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Abstract

Background

Recent work on the complexity of life highlightettoles played by evolutionary forces at
different levels of individuality. One of the cealtpuzzles in explaining transitions in
individuality for entities ranging from complex telto multicellular organisms and societies, is
how different autonomous units relinquish contregiotheir functions to others in the group. In
addition to the necessity of reducing conflict ogffecting specialized tasks, differentiating
groups must control the exploitation of the commanmslse be out-competed by more fit groups.

Results

We propose that two forms of conflict — accessespurces within groups and representation in
germ line — may be resolved in tandem through iicdial and group-level selective effects.
Specifically, we employ an optimization model tmshthe conditions under which different
within-group social behaviors (cooperators prodg@rpublic good or cheaters exploiting the
public good) may be selected to disperse, therebwffecting the commons and functioning as
germ line. We find that partial or complete dispéspecialization of cheaters is a general
outcome. The propensity for cheaters to disperbaglsest with intermediate benefit:cost ratios
of cooperative acts and with high relatedness. ¥amenation of a range of real biological
systems tends to support our theory, although iaadit study is required to provide robust tests.

Conclusions

We suggest that trait linkage between dispersakchedting should be operative regardless of
whether groups ever achieve higher levels of imtdiglity, because individual selection will
always tend to increase exploitation, and stroggeup structure will tend to increase overall
cooperation through kin selected benefits. Chesiecialization as dispersers offers
simultaneous solutions to the evolution of coopenain social groups and the origin of
specialization of germ and soma in multicellulagarisms.

Background

Cooperation is central to transitions in individtya]1-4]. Full individuality is achieved
when components cooperate and relinquish theimaaty to the larger whole. Depending on the
type of transition, this may necessitate the divisaf labor in growth, reproduction,
development, feeding, movement, and protectionnajaixternal aggression and internal conflict
[5, 6]. In the evolution of multicellularity, thenain of events from autonomous individuals at
one level to the incorporation of these individuat® a more complex entity remains unclear [5].
However, some of the putative forces are likelpeéogeneral, since multicellularity has arisen
many different times in evolutionary history [7, 8 oreover, that many groupings do not show
sophisticated specialization and are charactebgeztibstantial levels of internal conflict [9, 10],
suggests that incomplete multicellularity may deeguent outcome. What mechanisms are
essential to generate individuality? We believe ¢hgeneral theory needs to explain both full
and incomplete transitions towards multicellulativmduals.

Previous work highlights group and kin selectibn]0, 11], organism size [12, 13], and
the reorganization of fitness and specializatiadoffs [14] as playing roles in the evolution of
multicellularity. A feature common to these mecisams is the establishment and maintenance of
cooperative behaviors amongst subunits througrexample, conflict mediation (e.g. [15, 16]).
Based on a recent literature review, Grosberg aradifénann [8] argued that for cooperation to



emerge and favor the specialization of subunits,gs of cells need to reduce genetic conflicts
arising in cell lineages [10]. They conclude theteral mechanisms can limit such conflicts,
perhaps the most important being development fr@mgle cell (e.g., [5, 16]).

A key type of subunit specialization in multicelulorganisms is the separation of germ
and soma [1, 5, 10, 17, 18]. Separating germ andhso functions amongst individual cells or
cell lineages requires that each sacrifice autondrhgory predicts that such specialization is
promoted by non-mutually exclusive mechanisms ssscbooperation and relatedness amongst
cell lineages [10], cheater control [1, 19, 20] adeptive responses to tradeoffs between survival
and reproductive functions, i.e. a covariance ¢ff@gmenting the fitness of the group over the
average fitness of its members [14]. It is not knamhether the alignment of fitness interests in
emerging soma and germ lines tends to occur bedarég or after other types of specialization
characteristic of multicellular organisms [12].

A pervasive feature in a diverse array of sociatays is that individuals not contributing
to the common good either act as dispersers, aritiver rewarded for, or coerced into,
cooperating. Examples range from bacteria @sgudomonas fluorescgnibrough protozoa
(e.g.Volvox carter) to metazoans, like eusocial insects and mammats Table 1). For example,
in naturally occurrindictyosteliumslime molds prespores secrete a chlorinated hexapie
(DIF-1) inhibiting redifferentiation of prestalk k®into prespores, which would transpose them
from “cooperative” stalk building to “cheating” syggoproduction (i.e. a transition into the
dispersing and perennial germ line; [21, 22]). Gingais further curtailed by pleiotropic effects
of a gene required to permit receipt of this signdlich affects also the probability of spore
formation [23]. In tunicates such Bstryllus schlosserinatural chimeras consisting of
genetically nonhomogenous organisms often shovodeible germ cell parasitism that is
sexually inherited, with “parasitic forms” beingmrssed only in the germ line, i.e. in the
dispersing entities [24]. In the cooperatively lolieg cichlid fishNeolamprologus pulchebrood
care helpers of both sexes are forced to pay oertding tolerated in a safe territory [25, 26]. To
avoid being punished they preemptively appease mkmé by cooperative and submissive
behavior [27]. Typically, in these cichlids andcooparatively breeding meerk&sricata
suricatta subordinates preparing for dispersal reduce heglf#8, 29], which might be explained
by reduced costs of potential punishment by ewicf8®, 31]. In eusocial mole rats
(Heterocephalus glabeandCryptomys damarengiaon-reproductive helpers and hardly helping
dispersers coexist [32-34]. Policing of subordisdig dominant breeders may simultaneously
maintain social order and stimulate cooperativealighs [35, 36]. This distinction of roles
between individuals is particularly obvious in Separation between soma and germ that has
apparently evolved many times independently [7védtheless, there are examples where
cooperative behaviors are associated with enhagroegh dispersalcf Table 1). For example, in
the soil-dwelling social bacteriuMyxococcus xanthusdividualistic cell movement (‘A-
motility’) promotes swarming on hard surfaces, veasrswarming on soft surfaces is a group
function driven primarily by individually costly Biotility [37].

These empirical patterns merit explanation, andake a first step by employing
optimization techniques to evaluate the conditieasling to associations between dispersal and
social strategy. Sociality in our models takesftren of cooperation in the production of a public
good. Previous study of public goods has shown tioeating, if left unchecked, potentially
leads to a “tragedy of the commons” [38, 39], whgrimdividual selection tends to favor
exploitation of the public good at some concur@miuture detriment of the group. Several non-
mutually exclusive mechanisms may promote coopmratnd group persistence, including kin
selection (e.g., [40-42]), rewards and sanctiors (43, 44]), spatial and network structure (e.qg.



[45-47]), and signals involving kin or non-kin (e.f#8-50]). Recent reviews and perspectives
can be found in Crespi [51], Sachs and colleagb®f [ehmann and Keller [53], and West and
coworkers [54].

We develop a model based on kin selection thatpwrates dispersal specialization, as
suggested by the case studies in Table 1. We entiptagrms “soma” and “germ” to represent
the functions of within-group growth and dispergalding to the founding of new groups,
respectively. Our use of the terms “cooperatorsl ‘@heaters” refers to social behaviors within
the commons (e.g., soma), and this should be dig8hed from the frequent usage of “cheaters”
as cooperative somatic lineages trying to gaingtegerm line (e.g., [1, 5, 8, 10, 22]).
Specifically, cooperators contribute to the pulgliod within a distinct group at an individual
cost, and cheaters exploit the public good. Codpesa@and/or cheaters may be selected to either
remain in a group, or to disperse (potentially fiag new groups)Our theory proposes a
mechanism leading to high overall cooperation, d@sedispersal specialization. In addition to
increasing our understanding of cooperative angedgal behaviors, it could apply to the
evolution of multicellularity in a range of contsxincluding physiologically integrated
organisms [55, 56], organisms with both solitarg artegrated life-styles (e.qg., [57]), and
complex societies [58].

Methods

We formalize our verbal arguments given above leligping and analyzing a model of
coevolution between exploitation of the commons @isgersal. From the outset, we stress that
our model is a highly simplified representatiortlag process, and not aimed to make
quantitative predictions for any given system. Ratbur goal is to identify the qualitatively
important drivers in the coevolution of individwgtategies and the evolution of multicellularity.

In our model the focal units of selection are indidals themselves, rather than the higher-
level unit. A transition to multicellularity is faved when the interests of the individual and the
higher-level (the group) are aligned [5, 8, 15k\Rous models investigating the transition to
multicellularity invoke a framework where the grospthe focal unit of selection (see, for
example [15]). However, focusing on the higher-leagethe focal unit does not easily allow the
investigation of optimization at the lower leveB[5and the individually-selected conditions
leading to a major transition [60]. Grosberg an@tBimann [8] have argued that many of the
requirements for transitions to multicellularityigxin unicellular organisms (for social groups,
see [61]). Once a transition is in progress, aed'dghoup” begins to behave as an individual
entity, one can begin to treat this unit as anwemglindividual in itself.

We analyze an optimization model that takes inttnant the effect of both the phenotype
of the focal individual and the average phenotyjpi® group in which it lives, on the fitness of
the focal individual (see Table 2 for descripti@iparameters and variables). The approach is
based on the direct fithness method [42, 62] in, hiaconsidering the effects of both individual
and average group phenotypes on the fitness afa ifiedividual, we can apply the Price
Equation to partition these effects as weightethieyrelatedness of the focal individual to other
members of the group [42]. We can then asses®lhtve impacts of (1) costs and benefits of
individual behaviors and (2) kin structure, on asstions between exploitative strategy within a
group, and dispersal to found new groups. Nevestiselour model oversimplifies the complexity
of social behavior and dispersal decisions (forewysee [63]), and should thus be viewed as a
preliminary attempt to identify patterns.



Our model makes several assumptions. First, weotiexplicitly consider dynamics,
such as group founding, group numbers, individo@beation and immigration, and competition
for limiting resources within or between groupsti®a, we assume negligible variation in inter-
group competition. Second, our model does not eitlylincorporate genetic polymorphisms,
meaning that the heritable traits are probabilitteadopt alternatives of each strategy (disperse
or stay; cooperate or cheat) depending on enviratehand/or social conditions [1, 10, 32, 64-
66]. Third, there is a simple direct tradeoff betwen individual's viability (growth, survival
and reproduction) within the group and its abitiydisperse and found new groups. This is based
on the well established life-history trade-off beem reproduction and dispersal (see [67]),
probably best studied in insects (on the physicgcale e.g. [68-70]; on the ecological scale
e.g. [71-72]). Whereas growth and reproductiorivithe group impacts the production and
consumption of the public good, the tendency tpelise reduces these impacts because of the
limited presence of dispersers in the source group.

Life cycle and fitness equations

We assume that a group’s life-cycle has three selistages: colonization, growth,
reproduction and survival of individuals within tgeup; exhaustion of resources; and the
dispersal of survivors. Some of the survivors nmay at the same site of the source group, and
others disperse as colonists to other sites.

The model tracks the fitness contribution of a mutadividuali, within groupj [42, 62].
Fitness effects are partitioned between cooperatmisheats—who have positive and negative
impacts on the public good, respectively—and ambdigpersal strategies. Thus four strategies
are possible: (1) cooperate and remain in groypsd@perate and disperse, (3) cheat and remain
in group, and (4) cheat and disperse. Only thedingl third strategies affect the public good.

The proportion of cooperators in the group;idor simplicity, hereafter we denote
individual i within groupj using the subscriptonly), which can take continuous values between
0 and 1. Moreover, our model incorporates two diglestrategies based on whether the
dispersing individual is a cooperator or a cheadtd.definey; as the investment of a cooperator
in dispersal and as the investment of a given cheater in dispeBg#h of these quantities take
on continuous values between zero and one. Thiveefaroportions of dispersing cooperators
and cheaters in the group are therefgmgandz(1-n;), respectively and overall investment in
dispersal ig), = yjn; + z(1-n;).

The fitness equation takes the form
wi = D(n, Y, z) E(n, ¥, 2) G(,Y;, 2), 1)
where the function® andE, respectively, represent the contribution of setectin dispersal and
the exploitation of the public good of individuah groupj to its own fitness. Functio@ is the
overall investment in the public good in grgup

Dispersal is modeled by considering the fitnesgrnibutions of both individuals that stay
at the site previously occupied by the group ahestthat disperse [73]. We assume that the
costs of dispersal may differ between cooperamran({d cheaters). Small costs would indicate
abundant new sites for group establishment anddigperser survival. Although we consider
different cases in the analysis, our general egpect is that the costs of cooperation will extend
to dispersal, such thate.

The function D, takes the form

D(m,yi, ) = [(1-z (1) -yim) / (1 =z (1-0) -y + (1€) 2 (1-n) + (1) yn)] +
[((1-€) z (1) + (1¢) yiny) / (1 —e z(1-n) - c yn)]. (2)



The first term in square brackets describes tnedg of a non-disperser @{1-n;) - yi n;)

relative to the average non-disperser @) - y; n;) and immigrants ((B) z(1n) + (1<) y

n). The second term describes the fitness of a disp§(1e) z (1) + (1<) ¥ i) given the
competition it faces with residents (Iz€1-n) - y n) and migrants ((®) z (1-n) + (1) yn) in
another group. The ternms zandy (i.e., without subscripts) are population-wide nedrhe
denominator in both terms represents the amoucdmpetition faced either in the original
group, in the case of a non-disperser, or in agr@up, in the case of the disperser. Note that in
the limit of no dispersal, individual fitness caill e positive under the assumption that groups
survive indefinitely.

All non-dispersing individuals are selected to eipbut given our assumption that there
is a cost of cooperatios)( this will weight selection to favoring cheateal,else being equal.
The function E, describes the contribution of individualbo its own fitness through exploitation
of the public good and is given by
E(n.y, z) = [(1-z) (1-m) + (1-s) (1y) n] / [(1-2) (L) + (1-s) (Ay) ], (3)
where the subscriptndicates mean group levels, and the congamtasures the cost to
individual cooperators in producing the public good

The overall effect of group investment in the palgood on individual fitness is
described by
G(m,y,z) =1+ P (1ly) nj — Q (1) (1), (4)
where it is assumed that non-dispersing cooperatore a positive effect on the public good
(scaled by P) as their frequenay,increases [74, 75], whereas cheaters have agative effect
on the public good (scaled by Q) as their frequefey, increases. Note that in the absence of
cooperators, cheats can persist as long as theadhon the commons is sufficiently lomQ<1).
Alternatively, when group effects are nil (i.e. P=), the notion of a group is a collection of
autonomous individuals.

Relatedness and numerical simulation methods

We analyze the model by employing the Price Equatidich enables us to express
possible fithess maxima as a function of constarameters and variables, and the relatedngss,
between individuals. Taylor and Frank [62] give heets for finding the equilibrium, such that
for any traitv we have
dwi/dvi = dw; / dvi+r dwi [ 9V, (5)
from which we can find a steady state(s) whetidy; = O to find any or alv* = y*, z*, n*.

In our modely can either be a parameter (referred to as an “oyetel” by Gardner and
West [76]) or can emerge from the underlying stitebf the population (referred to as a
“closed” model in [76]). In the latter case, we nagyiver from the dispersal of individuals in
the population with the recursion relation (e.89,[76])
r(t+1) = 1 /k+ (k- 1) /k (1 -d)? r(t) . (6)
This recursion tracks the probability that a givecal individual is identical by descent to
another randomly picked individual at timmél'he parametdcis the effective number of
individuals in the group, and can be viewed as asuee of genetic diversity due to individual
aggregation in group founding and habitat structiNete however that our model does not
explicitly track the actual number of individuatsthe group]. Lowk is indicative of group
founding by single individuals, group resistancémaigration, and abundant open sites for
group founding [10, 77].



In the recursion above, the ternk tépresents the probability that the randomly picke
individual is the focal individual itself. The sewbterm represents the probability that the
randomly picked individual is different to the fé@adividual, and that neither have dispersed
(represented by (#)?). This is multiplied by the relatedness from thevious round. Solving
this recursion relation yields the equilibrium teldness, which is
r=1/k-(Kk-1) (1 -d?. (7)

As we assume weak selection, the probability thgiven individual disperses depends on the
probability that it is a cooperator and disperpdss the probability that it is a cheater and
disperses, sd=yn+z(1-n) in this case. Under the assumptions of weak Befeave evaluate this
recursion for the case whemv=v, wherev is the trait in question.

Optimal strategies were solved numerically. Thissisted of iterating equation (5) with
steps of 0.05 or smaller for a total of 100,8@¢ps, which was sufficient to identify the steady
state in all cases. We found that whereas ingiatlls of evolving variables did not affect the
optimal solution when only dispersal frequengiesdz evolved, initial conditions could indeed
affect the optimal solution when all three variaxdsolved. Closer examination showed that
alternative stable states were possible, one \iitlereall cheatersn¢=0) or all cooperators
(n*=1), and a second with both strategies persis@irg*<1). Although we cannot exclude the
existence of alternative interior equilibria, owmmerical studies always yielded at most a single
interior solution.

Results

We consider two scenarios. In the first (Model dlyalispersal in cooperatorg) @nd
cheatersZ) evolves, but not cooperation)( This situation would be obtained if mechanisros n
explicitly included in the model (e.g., policing4]) controlled the level of cooperation, or if the
frequencies of cooperative behaviors were eithesuabject to evolution, or labile to it over
much longer time scales than disperb&dre generally however, empirical study suggesas th
cooperative behaviors are subject to selectior80]&nd we consider the case (Model 2) in
which dispersal and the frequency of cooperatgrarid cheaters () co-evolve.

In addition to optimal levels of dispersal (Modé] &nd of cooperation and dispersal
(Model 2), we examine the effects of model paramsete dispersal specializatiorry*/(y*+z*),
and for Model 2 only, overall cooperatidsn*(1-y*)+(1-n*)z* (i.e., the sum of cooperators not
dispersing and of cheaters dispersing). Note ttanar=0 (oro=1), although all cooperators
(cheats forr=1) are sedentary it is not necessarily true thahaats (cooperators for=1)
disperse.

Model 1

Optimal solutions always yielded partial or comelspecialization, with cooperators
tending to disperse more than cheaters (e0.5) for high costs of cooperatios) compared to
public good’s effectl), and low cooperator frequencies (Figure 1). The reverse trends
promote relative cheater dispersak(.5; Fig. 1). The impact of effective group sikei§¢ more
complex. Highek tends to polarize dispersal to either cooperdiors0, z*=0) or cheaters
(y*=0, z*>0), and increases the parameter space in whigbecatwrs dominate dispersal (areas
with o*=1; Fig. 1).

Low effective group size (low) should positively associate with kin competitiand in
agreement with previous work [81-82], we find tleat k is associated with higher overall
dispersald* (Figure 2a). Not surprisinglg* increases with lower cooperator frequencigs (



and public good effect®} (Fig. 2a). However, the effects lkofindn on the separate cooperator
(y*) and cheaterzf) dispersal frequencies are more complex (Figs)2m particular, lonk was
always found to drive cheaters to disperse (Fiyj.\Rbereas the effect on cooperators depended
strongly on cooperator frequenay) @nd public good productivityP) (Fig. 2b).

Cheater and cooperator dispersal can be underafmilows. When the group is
dominated by cheaters (Iawy and production of the public gooB)(is small, increasing
cooperator sedentarinessy(l-has little beneficial effect on fithess)( due to insufficient
marginal gains via both individual exploitatidg; €qn. 3) and the group effect;eqn. 4). As a
consequence, cooperators are selected to disperse relative to cheaters. Cheaters may
disperse at high levels nonetheless (e.g., case@fl,k=1.2 in Fig. 2c), because in so doing,
they lessen the effects of the tragedy of the conmum individual fitness of their kin. In
contrast, when the group is dominated by coopesgtoghn) and public good production is high
(P), marginal fitness increases with cooperator sedgress and, due to kin competitid, (
cheaters are selected to disperse more, relatiwedperators.

Model 2

Permitting social evolution introduces the posgibthat the frequency of cooperators or
cheaters fixes to zero or one, in which case aa8oos () between dispersal and social
strategies are irrelevant. We find that dependimgarameter combinations, either only a single
global optimum is obtained, or two alternative logatima are possible. In the latter case, which
state is obtained depends on initial levelg,afandn in the numerical simulations. Figure 3
shows the fraction of simulations with random alitevels ofn, y andz, achieving either an
internal equilibrium (01*<1), or one with all cooperators*=1), or one with all cheaters*€0)
for different costs of cooperator dispersalKig. 3a) and effective group sizés Fig. 3b). For
simplicity in the analyses below, we employ a stnaibitrary starting conditiomE y = z= 0.5).

We observed four basic outcomes (Fig. 4): (1) forabf cooperatorsnt=1), (2) fixation
of cheatersr(*=0), or coexistence of cooperators and cheatehs(®)tthe former only being
sedentary¢*=0), or (4) the latter only being sedentapy€1). Wheno*=0 or o*=1 (i.e., all
cooperators or cheaters sedentary, respectivet/justher found outcomes in which all cheaters
dispersed#*=1) or all cooperators dispersegt€1), respectively. Parameter effects are generally
similar to Model 1, but with some notable contrasts

Whereas in Model 1, the relative cost of cooperéipand cheatere] dispersal did not
yield a simple threshold condition for optimal aurtees (not shown), it did so for Model 2. We
found that when cooperators and cheaters coexastge>c, cooperators dispersed and cheaters
did not (i.e.,o*=1) (Figs. 4a,b). The reverse held wree (Figs. 4c,d). Low effective group size
(k) increases cooperator persistence (i.e., smabasan whicm*=0 in Fig. 4), with the effects
on cheater persistence contingent on other parasngt, differences in areas with=0 in Fig.
4). More interestingly, whereas wherc, lowerk shifts the parameter space permitting
cooperators and cheaters to coexist and hasdftdet on the area in which all cooperators
dispersey*=1), whenc>e, it expands the area of coexistence and that inhddl cheaters
disperse£*=1) (Fig. 4). Finally, relatedness*j generally increases with highis ratios, lowk,
and high costs to cooperator dispersalyith respect to cheater dispersa(Fig. 5).
Interestingly, specialization in dispersal by cleeaiand in sedentariness by cooperators tends to
associate with high, but not the highest levelsetd#tedness (cf Figs. 4c, 5c¢).

If we define the functional role of a cooperatoicastributing to the public good, and that
well functioning groups minimize the impact of cteean the public good, then, trivially,
specialization resulting in mobile cooperators aedentary cheaters corresponds to a non-social,



individualistic scenario, and cannot be consideregoup related phenomenon. There are
however two ways in which the impact of cheatershencommons can be reduced: eithe 1-
decreases and/ar increases. Figure 6 presents the effects of madekpses on overall
cooperation, defined a@s=n* (1-y*) + (1-n*) z*. We see that although high levelsiore
generally promoted for higR:sratios, perfect overall cooperatiob<1) is most readily obtained
at lowk and intermediat®:sratios (e.g. Fig. 6¢).

Discussion

Our results are in broad agreement with the tesfdts selection theory for explaining
dispersal [45, 81, 82] and the maintenance of cative behaviors [83-85]. Specifically, we
found that dispersal specialization leading to Heylels of overall cooperatio®) is promoted
by sufficient benefit to cost ratioP ( s) of cooperation and by kin selection (I&yv The one
apparent discrepancy to previous theory is, whdnggeer benefit®) to cost §) ratios promote
cooperation, higher kin selection (I&vwas sometimes observed to reduce the relative
frequency of cooperatora¥) (cf. Figs. 4c,d). This can be explained if we sider cheaters
dispersing from the group as a type of cooperdteteavior. Dispersing cheaters are effectively
‘cooperative’ because of the incurred individuastoof dispersald), and the benefits to the
group in having less negative impact on the comn@ngcf. Figs 4c,d with Figs. 6c,d).
Moreover, we found that partial or total specidiza of otherwise somatic cheats as dispersing
germ line occurred without the need for costly nfieds [86] or the repression of cheaters [87,
88, but see 22], suggesting that the mechanisntifidehhere is applicable to a wider range of
organisms where these mechanisms do not suffigieedluce somatic cheating, or cannot
evolve. Conversely, control mechanisms such asrtBagaand punishment, which might be
operating in many systems (see examples in Tabldol)ot preclude the functionality of the
mechanism demonstrated in this study (cf. Model 1).

The examples presented in Table 1 and our theatditiclings suggest a common
conceptual and mechanistic foundation for the daiaiuof cooperation and individual functional
specialization within groups (e.g., multicellulggitMost of the empirical examples share the
feature that cooperators are less dispersive tlae nompetitive individuals. For instance, low
dispersal coincides with physical binding in baiet¢inat generate biofilms as a public good by
polymer production [79, 89] (but see ref. 90 foradternative interpretation), with alloparental
care of offspring in cooperative breeding [91]weth complete genetic altruism in certain
eusocial insects [92]. It is worth noting that asigtent differentiation of roles regarding
sedentariness and dispersal in relation to codpearahd cheating may be much more common
in nature than currently believed (e.g. [93]). Besmthere is no prior formal theory predicting
such a relationship, empirical research on thiseiss rare and suitable data are therefore scant.
We stress that our theory does not elucidate tbeige evolutionary pathway leading to complete
multicellularity [16, 77], but rather assessesftirees promoting or forestalling different levels
of specialization of cooperators and cheaters lastitnal germ line and soma. As such, the
observations of biased dispersal in Table 1 haeeraltive explanations, including forced
eviction [94] and individual-based habitat select®5]. Experimental (e.g., [79, 80, 96-98]),
phylogenetic (e.g., [6]), and theoretical (e.g3,[22] and see discussion below) approaches are
fruitful avenues to explore alternative explanasiamd pathways.

Transitions in individuality and social complexdaye generally thought to require some
form of reduction in genetic variance during thprogluctive process [20, 77]. Genetic
heterogeneity can emerge from many sources [9€]if@nrecursive equation 6 in our framework



greatly simplifies these, only explicitly includinige effects of dispersal. Our results confirm the
importance of relatedness in achieving multicetityabut also show that the highest levels of
relatedness did not necessarily yield full spezaion of cooperators or cheaters as dispersers,
and that complete specialization could occur ateelness levels as low as 0.7 (Fig. 4d). As such,
our findings could extend to some systems in wigihups are formed by the initial aggregation
of non-kin [10, 74, 87, 99]. Further study is negtle explore this prediction in detail, since our
model did not explicitly account for different liages, and as such we do not know how spatial
heterogeneities in relatedness might influenceresults [100].

Our findings have precedent, both in the studyyaflsotic associations, and
investigations of cooperation within species. Webard to host-parasite and symbiotic
interactions, previous research has consideredpaoasite virulence (which is analogous to
cheaters exploiting cooperative groups) may evspatially (e.g., [101]; for reviews see [102,
103]). In the case of horizontal transmission imp#es, which is analogous to the level of
dispersal in our model (see also [73]), theory galhepredicts that increased horizontal
transmissionZin our model) associates with higher parasite gmaé (Q (1) in our model)

[103]. Despite allowing for relatedness betweerepbél cooperators and cheats we have a
comparable finding, whereby an increasing tragddite@commons pushes cheating individuals
to disperse; this is both because of increasedithhl fitness opportunities through dispersal (
and increased inclusive fitness through loweredigreffects for those related individuals that do
not disperse (Q(h) (1-2).

In a model investigating cooperation in spatiallscous environments, van Baalen and
Rand [45] suggested that non-altruists should dégpmore readily than altruists and
hypothesized that this could be viewed as a triansiowards multicellularity. Koella [104]
studied the independent dispersal of altruistsadratheaters in a spatially explicit setting and
found that a polymorphism could arise in whichiatits dispersed and interacted locally,
whereas cheaters evolved longer dispersal distamzksxploited altruistic clusters. Hamilton
and Taborsky [95] showed that when the propenditie®operate by generalized reciprocity and
to disperse evolve independently, under a wideearigonditions either cooperation or
defection is associated with dispersal, dependimthe probability of finding new groups and on
the costs of being alone. Over most of the rangedaldility costs examined, cooperation was
negatively correlated with mobility, while defeatiavas not. Ultimately, this leads to assortment
between altruists and defectors in the populaisee @lso [105]), which secondarily can generate
group selection effects [106, 107]. Hamilton andbdraky [95] did not check for linkage effects,
however. In another study of the joint evolutioratifuism and mobility, Le Galliard and
coworkers [108] found that more altruism enhandotgl aggregation can select for increased
mobility. The synergistic selective interactionween altruism and mobility may cause dispersal
to be considerably higher than that predicted puigely selfish population, if altruism costs
accelerate slowly and mobility costs are modetdtavever, their model did not reveal a
polymorphism to occur between selfish-mobile andigtic-sessile phenotypes as found so often
in nature, from microbes and unicellular algae sommals (e.g. [18, 32, 109]; Table 1). Queller
[10] argued that the resolution of within-organisamflicts could occur if an altruism allele is
expressed conditional on the environment, theiattcuact being an individual removing itself
from the germ line in order to perform an enhame@uatic activity. Rainey [110] verbally
proposed an idea similar in some respects to teskes, in which group selection acts to
promote the functional separation of germ and swniacterial biofilms through the dispersal of
cheats (see also [79]). Finally, Michod [14] shoviedv the specialization of lower level units
into germ and soma could be associated with tmsfiea of fitness from lower units to the new
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higher individual. A critical feature of his modslthe tradeoff between the viability and
fecundity of lower level units, which, for conveadationships, creates disruptive selection for
cooperative germ and soma. Our study, whilst geimgraongruent results, is to our knowledge
the first to demonstrate that the evolution of lovexel units based on their effects on the
commons can Yyield dispersal specialization, onh@fprecursors for selection at the group level
and the evolution of full multicellularity.

Conclusions

Our results suggest that the establishment oflinkihge between dispersal and the
propensity of within-group cheating may be a gelngln@anomenon promoting complex social
organization and multicellularity. Importantly, wautiously suggest this should be operative
regardless of whether groups ever achieve highetdef individuality, because selection on
individual components will always tend to increasgeloitation, and stronger group structure will
tend to increase overall cooperation through kiacted benefits [42, 84]. Partial or full
reduction in the negative effects of cheaters encttmmons through their specialization as
dispersers offers partial solutions to two probletihe evolution of cooperation in social groups
and the origin of the specialization of germ anchaon multicellular organisms. Our model is,
nevertheless, a highly simplified caricature ofl ®astems and future theoretical and empirical
study is needed to explore its robustness.
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Figures

Figure 1. Globally optimal associations in dispersa | and exploitation strategy for Model 1
Axes:P measures the impact of the public good on indiVifitreess, andis the individual cost
to cooperators in contributing to the public gootl = y*/(z* + y*) indexes the tendency of
cooperators to disperse*t0.5) or cheats to disperse*<0.5). Thick curves demarcate areas of
parameter space yielding different levelgrofwvhereas thin lines show areas in with eitfferl

or z*=1. Captiona: k=1.2,n=0.1; captiorb: k=10, n=0.1; captiorc: k=1.2,n=0.9; captiord:
k=10,n=0.9.Note that for legibility, very thin areas parallelthick lines are omitted, in which
0.5<0*<1 for captionc, and 0<*<1 for captiond. Unless otherwise noted, dispersal rates are
greater than zero and less than unity. Other paeme=e=0.2,Q=0.2. See main text for
numerical methods.

Figure 2. Effects of parameters on optimal dispersa | levels for Model 1. Effects of public
good production®), frequency of cooperators)(and effective group siz&)( Captiona: overall
dispersabl*; Captionb: investment in cooperator dispergdj Captionc investment in cheater
dispersal*. Thin line: k=1.2,n=0.1; dashed lin&k=10,n=0.1; thick line:k=1.2,n=0.9; thick
dashed linek=10,n=0.9. Other parameters=e=0.2,0Q=0.2,5=0.6.

Figure 3. The fraction of simulations in Model 2 le  ading to different local optima . Results
based on 100 simulations in which initial levelspy, andz are each set to a random number
between zero and one, inclusive. These simulapooduced one of three equilibriat=0,
0<n*<1 orn*=1. Captiona effect of the cost of cooperator disperglwith P=Q=0.3,s=0.5,
k=2, e=0.2; captiorb effect of effective group siz&)with P=Q=0.2,5=0.6,e=0.2,¢=0.3.

Figure 4. Locally optimal associations between disp ersal and exploitation strategy . The
frequency of dispersal in cooperatoysdnd cheaters) evolves, and the frequency of
cooperatorsn) and cheaters (b} evolves. Initial frequencies in numerical studigsz=n=0.5.
As for Figure 1 except captian k=1.2,¢=0.1; captiorb: k=10, c=0.1; captiorc: k=1.2,¢=0.3;
captiond: k=10,c=0.3.

Figure 5. Relatedness, r*, associated with simulations in Figure 4

Figure 6. Overall cooperation, ®=n*(1-y*)+(1-n*)z*, associated with simulations in Figure 4
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Table 1. Examples of group formation for which thee is some information on dispersal, relatedness dmpunishment/policing.

The public good is the action of cooperators, wHééctors do not contribute to the public goode Thoperators or the cooperation
performed, and the defectors or their way of cingatare listed together with information about tliespective dispersal, the relatedness
between cooperators and defectors, and informationit potential coercion in the form of punishmanpolicing. Note that due to
difficulties in obtaining equivalent functional @ssments of public goods and dispersal across dégsmye considered the former to be
a behavior resulting in a potential benefit for @anenore group members, and the latter to be momeaway from the group. Stricter
criteria would be necessary for a more conclusaragarison with model predictions, and thus our cbyje is to highlight possible
similarities and differences, based on first apprations for these complex processes. Questionsrdgkote where respective

information is unknown.

Gross Species Public good| Cooperators | Cooper | Defectors or Defector Relatedness| Punishment, | References
taxonomic or ator way of cheating | dispersal Coop./Def. | policing
level cooperation dispers
performed al
Viruses PlanRNA-virus | diffusable complete via sequester requires defective ? [111, 112]
intracellular | RNA-virus insects | intracellular presence of | interfering
products products cooperators | particle(?)
Bacteria Escherichia coli | protection production of | ? no colicin ? mutant colicin [113-115]
against diffusive production production
competitors | bacteriocins
Bacteria Pseudomonas sp.biofilm polymer shearing| no polymer planktonic | mutant Apparent [79, 80, 89, 116, 117]
production production disperser niche
cells exclusion
Myxobacteria | Myxococcus fruiting formation of S- no contribution | A-motility High within | ? [37, 96, 118-121]
xanthus body fruiting body, | motility | to fruiting body | (individual) | group
C-signal (social relatedness;
production, gliding) mutations
cell autolysis
Yeast Sacharomyces | Sucrose production of | Free deletedSUC2 Free living Polymorphic k1 killer toxin | [122 — 125]
cerevisiae digestion invertase via | living gene, no SUC genes | production
SUC2gene invertase prod.
Slime moulds | Dictyostelium stalk for production of | no specialization in | yes mutant, somatic [126-127]
mucoroides spore signals and spore production clone compatibility
dispersal stalk, adhesion chimeras system
of cooperators
D. discoideum | stalk for stalk formation| no chtA/FbxA- yes mutant clone| efficiency [97, 128-135]
spore mutant: almost chimaeras | reduction by
dispersal pure spore competition,
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production DIF-1
secretion
Protozoa Volvox carteri, multicellular | somatic cells | no gonidia: yes clonal ? [1, 18, 136-147]
1. Flagellata | V. aureus body, specialize in
a) Phyto- nutrition, reproduction
monadina locomotion
b) Proto- Proterospongia | multicellular | flagellated no (?) amoeboid cells: | ? clonal programmed
monadina haeckeli body cells moving asexual cell death
the colony reproduction
2. Euciliata Zoothamnium multicellular | feeding zooids,| no macrozooids: yes clonal (?) ? [148]
Peritricha arbuscula colony nutrition no feeding
Porifera Spongilla multicellular | up to 14 if gamete yes clonal or allorecognition| [56, 149-155]
lacustris, body, care | different cell dissocia | production chimeric restraining
Ephydatia sp., for gametes | types, various | ted or as exploitation
Reniera sp., & embryos | functions gemmul after fusion
Haliclona sp. es
Coelenterata | Hydractinia spp. | nutrition, gastrozooids, | no gonozooids production | clonal partner [156-160]
protection dactylozooids, (F+9): no of dispersing rejection
tentaculozooid feeding and gametes
S defence
Anthopleura nutrition, scout, warrior | no pure production | clonal ? [161, 162]
elegantissima protection and free-edge reproductive of dispersing
polyps functions gametes
Bryozoa Dendrobeania nutrition, various zooids| no gonozooids production clonal [163-166]
murrayana protection of dispersing
gametes
Urochordata | Botryllus gonads & primordial no primordial germ | yes distinct cell | gametic cell [24, 167-170]
schlosseri somatic somatic cells cells lineages competition
organs
Insecta Drosophila eggs wild-type yes segregation yes one gene genetic [171-174]
melanogaster, sperm (fair distortion difference suppression of
D. simulans meiosis) meiotic drive
Mammalia Mus musculus | eggs wild-type yes transmission yes gene mitigating [175-177]
sperm (fair ratio distortion complex effect of other
meiosis) byt haplotypes diff. on genes
chromos. 17
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Analogies in higher Metazoan communities

Isoptera Cryptotermes nutrition, workers, no reproductives yes diploid ? [178, 179]
secundus protection soldiers siblings
Thysanoptera | Oncothrips gall micropterous | no macropterous | yes haplodiploid| ? [180-184]
habrus, O. soldiers reproductives sisters
tepperi
Aphidae Pemphigus gall soldiers as asex} no defence, as adult partly mixed | ? [185-188]
spyrothecae, P. virginop | accelerated sexuparae | clones
obesinymphae arae development
Hymenoptera | Apis mellifera nutrition, workers no reproductives, queens yes, | haplodiploid | by workers [189-193]
protection egg-laying workers no | sisters
workers
Meliponini production | mother queen | no daughter queens| yes mother- by workers [194, 195]
of highly (singly mated) (own reprod. daughter
related lowering colony
females relatedness)
Pisces Neolamprologus | protection breeders and | low reproductive high very low expulsion [25, 27, 28, 87, 196-199]
pulcher brood care parasitism by
helpers mature helpers
Aves Corcorax group breeders and | conditio | deceptive brood | conditional usually high| aggression by [200-204]
melano- membership, brood care nal care group
rhamphos recruitment | helpers members
of allies
Mammalia Heterocephalus | group breeders and | no dispersive morph yes high queen [32-34, 36, 205-210]
glaber, membership, non- saves effort and punishment of
Cryptomys protection reproductives accumulates lazy workers
damarensis reserves
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Table 2. Parameters and variables used in this stud .

Individual fitness

Relatedness between any two randomly selectedidhudils in the group

Individual cost to cooperator growth in the group

Number of individuals in a group (an inverse measirkin selection)

Individual cost to cooperator dispersal

Individual cost to cheater dispersal

Impact of sedentary cheaters on the individuaé$is of group members
(via consumption of the public good)

| Olojo|lx|ln|=|=

|72}

Impact of sedentary cooperators on the indivifitredss of group member
(via production of the public good)

=}

Relative frequency of cooperators in the groum (&the proportion of
cheaters)

Relative frequency of cheaters dispersing

Relative frequency of cooperators dispersing

Overall investment in dispersal = yn+ z(1-n)

Overall cooperation with respect to the public gabeh*(1-y*)+(1-n*) 2*

Qe lal|N

Association between dispersal and cooperationy/(y+2)
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Fig.3
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Fig.4
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