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Steady-state vs. generational genetic algorithms:
A comparison of time complexity and convergence properties
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The genetic algorithm (GA) represents a powerful class of search and optimization
techniques developed in analogy to genetic laws and natural selection. Best solutions are
allowed to evolve subject to some fitness criteria, while internally the mechanics are left
largely as a black box. For steady-state GAs, efforts directed towards finding general
recursion relations have failed, thus obscuring previous comparisons with the other
preferred GA based on generational reproduction. For a binary GA using steady-state
reproduction, new recursion relations are found in closed form for three trial cases: (1)
constant average population fitness; (2) exponentially bounded variation in average fitness;
and (3) constant jump size of average fitness between successive generations. In the latter
case, the generational GA is found to be a subset of the steady-state for a jump size, K=l.
In general the resulting equations provide the relationships of practical interest between
estimated run time, problem size, and fitness ratio, along with defining a striking set of
new parameters which together give a framework to quantify how the steady-state GA
balances its elite selection against the need for diversity and mixing between individual
alternatives. Two characteristics of the steady-state analysis are derived as a decay
correlation time for the average population fitness (or half-life) and an entropy-like measure
of fitness diversity and information exchange within a large population.
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Overview and Problem Statement

The genetic algorithm (GA) is a massively parallel, numerical search and optimization

technique which acts in a somewhat analogous fashion to natural genetic laws. As

developed in 1975 (Holland, 1975) and subsequently applied to a host of optimization

problems in engineering, machine learning and physics (Davis, 1991; Goldberg, 1989), the

method operates on partial (unoptirnized) solutions and generates mutated or recombined

copies of possible alternatives until a good solution emerges or evolves. At each generation

step, the partial solutions can be mixed using a cross-over operation which exchanges

segments of these partial solutions; this operation draws its significance from natural

genetics and reproduction, where the chromosomes play the role of partial solutions or

schemas which exchange information prior to subsequent reproduction and copying to the

next generation. The internal mechanics of how the genetic algorithm arrives at its optimal

solution remain a topic of great interest.

In general the mathematical workings of the GA's operation has remained somewhat

shrouded: it may work, but how? This note explores one analytical approach to understand

how such numerical searches can select and promote elite solutions at the expense of poor

solutions, while at the same time keeping a steady and robust pool ofnew alternatives.

The question is one of diversity and the concept of a population's disorder or variety is

compared between two versions of the genetic algorithm: proportional selection both at

each generation and at steady-state (Goldberg and Deb, 1991; Syswerda, 1991;

Ankensbrandt, 1990).

To anticipate the outcome, closed form recursion relations are derived for example

cases of the steady state method which allows birth and death of solutions. The time
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evolution of the steady-state's average fitness is compared with generational selection for

both time complexity and convergence properties (Shaffer, et aI., 1989; Goldberg and Deb,

1991; Grefenstette, 1986). The analysis extends the inductive proofs of Ankenbrandt

(1991) to include steady-state alternatives. Goldberg and Deb (1991) treated one version

of the steady-state GA (Whitley's Genitor) and derived an integrated solution valid after

many generations. (e.g. when a time derivative approximates the [mite difference between

generations). In agreement with Syswerda (1991), they generally remarked that other than

by direct iteration, a simplified solutionfor steady-state reproduction is non-trivial. The

first section of this note will consider various limited generalizations which lead towards

the goal of closed analytic forms for the steady-state GA. Syswerda (1991) previously

took up the problem of comparing steady-state and generational GAs and pointed out that

while the two GA versions share their theoretical foundations in the schema theorem, in

practice their reproductive behavior can differ markedly.The present aim is to understand

further some of the hidden behavior which underlies the GA's remarkable success.

Recursion Relations for Proportionate Selection

General use of proportionate selection in the GA currently favors two reproduction

strategies: either generational or steady-state. Syswerda (1991) has drawn the distinction

clearly and identified generational reproduction as a method which replaces the entire

population at each generation, while steady-state reproduction replaces only a few

individuals at a given time. By numerically iterating their respective reproductive

performance, he showed that the two methods can be made to look similar within the

schema theorem (Holland, 1975), that is, to favor fit solution by increasing their
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reproductive rate. A comparative summary of each method's capabilities and shortcomings

appears in Table I.

Case I: Generational Reproduction

The Recurrence Relation

For discrete time steps between generations, t=(0,1,2... }, let Pi t correspond to the,

proportion of alleles (or bit string values) set to the value one for a particular allele position

i at generation 1. Let Pi,o represent P for the founder generation, t=O. For simplicity, all

subsequent work will treat binary genetic algorithms which have alleles possessing either

of two values, zero or one; the multivalue case is a trivial generalization at this level of

proof. Let f1 correspond to the organism's fitness (some survival probability) sampled

with allele value one in a particular position j. Likewise, take fo to represent the fitness of

all organisms sampled with allele value zero in position j. For any defined fitness ratio,

r=f1/fo' the value will be considered time-independent and constant across generations.

Ankenbrandt (1991) has discussed the alternatives to this assumption and shown that time-

dependent fitness ratios can be placed within an analogous framework. More specifically,

the minimum fitness ratio for the entire simulation appears to approximate the cross-

generational fitness ratio; additionally the discrete fitness ratio can be examined directly

prior to copying the population to the next generation.
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Using an inductive proof and solving by inspection, Ankenbrandt (1991) has derived

the solution forrecursion in the generational model. Goldberg and Deb (1991) put forward

the same solution in a compact form:

t
r. P. 0

P. = J I,
1.t

~r~ P. 0£.. J J,
j

where r is a polynomial of order equal to the generational time step, 1. Since the inductive

proofrequires evaluation of only three terms, Pi=I,2,3' the derivation is repeated here

using a slightly different formalism which will prove most valuable in subsequent

comparisions with the steady-state version of reproduction.

Appendix A derives equation (1) in a particularly transparent notation. For a fitness

ratio, r=fl/fo, two new terms can be introduced: the inverse proportion, xt=I/Pt, and the

fitness difference, M=(f1-fo)/fo. Equation (1) can be rewritten simply as

1
x =-[M+x]

t+l r t
(2)

This more straightforward form can be iterated recursively and the closed form solution can

be identified by inspection:

t
x=[(r-I)+x ]/r= 1-(1-x )/r

t t-1 0
(3)

Substitution for x in (3) gives agreement with equation (I) and its time complexities derived

previously (Ankensbrandt, 1991; Goldberg and Deb, 1991).

Time Complexity

Time complexity of a GA refers to the functional dependence of convergence time on
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the population size and fitness. Two cases of time complexity can be considered: worst

and average limits. The worst case complexity corresponds to the conditions (PF1-l/n;

Po=lIn), where lin is some small number corresponding the proportional representation of

a single fit individual initially Po and a near convergence on that fit individual which ends

the simulation at Pf. For generational reproduction, the time complexity follows

(Ankensbrandt, 1991) as:

In (n_l)2
= Inr

(4)

In contrast, the average time complexity corresponds to the conditions (PF1-l/n;

Po=O.5), where Po=O.5 is the proportion corresponding the random representation of a

binary algroithm and again a near convergence on a fit individual which ends the simulation

at Pf. The time complexity follows as:

In (n-l)
= ---'Ic-n-r~ (4)

A comparative plot of average and worst case time complexity is shown in Fig. 1 for

various fitness ratios, r, and population sizes, n. In general, the worst case time complexity

is twice the average case.

Case II: Steady State Reproduction

The steady-state recursion relation differs from generational reproduction owing to the

birth and death of new individuals in each generation. The simple population balance for a

single individual which is copied and one which is deleted is:
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(6)

where St=Ptfl+ (l-Pt)fo is the total average population fitness and n is the population size.

Physically the first term on the right hand side represents individuals which live uncopied

from one generation t to generation HI, the second term represents the death of an unfit

individual (required to keep population size constant), and the last term represents the

copying of one individual with a reproductive rate, f liSt. In general no simple closed form

equation exists for this recursion relation; the failure is a direct consequence of the non-

linearity which arises from the need to evaluate an updated version of the average

population fitness, St, at each generation. This function St will be considered in subsequent

section with care to search for approximations which permit a closed form comparison with

the generational relations and time complexity. Here consideration is given to two possible

techniques for evaluating the approximate behavior of the most fit proportion, Pt, in the

steady-state GA. An integrated form is found valid for large populations, n, and many

generations into the simulation. Secondly, a new model which assumes constant jump

fraction, PHllPt, is proposed and found to possess interesting mathematical properties.

Example A: Differential equation for time evolution ofthe fittest proportion, pet)

An Integrated Solution

In the limit of large population sizes, n, the approximation holds that Pt(l-l/n)=Pt. In

this case, after many generations, the difference equation (6) can be rewritten simply as an

ordinary differential equation in the fitness ratio, r=flifo as:



rdP
dt = 1

(r-l) +p-
I

(7)
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Elementary integration gives the time dependence for the proportion of most fit individuals.

Theorem 1: In the limit o/large population sizes, n»I, and many generations, t large

(t»I), then the time evolution o/the mostfit proportion is

(r-l)p 11 Pt--- +- n
r r

and the corresponding tconvergence time is

t (r-l) (P _p )?In Pf
c r fOr P

o

(8)

(9)

For early generations (small t) the integration overestimates the convergence rate, but

becomes a better approximation for late generations.

Time Complexity

As was the case for the generational GA, two cases of time complexity can be

considered: worst and average limits. The worst case complexity corresponds to the

conditions (ppl-l/n; Po=l/n), where lin is some small number corresponding the

proportional representation of a single fit individual initially Po and a near convergence on

that fit individual which ends the simulation at Pf. The time complexity follows as:

t = (r-l) + In(n-l) (10)
err

In contrast, the average time complexity corresponds to the conditions (PpI-lin; P0=0.5),

where P0=0.5 is the proportion corresponding the random representation of a binary

algorithm and again a near convergence on a fit individual which ends the simulation at Pf.
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The time complexity follows as:

(r-l) n-2
t=--(-)+
c r 2n

(11)

A comparative plot of average and worst case time complexity is shown in Fig. 2 for

various fitness ratios, r, and population sizes, n.

Example B: A constant jump size nwdel: K=l condition implies equivalence between

generational and steady-state GA

While the integrated version of the steady-state GA is compact, its form remains

somewhat unsatisfying for comparing with generational recursion relations. To arrive at the

differential equation (7), the death process must be entirely neglected (valid for large

populations, n). To address this uncertainty, this section proposes a well-defined problem

with the constraint that the steady-state GA will increase the proportion of fit individuals

by a constant jump fraction from one copy to the next. Syswerda (1991) first showed that

with regards to the schema theorem, a random selection-and-deletion method best

approximates the steady-state for comparison with generational reproduction. He found

that in the random case, the steady-state iteration looks similar to generational iteration,

except the steady-state is compressed over fewer total generation steps. The present case of

a constant jump fraction is found to provide a useful alternative to random selection. The

principal finding here is a new condition which establishes an equivalence between

generational and steady-state GAs. Generational reproduction appears as a subcase ofthe

steady-state for the particular condition that the jump fraction K=1. Subsequently, this

condition will be called the K=l matching condition for equivalence.
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The Recursion Relation

Again introducing the notation for the inverse proportion, xt=l/Pt, and the fitness

difference, M=(fl-fo)/fo. Equation (6) can be rewritten in Appendix A as

K
x =- [M+x]

1+1 r t
(12)

for the case of a constant jump step for the proportion of most fit individuals between

generations. This condition arises formally as

=K (13)

where K is defined as a non-negative constant for all increasing Pt.

By comparing the steady-state recursion (12) with the generational recursion (2),

inspection reveals that for a constant jump fraction, generational reproduction is a subcase

of steady-state reproduction for K=1. Thus, the matching condition, K=1, implies

dynamic equivalence.

Theorem 2: The generational and steady-state GA show dynamic similarity subject to the

assumption ofa relatively large population size, 1/n< <1, and K=1 for constantpopulation

jump size, K=[Pt+1-PtllPt. The K=1 case is called the matching conditionfor

equivalence.

In this way, the constant jump size can be thought to correspond physically to a linear

stretch factor which maps the generational GA onto the broader steady-state behavior. This

idea, while intuitively satisfying, also makes contact with Syswerda's (1991) arguments

that the generational GA is identical to the steady-state GA with regards both to its

characteristic convergence on a fit individual and the schema theorem. By brute force
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iteration of the recursion relations, he succinctly showed that the steady-state GA

corresponds to a compressed version of the generational GA. As derived analystically here,

the measure of this compression is introduced as K.

Extending this idea, the compression factor, K, acts to pressure the steady-state

population towards convergence. Large K values show earlier convergence and correspond

physically to a greater jump size for the fittest proportion from one generation to the next.

An additional practical feature of this formulation is that for certain classes of problems,

such early convergence may prove disadvantageous. Spurious solutions may arise as local

minima or random noise and thus prevent optimal selection. The problem hss been well

examined in the GA literature and a number of ingenious ways around the difficulty have

appeared. The present derivation raises this issue in another context. Consider the

following conditions for K<l and steady-state reproduction applied to a set of prematurely

convergent problems. Since the generational GA corresponds to K=l and frequently

converges slower than the steady-state alternative, then equation (12) suggests that retuning

the K compression factor to a lower value (or a value less than one) may provide a practical

way to adjust convergence in a single stroke. Thus the matching condition K=I for

equivalence not only poses a new criterion for comparing competing GA versions, but

more importantly gives a tunable parameter for getting around the persistant problem of

premature convergence and non-optimality.

The Recursion Relation

A direct test of the K values' significance to convergence depends on deriving the

appropriate recursion relation. Inspection of (12) and (2) suggests that the steady-state
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recursion should follow from the previously written relation for generational reproduction.

However, close examination reveals that a fortuitous cancellation of terms in the

generational case produces its simple form. The complete recursion relation for the

corresponding steady-state case depends on recognizing that successive iteration give a

geometric series in (Klr) which can be summed in closed form (for Klr<I).

Theorem 3: For a constant jump size (K) model ojgenerational reproduction, the K

compressionjactor introduces the recursion relation:

t

X = KM [ '" (K)~] + (Kr\
t+1 r .£..J r r 0

~=o

andjor the specific condition, (K/r)<1,

KM K t
x=--+(-)x

t r-K r 0
(15)

(14)

The derivation is given in Appendix A and the summation is a geometric series in (Klr).

For (Klr) <1, this series sums to:

t

'" (K)~= _1_~
.£..J r K r-K
~=o 1--

r

(16)

and the recursion relation (15) follows for constant jump size. The closed form (15) for the

steady-state GA is the principal result of this section. Figure 3 compares the convergent

behavior of the recursion relation for generational vs. steady-state and the K=1 matching

condition.

Time Complexity

Elementary solution of (15) for steady-state reproduction gives the

corresponding time complexity of the constant jump model.
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Theorem 4: For a constant jump size ofsize K, generational reproduction yields an exact

time complexity in the closedform

(17)

x
In( 0 )

x_(KM)
t r-K

r
In (K)

t=---
c

Substituting Xt=xF1/Pf and Xo=l/Po, both worst and average time complexity can be

studied. To make explicit the relation between time complexity both in the generational case

and in the steady-state, constant-jump model, equation (17) can be modified by adding the

negligibly small term (Klr)t . This is of zero order within the assumptions (Klr)<l and

many generations t» 1. This gives the particularly transparent form

KM K t
x=-+(-)(x-1)

t r-K r 0
(18)

which equals the identical time complexity (4) as found in the generational case (for K=l )

(19)

and the general form (for K>1):

(l-P) Pf(r-K)
In[ 0 ]

Po (r-K)-PrK(r-l)
tc~----''--------'--

r
In (K)

(20)

As expected, the time complexity of the steady-state model equals the generational case for

K=1.

As was the case for the generational GA, two cases of time complexity can be

considered: worst and average limits. The worst case complexity corresponds to the
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conditions (Pr-l-l/n; Po=lIn), where lin is some small number corresponding the

proportional representation of a single fit individual initially Po and a near convergence on

that fit individual which ends the simulation at Pf. The time complexity follows as:

2
In[ (n-l) (r-K) ]

(r-K)n-(n-l)K(r-l)
t =------'------'------'--'-

C r
In [K]

(21)

In contrast, the average time complexity corresponds to the conditions (Pr-l-lIn; Po=0.5),

where P0=0.5 is the proportion corresponding the random representation of a binary

algroithm and again a near convergence on a fit individual which ends the simulation at Pf.

The time complexity follows as:

(n-l) (r-K)
In [(r-K)n-(n-l)K(r-l)]

t =-----'-----'------'-----'-----'-----'--
C r

In [K]

(22)

A comparative plot of average and worst case time complexity is shown in Fig. 4 for

various fitness ratios, r, and population sizes, n.

Properties of Average Population Fitness

For a given recursion relation on the fit proportion, equivalent restrictions are implicitly

put on the available iterative form for the average population fitness. This section considers

the related question of: How does the average population fitness evolve with time given a

recursive formula for the fit proportion? In three test cases, a closed form recursion can be

found for the average population fitness, St and compared between cases and between

generational and steady-state versions of the GA. Thus convergent behavior can arise
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analytically given some steady state bounds; here, the overall population fitness is

considered as a constant, an exponentially bounded function and the most general form

written from the definition of the steady-state equation.

Steady State Bounds and Convergent Behavior

Test Case 1: Exponentially Bounded Average Population Fitness: Finding a

Characteristic Time, "

In this section, the question is posed: what is the time dependent nature of the average

population fitness, St, during steady-state reproduction? What bounds can be placed on the

fitness convergence of a successful algorithm? More specifically, one would like to define a

characteristic time for the average fitness which captures its dynamic behavior. To do this,

an exponential trial function is proposed and a decay time is extracted which depends only

on the population size, n, and fitness ratio, r=flifo. In actual practice, the use of an

exponential decay places relatively weak pressure on the population fitness.

For a given intergenerational time step, the average population fitness is constrained to

be exponentially bounded in its approach to convergence. This condition corresponds to

some limit on the rate on premature convergence. Mathematically this constraint can be

written as:

-A.,
[St+1-S,]< S,(e -I) (23)

for "t<1 or equally, t<tc' Here the parameter" is related to some constant decay time for

the successive differences in the average population fitness. Thus for a bounded

convergence, the equivalent recursion relation for the average population fitness, St, can be
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written as:

which by induction has the closed form solution,

2
SH1=Soe-At (25).

Relation (25) is physically useful since its elegant and simple form allows one to solve

directly for the characteristic time, A, in a way that reflects the GA's initial parameters

By substitution of (25) into the steady-state equation,

f 1 1
P =P [11 --]

1+1 t ,2 n
-",t

Soe

(26)

For large populations, n, and many generations, the finite difference can be approximated

by the differential and integrated formally to give:

f f IiP(t)= exp[f e dt]
o

(27)

For non-optimal (low fitness) and decreasing populations in which Pt+l-Pt<O, then the

decay time, A, is negative and the integrand in (27) is the Gaussian error function centered

at zero time with variance a=(-2At l .

In the more general case, however, the recursive formula (26) can be iterated. directly

and its closed form recovered from inspection. Rewriting (26) in the streamlined form

suitable for recursion gives:

(28)

In this case, 13=(1-1In), ex= fl/So, and So=flPo+(1-Po)fo. By repeated iteration and

induction, the closed form version of (28) is

t 2

P =P I1(~+exlm )
t 0

m=O

(29)
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To solve directly for the characteristic time, A., the recursion relation (29) can be recast in

the neighborhood of convergence (t=lc), such that for the worst case time complexity

(when Pf/Po=n-I), then

2 tc-l

P f At II Mn
2

P = n-I=(f3+ae ') (f3+ae)
o m=O

(30)

where the right hand side of (27) has been factored. Rearranging (30) gives

A~ (n-I)
(f3+ae ')= ----'----'--

t -1
e 2

II (f3+ae
Mn

)
m=O

(31)

Since the generational product ofthe average fitness (the denominator of equation (31» is

very large, one can approximately rewrite (31) as

2
Ate

-f3=ae
I I (n-l) S

or equivalently, A= - In.li = -In [ f 0]
? a t2 n 1
c c

(32)

Finally, by substituting for the definition of So and rewriting the bracketted logarithmic

terms as In[(n-I){I+(n-I)/r}/n2, then for large populations (l/n«I) the characteristic time

for convergent approach of the overall population fitness follows in terms of the fitness

ratio and convergence time only. Hence,

Theorem 6: For an exponentially bounded approach ofthe average overall population

fitness which satisfies the convergence condition,

(33)

then in the limit of large population sizes, (lln«l), itfollows that a characteristic timefor

average populationfitness, A, can befound equal to:

(34)
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Result (34) is the principal result of this section. The beautiful feature of its simple

closed form is that it allows a GA optimization estimate for the convergent approach of the

overall population fitness analytically prior to a given numerical iteration. That the

characteristic time depends only on the convergence time and the fitness ratio makes this

convergence guide of practical significance; in general, these parameters are known for a

given population size and fitness assignment values.

To complete the discussion, one can use the characteristic time constant A to defme a

half-life decay time for the difference in average population fitness, Stl/2=2So, or St

So/So=l. Direct substitution in the recursion relation (25) for SFStl/2 gives the half-life

for decay correlation in the average population fitness.

',"~,f~;) ~'oj ~;
This section concludes with:

(35)

Proposition 1: For an exponentially bounded approach ofthe average overall population

fitness which satisfies the convergence condition,

-A.I
[St+l-S,]< S,(e -1) (36)

then in the limit oflarge population sizes, (lln«l), itfollows that a half-life for the decay

correlation for differences in the average population fitness, t1l2' can be difined which

depends only on the fitness ratio, r, and the takeover time, tc

Jf!rn2
t =t --
1/2 C In r

For a worst case takeover time using steady-state reproduction, the dependence of the

general time tc on population size, n, and fitness ratio, r, is given by equation (10). Thus

for any given population size and fitness ratio, the half-life can be approximated as:



_{ (r-l) (n-2) 11 ( 1) ffr2
t)(2 - -- -- +- n n-] -

r n r lnr
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(37)

(38)

Physically this half-life gives a characteristic number of generational time steps for the

average population fitness to reach twice its initial value, St1/2=2So. This practically gives

a concrete measure of correlation times for fitness which depends only on initial parameter

selection (Figure 5).

Test Case 2: Constant Average Population Fitness: Defining an Appropriate Step-size,

K

To extend the analysis of the overall population fitness, the second test case considers a

constant average fitness. This assumption is generally a poor approximation within the GA,

since convergence relies on an ever-changing fitness for the population. However, the case

is presented here to highlight a possible role for defining a minimum population step size

between generations, in particular one which can give well-behaved convergence. One

definition for the population fitness can be written as:

f)
S=

t
K

This form is inferred from the previous test case with a constant jump size between most fit

proportions, PH llPt=fl/St=K. Equation (38) states that the average fitness is constant and

proportional to the fitness of one allele, fl. With this definition, the steady-state GA can be

iterated to get the recursion relation in closed form

P )=[l2.tK]1>
t+ n 0

and convergence time

(39)
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f

In [p]

t = °
c 1

In[1-tK]
n

(40)
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For the standard cases of time complexity, both average and worst values can be found as

before, but now as a function of (n,K). The worst and average cases for convergence time

are:

2
n In(n-I)

t
c

(worst case);
K

tc~-----

K
(average case)

To give physical meaning to the value of K, one can define a normalized step size for

interation as, E=K/n, where Eequals the ratio between generations of the fit proportion

PHl/Pt divided by the total population size. In this way, the parameter e represents a

scaled step size between generations of the overall population fitness.

To understand the dynamics of successive steps between generations and the

observable consequences on this scaled step size, equation (40) can be rewritten as:

P
f

In[p]
t =__-,0,--
c E

In [Pf+-l
n

(41)

(42)

Equation (41) has the advantage that for small step sizes relative to the total number of

individuals in the population (Eln«I), then the upper bound on Pf<l makes the

logarithmic approximation valid, In[Pf+f/n]= In[l+f/n]=f/n and

n

Pf -;:
E=(-)

Po

Therefore, for a worst case convergence (PFI-n- I , Po=n- l ), the scaled step size varies

dynamically as E=(n-I )n/f:c. In other words, for a particular population size n and a desired
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number of generations to convergence, tc' then the proportional increase in the most fit

members should be at least

n

P,+! r:-
K---<n(n-l)

P,
(43)

This relation allows the operator of a steady-state GA to guide the convergence by

monitoring the intergenerational steps in the most fit population and comparing the ratio to

the worst case scenario (43). Clearly, for longer convergence times, (tc» 1), then

PHl/Pt=n and the proportional fitness evolves as time independent. Conversely for short

convergence times (n/le» 1) and large populations, then PHl/Pt=nn/le and the

proportional fitness evolves intimately as a power of the population size. The main result of

this section is equation (43), namely the derivation of a lower bound on the

intergenerational step size between the most fit proportion, PHl/Pt, along with the practical

suggestion that this criteria can guide on-line monitoring ofsteady-state convergence.

Equally, a physical meaning is attached to the requirement that population steps remain

constant as a kind of scaled step size between generations.

Test Case 3: The General Recursion for Arbitrary Fitness: The Entropy Function

for Diversity and Genomic Information

This section takes up the main questions explicitly: How does the genetic algorithm

maintain diversity while selecting and favoring fit individuals? This prompts a related

question which sheds some light on the issue of informational diversity in a population,

namely how does the average population fitness evolve in time? For steady-state

reproduction, an equivalent form to the recursion relation derived in (6) for the proportion
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of fit individuals, Pt, can be written for St and solved (by integration) to give the time

dynamics. The result of the following analysis will be a logarithmic, entropy-like defmition

for population diversity as a single fit individual emerges towards convergence.

From the definition of average overall population fitness (6), then

S -f
P t 0

t= ["::f' or
1 0

(44)

Likewise from the steady-state recursion relation for large populations,

fl tP -P=
t+1 t S

t

(45)

Combining these equations (44) and (45) gives the recursion relation for average

population fitness equal to:

(46)

where ~=fl and <x=-flfo.

To ask for the time dependence of the average fitness requires the integrated form valid

beyond the very early generations (t»I), where dS/dt=St+I-St. The integral can be

performed by parts and the time dependence extracted as follows.

TheoremS: Durng steady-state reproduction, the average populationfitness S(t) evolves

with time as the following form in the continuous limit for f3=!J and a=-flfo

I
t=(S--) In (~S+<x)

~
(47)

Two interesting cases emerge. First consider a simplified version of (47) valid for small ~

values (small fitness, fl) such that the approximation holds that (S-~-I)=_~-I and

-1

(~S+<x) P=e
t
, or

-I -I ~S
t~ In (~S+<x)~ln<x+ln[- +I])

~ ~ <X
(48)
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With the additional stipulation that /3S/a «1, and In (l+x)=x for small x, then a linear

equation for the time evolution of the average population fitness emerges as:

1
S~(at+lna)

/3
(49)

The slope is related to the fitness value assigned to allele, fo. This linear equation gives a

convenient approximation which corresponds to a first-order approach to closed form

solutions. The interest in this representation is that standard perturbation techniques can be

built into the GA dynamics by including higher order polynomial expansions around this

linear relation. In this way, the average fitness can be computed and compared between

actual numerical iterations and analytical predictions..

Secondly however consider the more striking version of (47) valid for large /3 values

(large fitness, fl) such that the approximation holds that (S-/3-1)=S and

t=S In (S+a) (50)

For small a values corresponding to a low fitness value attached to the other allele

(fl fo«S) compared to the population average, then (50) simplifies finally to:

t=S InS = 'P(t, P) (51)

The significant result of (51) is 'P(t, P) This entropy-like function is defined for the

probability of finding an overall average population fitness in the particular state, S. The

definition is motivated from the recognition that the product of a fitness probability

function, S, and it logarithm, In S, is equivalent to the thermodynamic entropy of

information about states of S. By analogy, a physical interpretation for the fitness

evolution can be formulated in terms of this entropy as a measure of population diversity.

Because of its linear dependence on time, the steady-state reproduction model is capable of

maintaining considerable diversity late into a numerical simulation; equivalently, there

exists a finite spread in the average fitness of the population (SO even as particularly fit
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individuals are selected across many generations. A more extended discussion of this point

will follow in subsequent sections, but suffice for the present purposes to suppose that an

entropy-like measure of fitness information arises directly from the steady-state GA's

formalism. No ad hoc assumptions about its logarithmic form need be imposed. This

result bears directly on related issues of putting a physical interpretation to the GA's

delicate tradeoff between diversity and selection. It is worth noting the analogy between

GA formalism and successful theories of information theory and entropy applied elsewhere

in mathematic genetics and biology (see for example Gatlin, 1972).

Non-binary Generalization

For simplicity, this note has treated binary genetic algorithms, although the

generalization to non-binary GAs can be developed in parallel by redefining the fitness

ratio, r=fl/f*, where f* is some composite fitness,

(52)

The preceding analysis of the binary GA's time complexity can be written using this non-

binary fitness ratio to give analogous results to the binary csses.

Uses and Extensions

The analysis applied here has generated characteristic times for convergence which give

not only the time complexity (e.g order of magnitude dependence on population size) but
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also includes various new measures of the population diversity and average fitness. In this

way, the steady-state GA can yield a complementary framework for comparing its behavior

to the analytically simpler generational GA. For the less tractable steady-state, this approach

supplements the directly iterated solutions of Syswerda (1991) and the integrated solutions

of Goldberg and Deb (1991). The closed-form, recursive solutions found here puts the

steady-state GA on an equal footing with Ankenbrandt's proofs (1991) given for the

generational GA and allows a fair and telling comparison. For select choices of parameters,

this outline shows that the generational GA can arise as a subcase of the steady-state GA.

Moreover, the same framework supports a derivation which naturally proposes a

quantitative measure for the time history of population diversity within the steady-state

model. An entropy-like term for the average fitness probabilities falls out of the analysis

directly and with minimal assumuptions..

It is interesting that the traditional thermodynamic notions of entropy as a logarithmic

function of state probabilities can arise directly within a steady-state GA, particularly if the

GA's formalism describes a life, death and birth process. The logarithm itself reflects the

feature that in multiple state systems, entropy is an additive and not multiplicative variable.

Similarly in the GA, average fitness probabilities for the population as a whole add

sequentially over generations. It is intriguing to note that this characteristic logarithm

appears effortlessly from the steady-state model with few a priori assumptions. Additional

work should flesh out more explicit relations between the entropy function (SInS),

population diversity and some average values for information mixing between generations.

The philosophy of this note has been that a suitable context for such a link between

disorder and genetic mixing can arise directly within the steady-state GA.
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Conclusions and Summary

This note has compared and contrasted behavior between generational and steady-state

versions of the commonly used genetic algorithms. Where possible, a recurive formalism

has been derived analytically and in closed form. The time complexity for convergence to a

most fit individual has been extracted as a function of population size. Additional

dependencies on the fitness ratio can be computed for the specific cases of an exponentially

bounded approach to convergence. The methods will find straightforward extension to

other (non-exponential) functional approaches to optimality.

An entropic measure of average populatoin fitness follows directly from the steady-state

birth-and-death cycle. No ad hoc implementations or fits to an assumed logarithmic form

need be applied. If this entropy equates physically with other probabilistic measures of

population diversity, then one explanation for the GA's robustness may follow from

analogous thermodynamic arguments about non-equilibrium disorder. The consequences of

this novel behavior are ready for more comprehensive testing against various actual GA

simulations. For some test cases, the GA is shown dynamically to vary its entropic

measure linearly with time. In this context, the GA may draw on the rich tools applied to

the modern study of self-organization and eventually open its black box to reveal more

about how natural selection and reproduction can arrive both silently and mysteriously at

such marvelous answers.
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Appendix A: Inductive Proofs by Inspection for Recursion Relations of

Binary Genetic Algorithms

(i) Generational case

Start with the recurrence relation given in equation (2) for PH1- The outline of an

inductive proof develops the appropriate tenns for PI through P3' then by inspection

identifies the recurrence relation of the general fonn, Pt= q,(r,P0) which is independent of

all other Pt except Po' In the binary GA, generational reproduction implies that

f
1

P t+1=S PI
t

where St defines the average population fitness, SrflPt+(l-PiJfo_An iterated recursion

relation is complicated by the appearance of Pt in the average population fitness, St-

Ankenbrandt (1991) along with Goldberg and Deb (1991) have derived the elegantly and

simple recursion relation

r1>
P =__-,0,--_

t I
l+P (r -1)

°

(A2)

This appendix rederives (A2) in a particularly transparent notation which will prove

advantageous for tackling the more difficult recursion relations required to solve for steady-

state GAs. For a fitness ratio, r=fl/fo, two new tenns can be introduced: the inverse

proportion, xt=l/Pt, and the fitness difference, M=(fl-fo)/fo- Equation (AI) can be

rewritten as

1
x =-[M+x]

1+1 r t
(A3)
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This more straightforward form can be iterated recursively and the closed form solution can

be identified by inspection:

Xl=[(r-l)+xo]/r=l-(l-xo)/r

xZ=[(r-l)+xl]/r=l-(l-xo)/rZ

x3=[(r-l )+xo]/r=1-(l-xo)/r3

Xt=[(r-l)+Xt_l]/r= l-(l-xo)/rt (A4)

Substitution for Xin (A4) gives agreement with equation (A2) and its time complexities

derived previously.

(ii) Steady -state case: constant jump model and the K=] condition/or equivalence with

generational GA

Start with the recurrence relation given in equation (6) for steady-state PHI.

1 f 1P =P[l--]+P[-]
t+l tnt S

t

(AS)

The outline of an inductive proof develops the appropriate terms for PI through P3, then

by inspection identifies the recurrence relation of the general form, Pt= </J(r,P0) which is

independent of all other Pt except Po. Again introducing the notation for the inverse

proportion, xt=l/Pt, and the fitness difference, M=(fl-fo)/fo. Equation (AS) can be

rewritten as

K
X =- [M+x]

t+l r t
(A6)

Appendix B: Note on Iterated Behavior of Average Population Fitness, St

Near convergence behavior: How does the fittest proportional/raction, (PjPt+]),
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depend onfitness,j, and population size, n? Is it worth iterating anymore?

To explore the nature of the average population fituess, this appendix solves for St near

convergence. The convergence condition given by Ankensbrandt (1991) equates PH1-

Prr=1/n«1. From the difference equation for the fit proportion, PH1, then the average

population fituess can be solved for in a form that depends only on the population size, n,

andfitness ratio,f.

Start with the recurrence relation given in equation (6) for Pt+1:

(Bl)

and the recursion relation for the average population fitness, St=Ptfl+(l-Pt)fo. Near

convergence, PH1=Ppl-ljn=(n-I)/n, and therefore,

n(n-l)f
lS

f 2n-l

The fittest proportion evolves near convergence as

I f lP = P [1--] +P [-]
1+1 f n f S

I

(B2)

(B3)

By substitution for the average population fitness, S, the fit proportion evolves

independent ofassignedfitness values as:

2

P = P [n ]
1+1 f n(n-l)

which depends only on population size.

(B4)

For times t>tc' the time dependence for the development ofthis fit proportion in a

convergent neighborhood can be solved for recursively by inspection as:

1 I-t,
P =P {l--]

1+1 f 2
n

(B5)
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Therefore near convergence, the most fit proportion ofthe population varies with population

size as (l-l/n)t-lc. It is surprising that despite a changing overall fitness of the population,

St, the behavior of the most fit individual evolves independent ofany individual fitness

values, f. In other words, less fit individuals may change their proportion dramatically near

convergence (tending to zero frequency) and this behavior may appear within a changing

average population fitness, but the dynamics of the fit fraction remains relatively

unchanged. This follows directly from the definition of convergence itself. All fit solutions

behave independent of fitness values, F, and approach convergence similarly beyond some

fit proportion, Pf.



Table I. Steady-state vs Generational Reproduction: A Summary

Feature Steady-state GA Generational GA

Replacement step few members entire population
size at each time

Selection criterion individual fitness individual fitness
for copying values values

Selection criteria random, least fit, no deletion
for deletion exponential ranking,

reverse fitness

Relation to schema identical to identical to
theorem generational steady-state

Population diversity never fully convergent less diversity

Ideal performance
(Syswerda, 1991)

time compressed time expanded(informal
comparison)

New elite availability immediate availability delayed availability
in subsequent steps

Application fields classifier systems, optima problems
Genitor, etc.



Figure Captions

Figure 1. Time complexity behavior of generational reproduction. a) comparison between

average and worst case convergence during generational reproduction; b) surface plot of

worst case behavior as a function of population size, n, and fitness ratio, r.

Figure 2. Time complexity behavior of integrated form of steady-state reproduction. a)

comparison between average and worst case convergence during steady-state reproduction;

b) surface plot of worst case behavior as a function of population size, n, and fitness ratio,

r; c) comparison between average time complexity of steady-state vs. generational

reproduction.

Figure 3. Time evolution of most fit proportion xt=l/Pt using steady-state reproduction

with constant intergenerationaljump size, K (e.g. compression factor). K=l corresponds

to generational reproduction. a) comparision of steady-state (K>I) to generational (K=I).

b) surface plot of most fit proportion as a function of time and compression factor, K.

Figure 4. Time complexity of most fit proportion using steady-state reproduction with

constant intergenerationaljump size, K (e.g. compression factor). K=l corresponds to

generational reproduction. a) comparision of average and worst time complexity fot steady

state (K> I) b) surface plot of time complexity as a function of population size n and

compression factor, K.

Figure 5. Half-life behavior for average population fitness as a function of population size,

n, and fitness ratio, r.
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