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Abstract

Highly optimized tolerance is a model of optimization in engineered systems, which gives rise

to power-law distributions of failure events in such systems. The archetypal example is the highly

optimized forest fire model. Here we give an analytic solution for this model which explains the

origin of the power laws. We also generalize the model to incorporate risk aversion, which results

in truncation of the tails of the power law so that the probability of disastrously large events is

dramatically lowered, giving the system more robustness.

1



In a series of recent papers, Carlson and Doyle [1–3] have proposed a model for designed

systems which they call “highly optimized tolerance” or HOT. The fundamental idea be-

hind HOT is that systems designed for high performance naturally organize into highly

structured, statistically unlikely states that are robust to perturbations they were designed

to handle, yet fragile to rare perturbations and design flaws. As an example they consider an

idealized model of forest fires [2]. In this model a forester is charged with finding the optimal

distribution of the trees on a grid so as to maximize tree harvest in the face of occasional

fires that burn complete connected clusters of trees and are started by sparks that arrive

with a given spatial distribution. They find that optimizing the harvest, or yield, for the

model gives rise to a segmented forest consisting of contiguous patches of trees separated

by firebreaks, and that the resulting distribution of fire sizes usually follows a power law.

While this type of configuration does typically achieve very good yields, the system is also

fragile in the sense that perturbations to the firebreaks or changes in the spark distribution

can lead to substantially sub-optimal performance. They argue that these are pervasive

phenomena: high-performance engineering leads to systems that are robust to stresses for

which they were designed but fragile to errors or unforeseen events.

In this paper we argue that simple yield maximization is problematic even if there are no

errors in firebreaks or changes in the spark distribution. Because the power-law distributions

generated by yield maximization have fat tails, disastrously large forest fires occur with non-

negligible frequency—far greater frequency than one would expect from intuition based on

normal distributions. This idea, that yield optimization can lead to ruinous outcomes, is not

new. For the classic problem of gambler’s ruin, for example, it is well known that optimizing

total return leads to ruin with probability one. By contrast, if one is willing to accept

suboptimal returns it is possible to construct gambling strategies that are immune to ruin [4].

Applying similar ideas in the present context, we show that a risk-averse engineer who is

willing to accept some loss in average system performance can effectively limit the large

deviations in the event size distribution so that disasters are rare. We call this variation on

the HOT theme “constrained optimization with limited deviations”, or COLD. By avoiding

total ruin, a COLD design is more robust than a HOT one, even in a world of perfect

error-free optimization.

To demonstrate the difference between HOT and COLD we first revisit the HOT forest
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fire model. We give an analytic solution for the model which shows that the distribution of

fire sizes does indeed follow a power law, the cumulative distribution having a exponent −(1+

1/d), where d is the dimensionality of the system. Using a fast percolation algorithm [5] we

perform numerical simulations that confirm the value of this exponent. We then generalize

our solution to include risk aversion in the design, thereby breaking the power law scaling

and dramatically reducing the frequency of disastrously large events.

Following Refs. 1 and 2 then, we consider a forest divided into a large number of regions

or patches, with firebreaks between them that prevent the spread of fire from one patch

to another. Although the original forest fire model was based on a lattice, the model we

consider is a continuum one, since this makes the mathematical treatment more tractable.

For large system sizes, we expect the behavior of this continuum model to converge to that

of the lattice model.

It is assumed that during the lifetime of the forest a single spark lands at a random

position r and starts a fire that burns the surrounding patch. Let us denote the area of this

patch by s(r). The forest is then harvested, giving a yield equal to the area of the remaining

forest. In units where the total area of the forest is one, the yield is 1 − s(r) − F , where F

is the cost in terms of yield of constructing the firebreaks.

Because dimensionality is an important property of HOT systems, we consider the model

for general dimension d. If the cost of constructing firebreaks is a per unit length (or per unit

surface area for d > 2), then the cost of the firebreak surrounding a patch m is agds
(d−1)/d
m ,

where sm is the value of s(r) in patch m and g is a geometric factor of order 1 that depends on

the geometry of the lattice and the shape of the patches. In the lattice version of the forest

fire model, a is simply equal to the lattice parameter (i.e., the nearest-neighbor spacing),

but in the continuum model we are at liberty to give a any value we feel to be appropriate.

As we will see, as long as a is finite its value does not affect the shape of the distribution of

fire sizes.

Because s(r) is constant inside each patch, the integral of 1/s(r) over any patch is iden-

tically 1, and hence, summing over all patches, the total area occupied by firebreaks is

F = agd
∑

m

s(d−1)/d
m = agd

∑

m

s(d−1)/d
m

∫

m

ddr

s(r)
= agd

∫

s(r)−1/d ddr. (1)
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Letting the normalized probability distribution of sparks be p(r), the mean yield is then

Y = 1 −

∫

p(r)s(r) ddr − agd

∫

s(r)−1/d ddr, (2)

where the integrals run over the entire area of the forest.

To find the maximum yield with respect to the patch sizes s(r), we set the functional

derivative δY/δs(r) = 0, giving

s(r) =

[

ag

p(r)

]d/(d+1)

, (3)

for all r. The optimal yield is then given by substituting back into Eq. (2) to get

Yopt = 1 − (d + 1)(ag)d/(d+1)

∫

p(r)1/(d+1) ddr, (4)

and the optimal number of patches is

n =

∫

ddr

s(r)
= (ag)−d/(d+1)

∫

p(r)d/(d+1) ddr. (5)

For the lattice version of the model, a goes as L−1, where L is the (linear) system size, and

hence the number of patches should scale as Ld/(d+1), i.e., as L1/2 in one dimension or L2/3 in

two. Numerical experiments on a one-dimensional system confirm this, giving a measured

exponent of 0.47 ± 0.03.

Now we wish to calculate the distribution ρ(s) of fire sizes that arises if we make this

choice of patch sizes. We have

ρ(s) = p(r)
ddr

ds
= p(r)

ddr

dp

dp

ds
= −ag

d + 1

d
p(r)

ddr

dp
s−(2+1/d), (6)

where ddr here represents the volume of the space between the contours p and p+dp on the

p(r) surface. As we will show, the term p(r) ddr/dp is constant or contributes logarithmic

corrections for a wide selection of possible distributions p(r), while the principal power-law

behavior in the event size distribution comes from the factor s−(2+1/d)[8].

An alternative method for deriving Eq. (6) is to maximize the simple yield functional

Y = 1 −
∫

p(r)s(r) ddr, subject to a constraint that fixes the volume F occupied by the

firebreaks (Eq. (1)). This method, which is similar to the approach taken in Ref. 1, is

equivalent to the method above, via a Lagrange transform, provided F is chosen so as to

make the corresponding Lagrange multiplier equal to agd.

4



Consider then the case (which covers all the examples in Refs. 1 and 2) of a distribution

of sparks with a single maximum at the origin, so that the volume ddr takes the form of an

annulus enclosing the origin. If we denote by Ωd a d-dimensional solid angle centered on the

origin, then a volume element of the annulus is rd−1dr dΩd. In terms of the thickness dp of

the annulus, we can write dr = (r dp)/(r ·∇p), and integrating our volume element over the

contour p = constant we find
ddr

dp
=

∮

p

rddΩd

r · ∇p
. (7)

For example Carlson and Doyle [1] studied the case of a spark distribution in two dimen-

sions having the form of the product of two Gaussians with different widths:

p(r) = N exp

(

−

[

x2

2σ2
x

+
y2

2σ2
y

])

, (8)

where N is a normalization constant. For this distribution the denominator of the integrand

in Eq. (7) is

r · ∇p = −N

[

x2

σ2
x

+
y2

σ2
y

]

exp

(

−

[

x2

2σ2
x

+
y2

2σ2
y

])

= 2p log
p

N
, (9)

which is constant over our contour of constant p. The element of solid angle in two di-

mensions is simply the element of polar angle dθ, and hence Eq. (7) simplifies in this case

to
d2r

dp
=

1

2p log(p/N)

∮

p

r2dθ =
A(p)

p log(p/N)
, (10)

where A(p) is the area enclosed by the contour. This contour is a line of constant (x/σx)
2 +

(y/σy)
2, i.e., an ellipse, which has major and minor axes a =

√

2σ2
x log(N/p) and b =

√

2σy
2 log(N/p). Thus the area enclosed by the contour is A(p) = πab = 2πσxσy log(N/p).

Combining Eqs. (6) and (10) we then find that the distribution of event sizes is

ρ(s) = 3πσxσyag s−5/2. (11)

Thus, for the Gaussian case in two dimensions the model generates a perfect power-law with

slope −5
2
.

This argument is easily generalized to other spark distributions and other dimensions.

We find that the HOT forest fire model generates a perfect power law with slope −(2+1/d)
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FIG. 1: Cumulative distribution of fire sizes for simulations of the forest fire model in one and two

dimensions, plotted on logarithmic scales. (a) One dimension with size 10 000 and an exponential

spark distribution. (b) Two dimensions with size 128 × 128 and a Gaussian spark distribution.

The results have been averaged over a number of different values of the parameters of the spark

distributions to improve the statistics. The dotted lines show the expected slopes of −2 and − 3
2 .

for all dimensions when a spark distribution of the form p(r) = N exp(−
∑d

i=1[xi/σi]
d) is

used. As a test of this prediction, we show in Fig. 1 numerical results from direct simulations

of the forest fire model in one and two dimensions with distributions of this type [9]. For

better visualization and analysis the distributions pictured are cumulative, so the expected

slope is −(1 + 1/d), rather than −(2 + 1/d). As the figure shows, the slopes of the observed

distributions are in good agreement with this prediction.

We note in passing that the slope of −(1 + 1/d) for the cumulative distribution of fire

sizes seen in both our exact solution and our numerical results is different from the slope

of approximately −1 found numerically by Carlson and Doyle [2] in two dimensions. The

source of this discrepancy is unclear, although it may be that the simulations of Ref. 2

provided too few data points to make an accurate evaluation of the exponent possible. We
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note also that the value − 3
2

for the two-dimensional case is quite different from the slope

of −1
2

measured for the cumulative size distribution of real forest fires [3, 6].

Other functions with exponential tails also generate power laws, but give logarithmic

corrections as well. For instance, if p(r) = N exp(−
∑d

i=1[xi/σi]
γ) with γ 6= d then Eq. (10)

still applies, but now A(p) ∼ [log(N/p)]d/γ and hence

p(r)
ddr

dp
∼ [log(N/p)]d/γ−1. (12)

Thus the distribution of event sizes fundamentally still follows a power law with slope −(2+

1/d), but there is a logarithmic correction. Similar logarithmic corrections are noted in

Ref. 1.

Spark distributions with power-law tails also (unsurprisingly) give power-law event size

distributions, but in this case the exponent of the distribution is non-universal, varying with

the exponent of the spark distribution. For example, if p(r) takes the generalized Lorentzian

form

p(r) =
N

∑

i(xi/σi)ν + Γν
, (13)

then we find
ddr

dp
∼

1

p(r)

(

N

p
− Γν

)d/ν−1

, (14)

which goes asymptotically as p−d/ν in the power-law tail where p(r) becomes small. Thus

the tail of the distribution of event sizes goes as ρ(s) ∼ s−(2+1/d−d/ν).

We now turn to the COLD variant of the forest fire model, which incorporates risk

aversion. In constructing this model we are guided by theories of risk aversion in economics,

where the subjective benefit of outcomes is typically a nonlinear function of the loss s,

which is captured by a utility function u(s) [7]. Sensible utility functions are decreasing

with increasing loss: u′ < 0 [10]. Risk aversion also implies that u′′ < 0, so that the negative

utility of bad outcomes is weighted more strongly than the positive utility of good outcomes.

One standard family of utility curves that achieves this is the one-parameter family

u(s) =
(1 − s)α

α
. (15)

Note that, since we will be concerned only with maximizing utility, u(s) is arbitrary to

within both additive and multiplicative constants. For α = 1, Eq. (15) gives u = 1 − s and
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maximizing utility is precisely equivalent to minimizing loss. For α < 1, we have risk-averse

utility functions and for α < 0 we are infinitely averse to losing our entire investment.

Our goal now is to maximize the average utility functional

U =

∫

p(r)u(s(r)) ddr, (16)

subject to the constraint of fixed F , Eq. (1) (or equivalently maximize a combined utility

functional similar to Eq. (2)). Carrying out the functional derivatives and using the utility

function of Eq. (15), we find that the optimum U corresponds to

p(r)s(r)(d+1)/d[1 − s(r)]α−1 = λ, (17)

where λ is a Lagrange multiplier whose value can be calculated from Eq. (1). The distribution

of event sizes is given by Eq. (6) as before, and using Eq. (17) we find that the derivative

dp/ds, which gives the principal variation in ρ(s), is

dp

ds
= λ

(α + 1/d)s − (1 + 1/d)

(1 − s)αs2+1/d
. (18)

For α = 1 our utility maximization is equivalent to simple yield maximization (HOT), so

it is not surprising to observe that when we set α = 1 in the above expression we recover

our previous s−(2+1/d) power-law. For α < 1, we have risk-averse utility functions (COLD),

which give rise to event distributions following the s−(2+1/d) form for small event sizes, but

having lower probability of large event sizes. When α < 0, event probability tends to zero

as s → 1, as we would expect.

In Fig. 2 we compare the distribution of event sizes in HOT and COLD regimes for

a variety of values of the risk-aversion parameter α. The figure shows that the COLD

distribution approaches the HOT one as α approaches 1. For α large and negative the HOT

power law is followed for only a small portion of the range of event sizes—about 20% in the

case of α = −5.

It is worth noting that while risk aversion truncates the power-law behavior in the event

size distribution, the distribution of the utilities of events still follows a power law: we find

that the tail of the distribution of utilities goes as ρ(u) ∼ u−β with β = (2α − 1)/α. Note

that this exponent is independent of the system dimension d [11].
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FIG. 2: Event size distributions for HOT and COLD regimes in two dimensions. The dotted line

is the distribution for the HOT regime (α = 1) and the solid lines are for the COLD regime with

(top to bottom) α = −1 . . . − 5. The distributions are not normalized—they cannot be since they

diverge at the origin. In practice Eq. (1) provides a lower cutoff on s and makes the distribution

normalizable. Inset: the same data on log-log scales.

While the introduction of the utility function has reduced the risk of large losses, the

optimal utility solution does not normally coincide with the optimal yield solution, and

hence we pay a cost for risk aversion in terms of yield. For the lattice forest fire model

however we find that the cost paid is small [12]. For example, in a 128×128 two-dimensional

system with a Gaussian spark distribution, we find numerically that the mean yield at the

α = 1 optimum (HOT) is 0.904, dropping to 0.900 for α = −3 and 0.888 for α = −5. It

appears therefore that the introduction of risk aversion garners substantial benefits in terms

of the reduction of large losses—and the complete elimination of 100% losses—while at the

same time costing us only a few percent at most in terms of average system yield.

We conjecture that the suppression of power law tails in the COLD event size distribution

will also make the system more robust against the other problems mentioned in the intro-
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duction, namely errors in the design and changes in the spark distribution. The truncation

of the power law means that the largest patches in the COLD solution are considerably

smaller than those in the HOT solution. Thus, if a design flaw, such as a gap in one of

the firebreaks, causes two patches to merge, the resulting combined patch is smaller too.

Similarly, if the spark distribution is changed, the size of the resulting fires is smaller, and

hence the effect on the average yield is not as catastrophic as in the HOT case. (A similar

conjecture is also made in Ref. 1.)

In this paper we have examined in detail only the forest fire model, but similar principles

should apply to other problems as well. We have shown that in order to produce power-law

event size distribution, the HOT model requires the auxilliary assumption of risk-neutrality.

If humans are risk-averse they will tend to prefer COLD designs, although this does not

necessarily mean that HOT designs never occur. It might be, for instance, that blind

evolutionary processes of the type found in natural systems would simply optimize yield,

without risk aversion. On the other hand, COLD designs are more robust to rare events

than HOT designs, and therefore might be selected for on long time-scales. Of course, in

the real world, imperfect designs that fail to optimize either yield or utility are always a

possibility too.
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