs, had a success rate of 0 on all functions of higher order, but it did consistently
achieve higher fitnesses than the traditional GA. We ran iterated hillclimbing on 20 randomly
generated order-8 functions, again using the same number of function evaluations as in the
GA runs. The results are summarized under Hill 32 in Table 2: on average, hillclimbing was
able to find a string whose fitness was within about 5% of the maximum, whereas the original
GA was able to find a string whose fitness was only within about 12% of the maximum.
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Since the nature of the Tanese functions precluded the GA from using information from
lower-order building blocks via crossover, the genetic operators of crossover and mutation
served mainly as a means of generating random variation-in effect, an inefficient form of
hillclimbingj this is the reason for the greater success of hillclimbing on these functions. This
is shown further by the results of running hillclimbing on functions with 128-bit strings,
summarized under Hill 32 in Table 2. On these easier functions (with less overlap than the
32-bit string functions), hillclimbing still beat the GA, finding the optimum 20 out of 20
times versus 17 out of 20 times for the GA.

9. Are the Tanese Functions Deceptive?

None of the explanations given so far for Tanese's anomalous results rely on the Tanese
functions being deceptive. However, the poor performance of the GA led Goldberg to propose
that "deception or partial deception" was lurking in the Tanese functions [18]. In this section
we examine the question of whether or not the Tanese functions could be deceptive. This
examination has led to some general concerns about what the term "deception" actually
means or should mean, and what its role is in understanding GAs.

9.1 Definitions of Deception

A number of different definitions of deception as well as types of deception have been proposed
in the GA literature (e.g., [5, 13, 32, 39]), and, although there is no generally accepted
definition of the term "deception", it is generally agreed that the notion of deception involves
situations in which lower-order schemas give misleading information to the GA about the
probable average fitness of higher-order refinements (higher-order schemas contained by the
lower-order schemas). For the purpose of this section we will use the definitions of different
types of deception proposed by Whitley [39]. These definitions are summarized below. These
definitions all use the notion of competition among schemas in a partition. For example, in
a 4-bit problem, the order-2 partition *dd* contains four schemas: *00*, *01*, *10*, and
*11*. The winner of this "hyperplane competition at order-2" (or, equivalently, the winner
of this partition) is the schema with the highest average fitness. The partition *dd* is said
to subsume the partition *ddd, which contains eight schemas, each a subset of one of the
schemas in *dd*.

The following definitions are adopted from Whitley (which, as he states, are consistent
with most other proposed definitions of deception in the literature).

Definition: A problem contains deception if the winner of some partition has a bit pattern
that is different from the bit pattern of the winner of a higher-order subsumed partition.

Definition: A problem is fully deceptive at order N if, given an order-N partition P, the
winners of all subsuming lower-order partitions lead toward a deceptive attraetor, a hyper
plane in P that is different from the winner of P.

Definition: A problem is consistently deceptive at order N if, given a order-N partition P,
the various winners of all subsuming lower-order partitions lead toward hyperplanes that are
different from the winner of P (though not necessarily leading towards the same deceptive
attractor) .
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9.2 Tanese Functions and Deception

The first question we want to address is, could the Tanese functions be deceptive? It should
be clear that it is possible to construct a non-deceptive Tanese function (e.g., one with only a
single term), so the Tanese functions are not necessarily deceptive. Is it in fact possible for a
Tanese function to be deceptive? As it turns out, the answer is not clear, since the definitions
given above neglect a key aspect of Tanese functions: every partition of the search space
contains at least two winning (maximal) schemas. This is because for j's of even order,
,pj(x) = ,pjex). But the definitions above all specify that there is a single winner ("the
winner") of each partition.

The definition of contains deception could be modified as follows:

Definition: A problem contains deception if one of the winners of some hyperplane com
petition has a bit pattern that is different from the bit pattern of each of the winners of a
higher-order subsumed partition.

If this definition were adopted, then it would be possible for a Tanese function to contain
deception. The following is a simple example of such a function (where the bit strings are
of length 5 and the order of the j's is 4):

F(x) = ,pnno(x) + 2,p11101(X) - 3,pnon(x).

F(x) meets the two requirements of a Tanese function: all the non-zero terms are of the
same even order (4), and there is a point x' whose fitness receives a positive contribution
from each term in F(x). One such point is Xl = 10100, with F(x l

) = 6.
To show that this function contains deception according to the modified definition, con

sider the partition P = dddd*. One winner of P is the schema So = 1111*. As was discussed
in Section 6.1, the only terms in F that contribute to a schema s's average fitness are those
whose j's are covered by s, where s covers j means that each 1 in j corresponds to a defined
bit in s. For example, So covers only the first term of F. A term Wj,pj(x) that is not covered
by s will contribute 0 to s's average fitness, since, because a Walsh function's value depends
on parity, half the instances of s will make this term positive and half will make it negative.
This can be easily checked for So with respect to the second two terms of F. The average
fitness of So is 1, which is the highest possible average fitness for schemas in P, since schemas
in P cover only the first term of F. Thus, So is a winner in P.

However, consider the subsumed partition pi = ddddd. According to the modified def
inition, if the problem does not contain deception, then either 11111 or 11110 should be a
winner in P'. But the fitness of 11111 is 0, and the fitness of 11110 is 2, whereas the fitness
of x' (a winner in PI) is 6. Thus, this function contains deception according to the modified
definition.

It can be proved, however, that in any Tanese function, every partition contains some
winner that does not lead the GA astray. This is stated formally by the following theorem:

Theorem 1: Let P be any partition of the search space defined by a Tanese function F.
Then there exists a schema s in P such that s is a winner in P and, for any pi subsumed
by P, there exists a winning schema Sl in pi such that Sl C S.
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Proof:
Let x' be a global optimum of F. Let s be the schema in P whose defined bits are the

same as the corresponding bits in x'. The average fitness of s depends only on the terms in
F that are covered by s. Call the set of such terms C. Since x' is a global optimum of a
Tanese function, it receives positive values from all terms in F, so it receives positive values
from all terms in C. But the value of a term Wj1/Ji(X) in C on x' depends only on the bits in
x' corresponding to 1's in j. Since C is the set of terms covered by s, these bits are precisely
the bits that are defined in s, so every instance of s also receives positive values from all the
terms in C. Thus s is a winner in P.

Now let P' be a higher-order subsumed partition of P. Let s' be the schema in P' for
which s' c s, and for which the additional defined bits in s' are set so that x' <; s'. Then,
for the same reason as above, s' is a winner in P'.

We have shown that (1) there can be a winning schema in a given partition that does not
contain any winning schema in a higher-order subsumed partition, but (2) there is always
at least one winning schema in every partition that contains a winning schema in every
higher-order subsumed partition (and thus contains a global optimum).

It is unclear from Whitley's definitions whether or not this situation should be called
"deception". Theorem 1 implies that the Tanese functions cannot be fully or consistently
deceptive, but it seems to be a matter of definition whether or not they can contain deception.
Certainly the property illustrated by the example "deceptive" function given above might
cause difficulty for the GA, but the degree of difficulty might be different from a function
containing deception that strictly conforms to Whitley's definition. It is interesting to note
that Wilson [40] defines a problem to be "GA-easy" if "the highest fitness schema in every
complete set of competing schemata contains the optimum." Theorem 1 could be interpreted
to imply that the Tanese functions are GA-easy, since there is a highest-fitness schema in
each partition that contains the optimum. Of course, as Tanese demonstrated, many Tanese
functions were far from easy for the GA.

As with the notion of "GA-easy", most definitions of deception assume that there will
always be a single winner in every partition. However, it cannot be expected that for every
problem posed to the GA, every partition in the search space will contain a unique winning
schema. Thus it is of considerable importance, in formulating a definition of deception, to
take into account situations such as the multiple partition-winners in the Tanese functions.
While the Tanese functions are a particularly extreme example of this, multi-modality cer
tainly exists in other more natural functions, and we need to be clear about what deception
means in these circumstances. Definitions of deception should at least take into account the
difference between the kind of deception found in the example function given above, and the
kind specified by Whitley's original definition. If they are both to be called "deception,"
then it is clear that deception is a broad concept with a number of dimensions, and these
various dimensions should be identified.

Note that the example of a "deceptive" Tanese function given above is quite different
from the functions that Tanese actually used. It may be that the differences (e.g., 32 terms
instead of 3 terms, 32-bit strings instead of 5-bit strings, higher-order j's) place additional
constraints on the functions that affect whether or not they can be deceptive. We have shown
only that it is possible to construct a Tanese function (obeying the two criteria stated earlier)
that contains "deception." It is still an open question whether or not the original Tanese
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functions actually contain the type of deception illustrated in the example. And again it
is important to note that the two major factors we have identified as responsible for the
GA's difficulty on the Tanese functions-overlaps and lack of information from lower-order
schemas-are distinct from the notion of deception. We believe it is these features, and not
deceptiveness, that makes Tanese functions hard for the GA to optimize.

9.3 Deception and GA Performance

The previous subsection raised some concerns inspired by the Tanese functions about how
deception should be defined. We also have some concerns about the role played by the notion
of deception in understanding GAs. It has been common in the GA literature to characterize
problems containing deception as "GA-hard" and problems lacking deception as "GA-easy"
(e.g., [19, 32, 40]), but these are unfortunate identifications, since they imply that every
problem containing deception will be hard for the GA and every problem lacking deception
will be easy for the GA. However, the GA can easily succeed on many deceptive problems
for example, when the degree of deception is very slight. And non-deceptive problems can
be difficult for the GA: for example, Mitchell, Forrest, and Holland's non-deceptive "Royal
Road" functions [33] can be constructed to be quite difficult for the GA. Thus, as the terms
are currently used, "GA-hard" does not necessarily imply hard for the GA, and "GA-easy"
does not necessarily imply easy for the GA. This is clearly a bad use of terminology3.

Thus, deception is not the only factor determining how hard a problem will be for a GA.
In general, there are a number of factors that can make a problem easy or hard, including
those we have described in this paper: the presence of multiple conflicting solutions or partial
solutions, the degree of overlap, and the amount of information from lower-order building
blocks (as opposed to whether or not this information is misleading). Other such factors
include sampling error [23], the number of local optima in the landscape [35], and the degree
to which high-fitness schemas are isolated from lower-order supporting schemas [33], Most
efforts at characterizing the ease or difficulty of problems for the GA have concentrated on
deception, but these other factors have to be taken into account as well. In this paper we
have demonstrated that overlaps among significant bits in the j's is a primary cause of the
GA's difficulty on the Tanese functions; this source of difficulty is distinct from any difficulty
caused by deception.

At present, the GA community lacks a coherent theory of the effects on the GA of the
various sources of facilitation or difficulty in a given problem; we also lack a complete list
of such sources as well as an understanding of how to define and measure them. Until such
a theory is developed, the terms "GA-hard" and "GA-easy" should be defined in terms of
the GA's performance on a given problem rather than in terms of the a priori structure of
the problem. A general relation between a given problem's structure and the expected GA
performance on that problem is still a very open area of research.

Finally, we are concerned about the focus on finding the global optimum that is implicit in
many definitions of deception (and thus of "GA-hard" and "GA-easy"). In many applications
it is infeasible to expect the GA to find the global optimum (and in many applications the
global optimum is not known). Moreover, it could be argued that in general the GA is
more suited to finding good solutions quickly than to finding the absolute best solution to a

3Stewart Wilson [personal communication] has proposed the term "veridical" to replace "GA-easy" in
describing problems lacking deception.
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problem. But some researchers define deception solely in terms of hyperplanes leading toward
or away from the global optimum (e.g., [32]). This narrows the concept of deception and
makes it less generally useful for characterizing problems according to probable GA success
or failure, especially when "success" does not require that the exact optimum point be
found. Also, several so-called deceptive problems are essentially multi-peaked functions with
a negligible difference between the global optimum and the runner-up; for many applications
it would not matter which one the GA found. Should such cases be classified with the
stigma of deception? Or even worse, should such cases be relegated to the foreboding class
of "GA-hard"? Clearly we need to clarify what it means for the GA to succeed or fail as
well as what causes it to succeed or fail before we can define "GA-hard" and "GA-easy."

10. How should the GA's performance be measured?

The questions raised in the previous section lead naturally to the question of what are
appropriate ways to measure the performance of the GA. Performance measures are usually
made for the purpose of comparing different versions of the GA or for comparing the GA
with other search and optimization algorithms. The main purpose of Tanese's experiments
was to compare the performance of the traditional GA with the partitioned GA. In this
section we discuss some difficulties with deciding how to measuring performance in order to
make such comparisons.

One of Tanese's main points of comparison was an algorithm's "success rate", i.e., the
number of runs on which the global optimum was found. Under this criterion, the partitioned
GA outperformed the traditional GA on optimizing Tanese functions, and hillclimbing out
performed both forms of the GA. In this paper we have proposed some explanations for these
results, but aside from the peculiarities of the Tanese functions that make them difficult for
the GA, it is also important to point out that success rate alone is a very strict requirement.
It does not reflect how close the algorithm came to the global optimum, or how long the
algorithm took to reach its maximum fitness level. Performance measures taking these crite
ria into account might lead to a different conclusion than absolute success rate about which
algorithm performs best. The GA's success rate can be measured on the Tanese functions
since the global optimum is known, but for most problems the GA is applied to, the global
optimum is not known, and even in cases where it is known, achieving it is often an infeasible
goal. An algorithm's success rate is not necessarily correlated with its ability to achieve a
sufficiently good solution relatively quickly (satisficing), which is what is required on most
optimization problems.

Thus, for most problems, it would be unreasonable to expect the GA to find the exact
optimum or get no credit for success. Requiring the GA to find a global optimum is especially
irrelevant in the case where the environment is changing faster than the GA can evolve.
Under this circumstance, the GA can still make progress even though it can never hope to
find a true "optimum." Likewise, there are many situations in which the GA's goal is to find
a number of good interacting solutions rather than a single best solution. Classifier systems
(using the "Michigan" approach) and recent immune system models [11] are two examples
of GA applications in which the population is most naturally viewed as a collective ecology.
In this situation, the most fit individual is meaningless, since it is the collective fitness of
the entire population that is significant.

Additionally, sampling procedures like the GA are inherently nondeterministic. This
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implies that even if the algorithm were performing well on a particular function (and in the
theoretical limit could be guaranteed to find the optimum) it might be "unlucky" in some
circumstances, not reaching the exact global optimum. To some extent nondeterminism can
be accounted for by performing multiple runs with different initial populations. However, it
seems that for nondeterministic procedures such as the GA, it would be appropriate to use
a continuous measure of success.

It is likely that there is no absolute way of determining if one variant of the GA (e.g., the
traditional GA) is "better" than another (e.g., the partitioned GA)j the degree to which one
algorithm outperforms another depends on the purpose for which the algorithms are being
used. But the above discussion implies that if a general comparison is to be made, it should
be made along a number of dimensions, reflecting the various purposes for which the GA is
generally used. The dimensions include the value of the best solution found in the allotted
time, how close that value came to the optimum (if it is known) or how high that value is
with respect to some measure of the problem's difficulty, how fast the algorithm reaches its
best solution, and so on.

The question of appropriate performance measures has not been carefully addressed in
the GA literature. Many GA researchers use empirical comparisons with other optimization
methods, such as hillclimbing or random search, to rate the difficulty of a problem, and
occasionally researchers have looked at fitness frequency distributions. However, the most
common approach is to show a graph that compares the fitness versus time of a standard al
gorithm against that of the one being studied and ask the reader to compare the performance
visually.

We believe that more quantitative measures are appropriate for comparing the perfor
mance of different optimizers on different problems, and that they should have the following
properties: (1) they should be normalized so that performance can be compared on different
problems and with different optimizers, (2) they should reflect problem difficulty, and (3)
they should indicate how far the optimizer got, not just whether or not it reached the global
optimum.

An example of one such metric is a cumulative density function, that computes the
probability that a random point would have a higher fitness than that found by the optimizer
[30]. If y is the highest value found by the optimizer, F is the fitness function, and X is a
random variable, then we want to find

y' = P(F(X) < F(y)).

Using this metric, the optimizer is trying to maximize y'. P can be found by computing,
either analytically or empirically, the distribution of f(X). It is not necessary to know the
global optimum ahead of time.

In preliminary tests using this metric, the GA and hillclimbing both do extremely well
on order-8 Tanese functions, and their performance is indistinguishable from one another.
This suggests that the difference between the performance of hillclimbing and the GA is
insignificant when compared with the difficulty of the order-8 Tanese functions.

11. Conclusions

After examining several possible causes for the GA's poor performance on the Tanese func
tions, we reach several conclusions:
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• Overlaps in the defined loci between different j's in a given Tanese function created
functions of much higher effective order than the actual order of their Walsh terms.
This is the principle reason for the difficulty of the functions.

• The lack of information from lower-order schemas hampered crossover from contribut
ing to the search. This was a secondary cause of the GA's poor performance, and
largely accounts for the superior performance of hillclimbing.

• Long defining lengths in the non-zero partitions contributed slightly to the GA's poor
performance but were not a major factor.

Tanese's results could be erroneously interpreted to imply that, in general, Walsh poly
nomials are difficult for GAs, and that hillclimbing will generally outperform the GA on such
functions. Such a result would be very negative for the GA, since any real-valued function
defined on bit strings can be expressed as a Walsh polynomial. However, the experiments
and analyses reported in this paper suggest that Tanese's results should not be interpreted as
a general negative verdict on the efficacy of the GA in function optimization. The functions
she studied are a highly restricted subset of the class of Walsh polynomials and have several
peculiar properties that make them difficult to optimize. Her results could also mistakenly
be taken to imply that partitioned GAs with smaller subpopulations will always outperform
traditional GAs. This may not be true for functions in which recombination of lower-order
building blocks plays a major role in the search.

These results raise the important question of what functions are well-suited for the GA,
and more importantly, which of these functions distinguishes the GA from other optimization
methods. We showed in this paper that the GA's difficulty with the Tanese functions was
due to factors other than deception, the source of GA difficulty that up to now has been
by far the most carefully studied by GA researchers. The results discussed in this paper
underscore the fact that there are a number of different, independent factors that can be
sources of difficulty for a GA, and we believe that these various factors must be identified
and studied as part of the effort to characterize different problems in terms of the likelihood
of GA success.

In addition, we believe that it is essential to better clarify what it should mean for a
GA to "succeed" on a given problem. For example, it is not clear that the ability to always
find a function's global optimum (measured by "success rate") is a reasonable criterion for
measuring the GA's performance, for comparing the GA with other search methods, or
for defining the terms "GA-easy" or "GA-hard", although this criterion has been explicitly
or implicitly used for these purposes by a number of GA researchers. An important open
question is the extent to which GAs should be seen as an effective method for absolute
optimization, as opposed to, say, an effective method for quickly finding good (though not
necessarily optimal) solutions.

One clearly important factor lacking in the Tanese functions is the availability of lower
order building blocks which can combine to produce fit higher-order schemas; such hierarchi
cal schema-fitness structure is what makes crossover an effective operator. One hypothesis
is that the degree to which a function contains such structure will in part determine the
probability of better optimization success for the GA than for other methods. Another hy
pothesized contributing factor is the degree to which the fitness landscape contains different
"mountainous" regions of high-fitness points that are separated by "deserts" of low-fitness
points [28]. In order to travel from a low mountainous region to a higher one, a low-fitness
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desert must be crossed. Point-mutation methods such as hillclimbing can have very high
expected waiting times to cross such deserts (if they can cross them at all); the hypothe
sis is that the GA will be much more likely to quickly cross such deserts via the crossover
operation.

The degree to which these factors are present in a given function may depend to a
large extent on the representation chosen for the function; the role of representation in GA
function optimization has been recently discussed by Liepins and Vose [32J. We are currently
studying the behavior of the GA and other optimization methods on a class of functions in
which the degree to which these and other factors are present can be directly varied [33],
and we are investigating ways in which the presence of such features can be detected in a
given function with a given representation. We believe that this investigation will lead to a
better understanding of the classes of functions for which the GA is likely to be a successful
optimization method.
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