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Solvable spin model on dynamical networks
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We consider an Ising model in which spins are dynamically coupled by links in a network. In this
model there are two dynamical quantities which arrange towards a minimum energy state in the
canonical framework: the spins, si, and the adjacency matrix elements, cij . The model becomes
exactly solvable without recourse to the replica hypothesis or other assumptions because micro-
canonical partition functions reduce to products of binomial factors as a direct consequence of the
cijs minimizing energy. We solve the system for finite sizes and for the two possible thermodynamic
limits and discuss the phase diagrams. The model can be seen as a model for social systems in
which agents are not only characterized by their states but also have the freedom to choose their
interaction partners in order to maximize their utility.

PACS numbers: 75.10.Hk, 75.10.Nr, 89.75.Hc, 87.23.Ge

Properties of many statistical systems are not solely
characterized by the states of their constituents, but also
depend crucially on how these interact with each other,
i.e. their network (linking) structure. The way networks
function can often not be fully understood by their link-
ing structure alone because function may depend heavily
on the internal states of individual nodes. It is therefore
tempting to study the co-evolution of network structure
and internal states. In the simplest case, this can be done
in the framework of the Ising model, which immediately
reminds of spin-glass models, such as the SK-model [1]
or random-bond models, see e.g. [2]. Ising models where
both, spins and interactions, are governed by dynamical
rules have been studied assuming different timescales of
evolution, where typically interaction topology ’slowly’
adapts in a pre-determined way on ’fast’ relaxing spins
[3]. Recently, such systems have been analyzed with the
replica approach in the grand-canonical ensemble assum-
ing that the interaction topology also minimizes the en-
ergy of the system [4]; the coupling of both, spins and
interactions to heat-baths at different temperatures can
be treated in the respective formalism as well [5]. Note
that these doubly-dynamical models are in marked con-
trast to the Ising model on fixed network structures, see
[6].

Complementarily the formation of network structure
driven by various Hamiltonians has been investigated in
some detail [7]. We think that a full understanding of
many processes taking place in networks can only be
achieved in a combined approach. In the following we
show that a spin system in the canonical ensemble where
both, linking structure (given by the adjacency matrix
cij) and spins si, minimize the energy, can be exactly
solved without replica techniques since partition func-
tions reduce to products of binomials.

We study the Hamiltonian

H(cij , si) = −J
∑

i>j

cijsisj − h
∑

i

si , (1)

where sums are taken over all N nodes of the system. The
position of the links in the adjacency matrix cijε{0, 1}
is a dynamical variable. The system has thus two de-
grees of freedom both minimizing energy: the orienta-
tion of the individual spins siε{−1, 1} as usual, and the
linking of spins, cij . cij = 1(0) means nodes i and
j are (un)connected. We consider undirected networks
(cij = cji), the case of directed networks is a trivial
extension as pointed out below. We note that a simi-
lar Hamiltonian with an additional contribution due to
the grand-canonical ensemble being studied within the
replica-technique has been analyzed in [4]. We denote
the number of spins pointing upward by n↑ =

∑
i θ(si),

the number of links by L =
∑

i<j cij , magnetization
m = 1

N

∑
i si = 2n↑−N

N , connectivity c = L
N , and con-

nectedness ϕ = L
N2 . In the grand-canonical ensemble

this Hamiltonian was studied in [4], however with results
deviating in part substantially from the results presented
here. In this work, we limit our interest to the canonical
framework.

We start our analysis with the microcanonical partition
function for energy E

Ω(E, N, L, h) =
∑

{cij}

∑

{si}

δ(H(cij , si) − E)

=
N∑

n↑=0

Ω(N, n↑)
∑

{cij}

δ(H(cij , n↑) − E)

=
N∑

n↑=0

Ω(N, n↑)Ω(E, N, L, h, n↑) , (2)

where Ω(N, n↑) is the number of configurations for a
given n↑. Ω(E, N, L, h, n↑) denotes the microcanonical
partition function for a fixed n↑.

In Eq.(2) it is seen that the calculation becomes greatly
simplified when realizing that a fixed number of spins
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FIG. 1: Internal energy for N = 100, and connectivities
c = 1, 3, 6. Solid lines correspond to the exact finite size so-
lution, Eq. (9). Symbols are the results from a Monte Carlo
simulation of the canonical ensemble pertaining to the Hamil-
tonian of Eq. (1). Inset: maximum of magnetization, m̄ as a
function of T (lines exact, symbols MC).

pointing upwards, n↑, alone is sufficient to determine the
spin-state of the system since one deals with all the differ-
ent topologies for a given value of n↑. In other words, the
crucial observation is that the exact spin-configuration
{si} loses its relevance because the topology of the net-
work is not fixed. In this case partition functions simply
reduce to binomial factors,

Ω(N, n↑) =
(

N

n↑

)
,

N∑

n↑=0

(
N

n↑

)
= 2N , (3)

and the remaining task is to determine Ω(E, N, L, n↑).
To find the number of microstates leading to energy E
for fixed n↑, the only relevant physical fact is whether a
link % connects two spins of (un)equal orientation, thus
contributing a unit −J (J) to total energy. The pos-
sible energy states are Eε{−LJ − Nhm,−LJ + 2J −
Nhm, ..., LJ − 2J − Nhm, LJ − Nhm} where the low-
est energy −LJ − Nhm is realized if all links connect
spins of equal orientation. In general, if k links connect
spins of equal orientation (L − k links connect spins of
different orientation), E = LJ − 2kJ − Nhm. It is easy
to see that the number of possible ’positions’ of linking
spins of equal orientation, ae, and unequal orientation,
au, is given by

ae(N, n↑) =
1
2
(n↑(n↑ − 1) + (N − n↑)(N − n↑ − 1))

au(N, n↑) = n↑(N − n↑) ,
(4)

for undirected networks. Directed networks trivially fol-
low from adir

e (N, n↑) = 2ae(N, n↑) and adir
u (N, n↑) =

2au(N, n↑), because while in the undirected case, 0 <
L < N(N − 1)/2, in the directed case we have, 0 <
Ldir < N(N − 1). Each link positioned in ae(u)(N, n↑)

contributes −J (J) to the total energy E. Given Eq.
(4), the microcanonical partition function for given n↑
and the total partition function read

Ω(E, N, L, h, n↑)
(

ae(N, n↑)
(LJ−E−Nhm)

2J

)(
au(N, n↑)

(LJ+E+Nhm)
2J

)
,

(5)

Ω(E, N, L, h) =
N∑

n↑=0

(
N

n↑

)(
ae(N, n↑)

(LJ−E−Nhm)
2J

)(
au(N, n↑)

(LJ+E+Nhm)
2J

)
.

(6)
We can now directly approach the problem of calcu-

lating the canonical partition function Z(T, N, L, n↑) of
a system with fixed n↑ via the Laplace transform,

Z(β, N, L) =
∑

E

∑

n↑

(
N

n↑

)
Ω(E, N, L, h, n↑)e−βE .

(7)
Performing the energy summation the exact solution is

Z(β, N, L, h, n↑) = eLJβ+Nhmβ Γ(1 + ae)
Γ(1 + L)Γ(1 + ae − L)

×2Φ1(−au,−L, 1 + ae − L, e−2Jβ) ,
(8)

with 2Φ1(−a, b,−c, x) =
∑a

k=0
(−a)k(b)kxk

(−c)kk! the hypergeo-
metric function and the Gamma function Γ(x). The total
canonical partition function finally is

Z(β, N, L, h) =
N∑

n↑=0

(
N

n↑

)
Z(β, N, L, h, n↑) , (9)

and all thermodynamic quantities of interest are given ex-
actly for finite sized systems, of (fixed) dimensions L and
N . In Fig. 1 we show the internal energy U and magneti-
zation as a function of temperature for different values of
connectivity c as calculated from Eq. (9). Perfect agree-
ment with Monte Carlo simulations of finite sized systems
is found, where rewiring and spin-flipping have been im-
plemented by the Metropolis algorithm. We note that
for low connectivities the obtained solutions are in very
good agreement with the result of independent spins, i.e.
U = c tanh(β), as expected.

With Stirling’s approximation
(
a
b

)
∼

[
(b/a)b/a(1 − b/a)1−b/a

]−a, and the notation y = E
LJ ,

Eq. (7) reads

Z = 2N−2NL(2ϕ)−L

∫ 1

−1
dm

∫ 1

−1
dy [I(m, y, c, ϕ)]L ,

(10)
with
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FIG. 2: Logarithm of Eq. (11) in the m− y plane for ϕ = 0.4
and c = 20000. The forbidden zones are clearly visible. The
maximum is always reached in the allowed zone.

I(m, y, c, ϕ) = exp(−βJy)
(
1 − m2

)− 1
2c

(
1 − m

1 + m

) m
2c

×
(

1 − m4

1 − y2

) 1
2

(
(1 − y)(1 − m2)
(1 + y)(1 + m2)

) y
2

×
(

1 − 2ϕ
1 − y

1 + m2

)− 1
4ϕ (1+m2−2ϕ(1−y))

×
(

1 − 2ϕ
1 + y

1 − m2

)− 1
4ϕ (1−m2−2ϕ(1+y))

(11)

(h is set to zero for simplicity). In the thermodynamic
limit Z is reasonably approximated by the maximal con-
figuration, i.e. the solution to dI/dy = 0, which is

ymax =
−1 − m2t +

√
(1 + m2t)2 − 8ϕ(m2 − (2ϕ− 1)t)t

4ϕt
(12)

where t ≡ tanh(βJ). The other solution is outside the
allowed parameter region of y. To ensure a real val-
ued partition function the conditions, 1 > 2ϕ 1−y

1+m2 , and,
1 > 2ϕ 1+y

1−m2 , have to hold. Regions where they do not
hold are forbidden zones in the y − m plane, where the
integrand of Eq. (10) is not defined, see Fig. 2. It can
be shown that the maximum condition line, ymax(m), al-
ways stays in the allowed zone, ∀ −1 < m < 1, 0 < t < 1,
and 0 < ϕ < 1/2. It is natural to consider two distinct
thermodynamical limits, N → ∞, one, by keeping con-
nectivity c = L/N , the other by keeping the connected-
ness ϕ = L/N2, fixed.

c = const. limit

We fix c and take N → ∞. Consequently , ϕ vanishes,
consequently Eq. (10) becomes

lim
N→∞

I(m, y, c, ϕ)e(1−βJy)
(
1 − m2

)− 1
2c

×
(

1 − m

1 + m

) m
2c

(
1 − m4

1 − y2

) 1
2

(
(1 − y)(1 − m2)
(1 + y)(1 + m2)

) y
2

(13)

and the maximum condition from Eq. (12) reduces to

lim
ϕ→0

ymax = − t + m2

1 + m2t
. (14)

The limiting cases for infinite and zero temperature can
be worked out immediately.

The low temperature case, β " 1

The maximum condition further simplifies to, ymax =
−1, which when put into Eq. (13), yields

I
1
2
e1+βJ

(
1 − m2

)− 1
2c

(
1 − m

1 + m

) m
2c (

1 + m2
)

. (15)

To find the maxima of magnetization, we set dI/dm = 0,
and get the solution for T = 0

1 − m

1 + m
= exp

(
− 4cm

1 + m2

)
. (16)

The self-consistent solution is shown in Fig. 3(a): We
find zero-magnetization below a critical connectivity c <
1/2, as well as a region where m < 1. One can show [8]
that Eq. (16) can be obtained from the results pertaining
to the grand-canonical ensemble studied in [4] in the limit
of an infinitely large chemical potential.

Infinite temperature, β # 1

The maximum condition here becomes, ymax = −m2.
Proceeding as before from dI/dm = 0, we get 0 =
1
2c log

(
1−m
1+m

)
+ 2βJm, which implies m = 0 as one so-

lution. The other solution for small β, m = 1−2cβJ
2cβJ , is

obviously out of the allowed region for m. This means
no magnetization at T → ∞, ∀c.

The phase transition line separating the phases m = 0
and m (= 0 is found by differentiating Eq. (13) w.r.t. m,
and setting it to zero, i.e.

0 =
1
2c

log
1 − m

1 + m
− 2m

y + m2

1 − m4
+

m(t2 − 1)
(1 + m2t)2

×
[
log

1 − y

1 + y
+ log

1 − m2

1 + m2
− 2βJ

]
, (17)
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which reduces in the m → 0 limit to the critical line given
by

c =
1
2

tanh−1

(
J

Tcrit

)
, (18)

where we used limm→0 ymax = limm→0 − m2+t
1+m2t = −t.

The phase diagram is shown in Fig. 3(b).
Note that in the c =const. case the free energy per

node diverges logarithmically, F/N ∼ log(N). However,
this remains a meaningful thermodynamic limit since
overextensive contributions do not affect the maximum
configuration.

ϕ =const. limit

Fixing ϕ, the entropy of the system is extensive for
N → ∞. Fixed ϕ means diverging c for N → ∞, and
Eq. (11) becomes

I = exp(−βJy)
(

1 − m4

1 − y2

) 1
2

(
(1 − y)(1 − m2)
(1 + y)(1 + m2)

) y
2

(
1 − 2ϕ

1 − y

1 + m2

)− 1
4ϕ (1+m2−2ϕ(1−y))

(
1 − 2ϕ

1 + y

1 − m2

)− 1
4ϕ (1−m2−2ϕ(1+y))

. (19)

Substituting the high-temperature maximum condition,
ymax = −m2, one gets (1−2ϕ)1−1/2ϕ = const., which im-
plies that all maximum configurations are equally prob-
able, or, each magnetization state is equally probable at
T → ∞.

For finite T we hypothesize that magnetization is al-
ways extreme, m = ±1. To prove this claim we have to
show that Eq. (11) is monotonically in(de)creasing in m,
for m > (<)0. Differentiation of (the log of) Eq. (11)
w.r.t. y yields

d log(I)
dy

− m

2ϕ
log

1 − 2ϕ 1−y
1+m2

1 − 2ϕ 1+y
1−m2

(20)

− 1
2

[
log

(1 + y)(1 + m2) − 2ϕ(1 − y2)
(1 − y)(1 − m2) − 2ϕ(1 − y2)

+ 2βJ

]
y′ ,

with

y′ =
m

2ϕ

(
1 + m2 − 4ϕ√

(1 + m2t)2 − 8ϕ(m2 − (2ϕ− 1)t)t
− 1

)
.

(21)
A lengthy but trivial calculation shows that Eq. (20) is
larger than zero for m > 0, ∀ 0 < ϕ < 1/2, 0 < t < 1,
and 0 < m < 1, where we used the fact that y + m2 ≤ 0.
By symmetry, Eq. (20) is negative for −1 < m < 0. This
means there is no phase transition in the thermodynamic
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FIG. 3: Fixed-c thermodynamic limit. (a) Magnetization m
as a function of connectivity c at zero temperature for J = 1.
Below c = 1/2 there is no possibility for magnetization in the
system. At c ∼ 4, practically full magnetization is reached.
(b) Phase diagram in the T − c plane for J = 1.

limit for ϕ = const. and the system is always in a state
of maximum magnetization, m = ±1.

The crucial observation of this paper is that the sum-
mation over all topologies in the Ising model on dynam-
ical networks is equivalent to re-writing the partition
function as a sum over all magnetizations. The model
– which can be seen as a toy model for a variety of socio-
economical situations – thus drastically reduces in com-
plexity and becomes solvable, both for finite size and the
two possible thermodynamic limits.
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