
Exploring the Evolution of
Complexity in Signaling
Networks
John H.  Holland

SFI WORKING PAPER:  2001-10-062

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute.  We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print.  Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis.   Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works  may  be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

 



Exploring the Evolution of Complexity in Signaling Networks

John H. Holland

Abstract

Signaling networks are exemplified by systems as diverse as biological cells,
economic markets, and the Web.  After a discussion of some general characteristics
of  signaling networks, this paper explores the adaptive evolution of complexity in a
simple model of a signaling network.  The paper closes with a discussion of broader
questions concerning the evolution signaling networks.

You are immersed in a world that has two resources distributed in patches,
call them “shelter” and “food”, and your needs are determined by the levels of two
internal reservoirs, one for each resource.  The reservoirs are depleted at a constant
rate to keep your system running, so that a low reservoir level implies high need for
that resource.  At each instant, you can execute one of six simple actions: rest,
approach, flee, turn right 45 degrees, turn left 45 degrees, consume.  You can
increase the level of a reservoir only by giving an appropriate response when the
resource is present:  “rest” when “shelter” is present, “consume” when “food” is
present.  Your information about the world is supplied by a “vision cone” that
indicates resource locations relative to a line of sight:  resource at present location,
or straight ahead, or within an angle of 45 degrees to the left or right.  Question:  Is
there a simple adaptive algorithm that can, on the basis of experience, discover
action sequences (e.g. “turn until food is visible”, “approach”, “consume”) that
exploit opportunities for filling the reservoirs?

Though the format seems one of animal cognition, the question applies
equally to other systems requiring coordinated responses, such as ecosystems, and
the Web, and signaling networks in biological cells.  In this broader context, we
come to more difficult questions:  Are there “general purpose” adaptive algorithms
that can discover good action sequences over a wide variety of environments,
without prior tuning for each environment?  If so, what kinds of ontogeny and
phylogeny should we expect to see as the adaptive algorithms modify the system?
The objective of this paper is to explore these questions, starting from a simple
computer-based model of the “cognitive world” just described.

To answer these questions, we must first describe the “cognitive” repertoire of
the adaptive agent -- the system doing the adapting.  Here I’ll  restrict the repertoire
to a familiar set of possibilities: sets of IF(condition satisfied)/THEN(action) rules.
Such rules, in the simplest case, implement the stimulus-response repertoires of



classical behavioral psychology.  However, we can extend this repertoire
considerably by defining the conditions and actions in terms of messages.  That is,
the agent is given a message-processing repertoire:  The detectors (e.g., the vision
cone) produce messages, the effectors (e.g., the elementary actions) are activated by
messages, and internal processing (e.g., internal feedback and computation) is
accomplished by message circulation and transformation.  Because there is a
considerable literature on such systems, called classifier systems [Lanzi et al. 2000],
this paper only presents details directly relevant to the questions being asked.
Classifier systems are computation-universal, in the sense that any program that can
be written for a general-purpose computer can be executed by an apropos collection
of these message-processing rules.  This means that any signaling network that can
be modeled by a computer simulation can also be modeled by a classifier system.

Using a classifier system to define repertoire refines the earlier question to:
What kinds of adaptive algorithm can discover useful sequences of message-
processing rules?  Of course, the agent can accomplish the task by simply trying
rules at random, gradually collecting those that “work”, but such trail-and-error
algorithms are neither interesting nor feasible.  Under random trials it takes an
unreasonably long time to find even short rule sequences.  Is there something
better?  Can evolutionary processes produce useful sequences in feasible times?
Classifier systems are designed for “on-line” modification by genetic algorithms
and other adaptive algorithms.  This feature opens the possibility of  computer-
based observation of adaptive changes in simple versions of signaling networks.  In
particular, simple classifier system models have the possibility of mimicking
aspects of the  ontogeny and evolution of bio-circuits -- the complex signaling
networks of molecular biology.

The paper begins (section 1) with a general description of complex signaling
networks, then uses this description as a guide to present (section 2) an exploratory
computer-based model of an adaptive agent in the two-resource world described in
the first paragraph.  As already suggested, the agent will be implemented (section 3)
as a classifier system that evolves as the agent accrues experience.  Execution of
this model demonstrates (section 4) the adaptive evolution of a resource-seeking
signaling network, going from a single rule that produces a random walk to
sequences of rules that provide compatible resource-seeking actions.  Though the
model is quite simple, the underlying program is written to provide easy extensions
to much more complex worlds.  In particular, the adaptive mechanisms apply
without change to the full panoply of agents that can be modeled by classifier
systems.  The paper closes (section 5) with a discussion of the implications of the
model for broader questions about the evolution of complex signaling networks.

1.  Complex signaling networks.

Complex signaling networks abound, integrating systems as widely different
as biological cells and the Web.  Despite substantial differences in implementation,



complex signaling networks share important characteristics.  Chief among these are:

(i)  Parallelism and coordination.  Complex signaling networks, by definition,
consist of large numbers of “transmitter/receiver” nodes that send and receive
signals.  The networks of interest here involve massive simultaneity:  many nodes
act at the same time, producing large numbers of simultaneous signals.  Bio-
circuits, for example, typically use proteins as signals.  These proteins operate in
reaction cascades and cycles, providing positive and negative feedback to other
cascades and cycles.  A biological cell has large numbers of active proteins and
their interactions must be tightly coordinated if the cell is to continue to function.
Indeed, in all the networks of interest, coordination is a major problem.  Each signal
must go to appropriate destinations, and it must be appropriately interpreted at those
destinations.

(ii)  Conditional action.  In complex signaling networks, nodes only act when
they receive an appropriate signal.  That is, they have the IF/THEN structure
discussed earlier:  IF [an apropos signal is present] THEN [act].  The act may itself
be a signal, allowing quite complicated feedbacks, or the act may be an overt action
such as such as shutting off a mechanism or binding to some site.  Interlocking
sequences of message-processing rules become programs that are executed in
parallel, with all that implies for flexibility and breadth of repertoire.

(iii)  Modularity.  In a sense, a complex signaling network is automatically
modular, the nodes being the modules.  But that is not what is meant here.  If we
look to the rules associated with the nodes, it is unlikely that the system can handle
a broad range of situations by having one rule for each distinct situation.  A rule for
reacting to “a red Saab by the side of the road with a flat tire” has many elements,
or building blocks, in common with a rule for “a blue Chevy stalled at the
intersection”.  It is better if the agent can activate a set of rules that react to the
elements of the situation.  The foregoing situations can be handled easily by
combining rules dealing with “car”, “roadside”, “flat tire”, “stalled”, and the like.
Reaction cycles that serve as building blocks are a common feature of bio-circuits.
For example, the Krebs cycle of eight proteins is used by almost all aerobic
organisms
.

The agent, by simultaneously activating a set of  building block rules, can
react to a broad range of novel situations, making combinatorics work for the
system instead of against it.  Also,  because appropriate building blocks are used
frequently in a wide range of situations, they are tested and confirmed at a high rate.
When tested building blocks work in a parallel, coordinated fashion they provide
great flexibility, but they force the coordination problem discussed in (i).

 (iv)  Adaptation and evolution.  Complex signaling networks change over
time.  Many of these changes are more than random variations, they are adaptations
that improve performance.  The performance itself is the result of an intricate skein
of interactions extended over space and time.  Most of the interactions are distant,



in both space and time, from the direct causes of changes in performance.  As a
result, there is a considerable problem in determining which interactions were
responsible for the changes.  This problem is often called the credit assignment
problem.  The play of a game of strategy, such as checkers or chess, provides a
useful metaphor for understanding the need for credit assignment:  After a long
sequence of moves, the player receives notification of a "win" or a "loss" and,
perhaps, an indication of the size of the win or loss.  There is little information
about which moves along the way were critical to that performance.  The problem,
then, is to determine which moves might be useful in future games.  Similarly, in a
biological cell, the “reward” of reproduction results from the interactions of
hundreds to thousands of signaling proteins over hours or days.  The general
question is:  How does a signaling network allocate credit for desirable outcomes
back to the responsible nodes (rules)?

There is a mitigating factor that is helpful in resolving this problem:  The
environments in which signaling networks operate do exhibit perpetual novelty, as
does a complicated game like chess, but there are repeating sub-patterns in those
environments.  In chess these repeating sub-patterns have names like “fork”, “pin”,
“gambit”, and so on.  In the environment described at the outset the patches
constitute repeating elements that can be exploited.  In general, such sub-patterns
can be exploited by particular arrangements of the signaling nodes, the modules
alluded to in (iii).  Close attention to the origins and ontogeny of modules used by a
signaling network offers vital clues to its organization and performance in response
to different environments.

It is the thesis of this paper that exploratory models built around these shared
characteristics can give insights into the operation and evolution of natural and
artificial signaling networks.

2.  Signaling networks implemented as classifier systems.

This section starts with a definition of classifiers (section 2.1), then goes on to
systems of such rules (section 2.2), and concludes with the description of an
adaptive agent defined with the help of a classifier system (section 2.3).

2.1  Classifiers.

The components of a classifier system are condition-action rules, called
classifiers.  The condition part of a classifier "looks for" certain kinds of messages;
when the rule's conditions are satisfied, the action part specifies a message to be
sent.   A computer-based definition of these rules requires a proper language for
representing classifiers.  I’ll first give the symbols used and then explain their use.

In this version, all messages are strings of length k, where each position
contains one letter from the three-letter alphabet {1,0,?}.  For example, if k=5, a



typical message would be 110?0.  The set of all possible messages is the set M =

{1,0,?}
k
.  In a similar fashion, the set of all possible conditions, C = {1,0,#}

k
, is the

set of all strings of length k over the alphabet {1,0,#}.  A classifier rule has either
one condition, c drawn from C, or two conditions, c and c' drawn from C .  The
action part of the classifier is a message m drawn from M.  A rule is written as c/m
(one-condition rule) or c&c’/m (two-condition rule).  In the rest of this section I will
present definitions for two-condition rules, assuming the obvious simplifications for
one-condition rules.

[It is easy to provide for messages of variable length and rules with multiple
conditions, but it does complicate the exposition.  Interestingly, the restricted
system described here is still computationally-complete.]

A classifier is satisfied when its two conditions are satisfied.  A condition c is
satisfied by a message m if
(i) at each position in c that has a 1, the message has either a 1 or ? at that 

position;
(ii) at each position in c that has a 0, the message has either a 0 or ? at that 

position.
Accordingly, at positions where c has a #, no requirement is made on the message
(that is, the condition “doesn’t care” what occurs at positions where it has a #).  It is
also clear from (i) and (ii) that a ? in a message satisfies any condition requirement
at that position (that is, the message “fits all” possible condition requirements, {1, 0,
or #}, at all positions where it has a ?).  For example, with k=5, the message 100?1
satisfies the conditions 1#### and 10#11, but it does  not satisfy either the condition
0#### or the condition 10111.

2.2  Classifier systems.

For simplicity of modeling and exposition I will use a particularly simple
version of a classifier system, though there are many varieties [Lanzi et al. 2000].
In this version, each rule has a strength that indicates it past usefulness to the
system and, when a classifier is satisfied, it enters a strength-based competition to
post its message.  The details of strength assignment and the competition will be
discussed next; for now, simply note that many rules can simultaneously win the
competition.  As a result many messages can be posted simultaneously.  From a
computational point of view, it is convenient to think of the messages as collected
in a list.  A posted message stays on the list only one time-step.  To keep a message
on the list it must be repeatedly posted by a winning classifier; as is the case for a
television image, the list must be “refreshed” each time step.  Messages provide
communication between classifiers.

Strengths in a classifier system are modified in two ways.  When an effector
causes input to a reservoir, classifiers that have posted messages activating that
effector are strengthened  (classical conditioning).  All other strength changes in a
classifier system are the outcome of an ongoing competition that treats the whole



classifier system as a kind of marketplace.  Each classifier in the system is treated
as a go-between (middleman, broker) in this market.  At any given time, the
“suppliers” of a classifier are those classifiers that posted messages satisfying its
conditions.  When classifier wins a competition it is the “consumer” of each
classifier that has just posted a message a message satisfying its conditions.

In more detail, a satisfied classifier makes a bid based on its strength, treating
its strength as “cash-in-hand”.  The highest bidders win the competition, paying the
bid to their suppliers.  For this payment, the winners win the right to sell (post) their
messages, hoping for consumers that will let them recoup their payments.
Classifiers gain in strength if they make a “profit”, paying out less than they receive
in these transactions.  This procedure for adjusting strengths is called the bucket
brigade algorithm (See [Holland 1995, pp. 53-56] for details).

The basic cycle for this system is:
(1)  All messages originating from the system’s environment (via detectors) are
added to the message list.
(2)  All rules check all messages on the message list to determine which rules are 

satisfied.
(3)  All messages are deleted from the message list.
(4)  Satisfied rules enter a strength-based competition based; the winning rules post
their messages to the message list.
(5)  The bucket brigade algorithm adjusts the strengths of the winning rules.
(6)  Changes in the system’s environment, caused by messages activating effectors,
are executed.
(7)  Return to step (1).

Classifier systems model each of the characteristics of complex signaling
networks listed in section 1.  The simultaneous activity of the nodes of a signaling
network is directly modeled by the simultaneous activity of the classifiers in a
classifier system.  The coordination provided by the signals in the networks is
modeled by the message-passing of the classifier system, and conditional action is
directly built into the IF/THEN format of the rules.  As will be shown in section 3,
modularity is provided by tagging loci in the messages [Holland 1995, pp. 12-15].
Tags serve much like headers on Web messages; modules result when a subset of
rules coordinates its activity by the use of a common tag.  Most importantly,
classifier systems are designed to be modified by adaptive algorithms (see sections
3 and 4), so that we can examine the ontogeny and evolution of the system under
various adaptive regimes.

2.3   Defining an adaptive agent with a classifier system.

This paper centers on agents that use classifier systems to determine their
behavior and adaptation.  The agents have five principle components:

(1)  A list of classifiers.
This list may be modified in various ways as the agent adapts to its



environment.
(2)  A list messages.
This list changes each time step, in accord with the output of the classifiers

that win the competition.
(3)  A set of detectors.
Detectors code information about the environment into messages
(4)  A set of effectors.
Effectors have conditions, like those of the classifiers, that are satisfied by 
messages.   The action part of an effector causes some change(s) in the 
environment.
(5)  A set of reservoirs.
Certain effector actions, at appropriate places in the environment, cause the 
reservoirs to be filled.  As in the introductory scenario (section 1), reservoirs

are depleted at a constant rate.

In the implementation that follows (section 3), the agent will use a “vision
cone” to collect information from a 2-dimensional environment with patches of
resources.  This detector will produce a single message that encodes that
information.  In addition, each reservoir will send a message when it is “low”.  As a
result, the message list will contain the messages generated by active rules, the
vision cone message, and any messages from low reservoirs.  A further agent-
environment interaction must be defined to make adaptation meaningful:  There
must be some actions the agent can take that provide needed resources from the
environment.  For the agents defined here that means that there must be actions that
fill the reservoirs.  The efficiency with which the agent manages to fill its reservoirs
gives a measure of performance.

3.  Implementation.

This section describes a particular implementation (in Mathematica) of the
agent described more generally above.  This simple version serves as an existence
proof , exhibiting an adaptive procedure that takes a signaling system from a simple
one-rule “founding” repertoire to a more complex, more effective repertoire.  There
are several easy generalizations of this implementation -- more resources, more
environmental detectors, more effectors, etc. -- most of them attained by simply
changing parameters in the program.  Moreover, we’ll see (section 5) that the
mechanisms have counterparts in broader contexts.

The section begins (3.1) by setting some of the parameters for the classifier
system, message length and the like.  It continues (3.2) by describing the agent’s
environment, presenting details of the agent’s input and output in that environment.
Then the section describes (3.3)  the details of the agent’s classifier system,
including the bucket brigade.  The section concludes (3.4) with a detailed
description of the rule discovery mechanisms used by the agent.



3.1  General parameters.

All messages in this implementation have length k=30.  The first five loci in
each message are used as a tag that identifies the origin of the message:

Messages originating from the reservoirs have a prefix tag 01010.
Messages originating from the environment have a prefix tag 101??.
Messages originating from the classifiers have tag prefix 10000.

Classifiers have either one or two conditions and one outgoing message.  There is
no limit on the number of classifiers or the number of messages on the message list.

3.2  Environment, detectors, and effectors.

The environment is a 20x20 grid wrapped around in both dimensions (a torus)
so that there are no edges.  4x4 patches of resources of two kinds -- call them
“shelter” and “food” -- are distributed irregularly in the grid; all other grid points
are treated as empty.

This agent uses a single detecting mechanism to acquire information from the
environment, a “vision cone”.  At any time, the vision cone points in a specific
direction, some multiple of 45 degrees, and can be rotated in 45 degree increments
by appropriate effector action (see below).  It encompasses all grid points to a depth
of 4 grid points within 45 degrees to the left and right of the vision direction.  The
agent is always assumed to be oriented in the same direction as the vision direction.

The vision cone produces the following 30-locus encoded message:
1 0 1 ? ? (v1)(v2)(v3)(v4) ... (v14) ? ? ? ? ? ? ? ? ? ? ?.

The values v1 through v14 at loci 6 through 19 encode information from the
environment as follows:

v1 = 1 if and only if resource 1 is abundant at the current location of the agent,
otherwise v1 = 0.

[A resource is considered abundant if its level exceeds the threshold set by the
parameter rare.]

v2 = 1 if and only if resource is available, but not abundant, at the current
location

of the agent, otherwise v2 = 0.
v3 and v4 are similarly assigned with respect to resource 2.
v5 through v8 are assigned similarly, but with respect to the grid point that is

one
 layer ahead in the current vision direction.

v9 =1 if and only if resource 1 is present in some amount at any grid point that
is
 two to four layers ahead in the current vision direction.

v10 is similarly assigned with respect to resource 1.
v11= 1 if and only if resource 1 is present in any grid point within 45 degrees

left of the vision direction, not including the center line, up to four layers
away.



v12 is similarly assigned with respect to resource 2.
v13 and vi14 are similarly assigned for resources to the right of the vision 

direction.

The agent has six effectors, each of which is capable of one specific action.
The actions are:

<r>, “rest”, stay in the same location with the same orientation.
<a>, “approach”, move one grid point forward in the vision direction.
<f>, “flee”, move one grid point backward, retaining the same vision

direction.
<l>, “turn left”, rotate the vision direction 45 degrees to the left, while staying

in the
same location.

<r>, “turn right”, rotate the vision direction 45 degrees to the right, while
staying in

the same location.
<c>, “consume”, deplete resource 2 if it is present at the current site.

Each effector has an associated condition that can be satisfied by an appropriate
message:

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 1 0 0 ?   <s>
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 1 1 1 ?   <a>
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 0 0 0 0 ?   <f>
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 0 0 0 1 ?   <l>
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 1 1 0 ?   <r>
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 0 1 ? 1 1 0 0 0 ?   <c>

Note that  sequence 001 at loci 21-23 serves as an internal tag that distinguishes
messages directed to the effectors.

If the response <c> is given when resource 2 (“food”) is present,  the level of
that resource at that site is reduced by an amount determined by the parameter
twodec.  The reservoir level for resource 2 is increased by that amount until the
reservoir is full.   The resource at a depleted site recovers at the rate inctwo.  If the
response <s> is given when resource 1 (“shelter”) is present that resource is not
depleted, but the reservoir level is increased by the amount onedec.

3.3  Classifier execution and the bucket brigade.

As pointed out earlier, each classifier on each time step checks the message
list to see if its condition part is satisfied.  If so, the classifier bids to place its
outgoing message on the message list for the next time step.   Because messages are
only interpreted in terms of the classifier or effector conditions they satisfy there is
no possibility of conflict at this level:  additional active classifiers simply means
additional messages on the message list.

Most classifiers in this system belong to one of three broad categories:
(i)  A default classifier is a classifier with one condition, that is satisfied by one of



the “low reservoir” messages, and an outgoing message that activates one or
more effectors.
(ii)  A bridging classifier is a classifier with a condition, that is satisfied by one of
the “low reservoir” messages, and an outgoing message that does not activate
any effector.
(iii)  A bridge-supported specialist is a classifier with one condition, that is 

satisfied by some environment message(s), a second condition, that is 
satisfied by a message from a bridging classifier, and an outgoing message

 that causes satisfies some effector condition(s).
These categories will be directly useful when we come to the agent’s discovery
mechanisms (3.4).   Also, as we’ll see in a moment, the categories simplify the
determination of bids.

Just how is the size of a classifier’s bid determined once its conditions are
satisfied?  A classifier is assigned a specificity constant spc at the time it is formed,
and typically the bid is calculated as a simple product,

bid(t) = (spc)*(strength(t)).
In many classifier systems [Holland 1995, pp. 57-60], the specificity of a condition
is determined by the number of #’s in the condition:  the fewer #’s, the greater the
specificity.  In this model specificity is assigned according to category:

Default rules are assigned spc = .02.
Bridging rules are assigned spc = .03.
Specialist rules are assigned spc = .05.

For technical reasons that I’ll describe later in this section, it is better to make the
bid an S-shaped function of the strength rather than using the strength directly.

In this model, the winners of the bidding competition are the satisfied
classifiers that make the largest bids.  The actual procedure is stochastic (so that
lower bidders can sometimes become winners):

Probability (win(j,t)) = probability that classifier j wins at time t

           = [bid(j,t)/maxbid(t)]
1/2

,
where bid(j,t) is the bid of classifier j at time t, and maxbid(t) is the maximum of all
bids made at time t.

Once we’ve determined the winners, we can execute the bucket-brigade.  The
exchange is between the current winning classifiers and the winning classifiers of
the previous time step.  Each current winning classifier has its strength reduced by
the amount of its bid.  The bid is distributed to its “suppliers” -- the classifiers that
posted messages satisfying the winning classifier’s conditions -- increasing their
strengths.  In the present model, the bid is apportioned among the suppliers
according to their strengths.  The intuitive idea behind this means of apportioning
credit, as outlined earlier, is that classifiers belonging to a supplier-consumer chain
leading to a “good product” (reservoir filling) will prosper, as in the economic
counterpart.

It is useful to determine the equilibrium (fixed point) strength, str*, of a



classifier under the assumption that it receives a fixed income I each time it is

active.  At equilibrium, the bid, spc*strength,  must equal the income I, so
str* = I/spc.

At equilibrium, then, the bids of all classifiers with the same income will be the
same, regardless of specificity.   This defeats the intent that more specific classifiers
should override (outbid) less specific classifiers in a default hierarchy.  This
difficulty can be corrected by making a bids an S-shaped function of strength, as
suggested earlier in this section.  Indeed, a simple function suffices,

spc*str *(2-str /maxstr),
where maxstr is the maximum strength that can be assigned.

Classifier strengths also enter into the resolution of conflicts when the
conditions for several incompatible effectors are satisfied.  The strengths of the
suppliers of each effector condition are summed and the two effectors with the
highest associated sums, maxind and secind respectively, enter a stochastic
competition.  In the present model the competition is resolved by

Prob(maxind) = 1-((seceff/maxeff)
2
)/2),

were seceff is the sum associated with the the classifier with the second highest
sum, maxeff is the highest sum, and secind is executed if maxind does not win.

3.4  Rule discovery.

A genetic algorithm (GA) is usually used to generate new classifiers in a
classifier system [Holland 1995, pp. 60-80].  However, this paper centers on the
triggered generation of classifiers.  So, in the interests of getting a clear picture of
the possibilities of triggered generation, the GA is not used in this implementation.
I emphasize that the GA is compatible with triggered generation and provides a
good way of exploiting “building blocks” discovered by triggered generation.

Triggered generation provides an experience-based procedure for bridged
classifier sequences, without waiting for the classifiers to appear under mutation
and recombination.  The basic idea is to produce a lengthening sequence of coupled
specialists supported by a bridge that is activated by a low reservoir condition.  If
this bridge-supported sequence captures causal (or highly correlated) interactions
leading to a needed resource in the environment, then the bucket brigade establishes
the sequence as an established part of the repertoire.

There are two objectives that serve as a sine qua non in setting up a triggered
generation procedure.

(1)  The mechanism(s) should be general-purpose in the sense set forth in the
introduction; that is, the mechanisms should be effective over a wide range of
environments, requiring no “tuning” that depends on prior knowledge of the
environment.

(2)  The mechanism(s) should not generate large numbers irrelevant
classifiers; such “clutter” is almost certain to destroy the effectiveness of other



routines for credit assignment, recombination of building blocks, and the like.

Two triggering mechanisms are used in this model.  One provides bridging
classifiers when none exist, and the other provides new bridge-supported specialists
coupled to already existing bridge-supported specialists.  Some additional notation
will make it easier to illustrate the description that follows; this notation is also
useful in describing other signaling networks.

[m1, m2] indicates a classifier condition that is satisfied by either of messages
m1 or m2.

<a> indicates a message that satisfies the condition for effector a.

The mechanism for generating a new bridging classifier is invoked only when
the following three criteria are satisfied:

(i)  the agent has just received a significant input to a reservoir;
(ii) the corresponding “low reservoir” message is on the message list;
(iii) there is no active bridging classifier.

If these conditions are met, a new classifier is added to the system.  It has a single
condition that is satisfied only by the particular “low reservoir” message meeting
criterion (ii).  The outgoing message has a distinctive bridge-tag and is designed so
that it does not satisfy any extant conditions (typically achieved by hash-coding the
non-tag part of the message).

At the same time the bridging classifier is formed, as part of the same
triggered operation, a specialist supported by that bridge is also formed.  This
specialist classifier has two conditions.  The first condition is satisfied by the
bridge’s outgoing message, and the second condition is satisfied by relevant parts of
the current message from the environment.  The specialist’s outgoing message
satisfies the condition of the just executed effector. Note that all information to
form this pair of classifiers is directly available at the time they’re formed.

For example, assume the “low food reservoir” message hunger-mess is on the
message list, that “food present” is indicated by environmental message food-pres,
and the response consume has just been executed.  The following two classifiers
would then be added to the system:

[hunger-mess]/m1
[m1]&[food-pres]/m2  <c>,

where m1 is hash-coded and m2 is a message that satisfies the condition for effector
consume.

The mechanism for generating a bridge-supported specialists is invoked only
when the following three criteria are satisfied:

(i) a  bridging classifier was active on the previous time-step and remains
 active;

(ii) a bridge-supported specialist is currently active;
(iii) there was no bridge-supported specialist active on the previous

 time-step.



When these criteria are met a new two-condition, bridge-supported specialist is
generated using the following information:

time t-1 t
environment                       env(t-1)                        env(t)
active classifiers                  bridge                         bridge

                                spec(t)
effector                              eff(t-1)                         eff(t)

The first condition of the new specialist, [bridge], is satisfied by the bridge
message, while the second condition, [env(t-1)], is satisfied by the relevant parts of
the previous message from the environment, env(t-1).  The specialist’s outgoing
message satisfies the condition of the effector eff(t-1) executed on the previous time
step.  When the specialist is formed the conditions of the active bridge and the pre-
existing bridge-supported specialist spec(t) are generalized so that each is satisfied
by new specialist’s message.  That is, the bridge's revised condition, [new spec, low
reservoir], now accepts the specialist message as well as the “low reservoir”
message, and the revised condition of the pre-existing specialist, [new spec,bridge],
now accepts the new specialist’s message as well as the bridge classifier’s message.

By way of example, assume that
[hunger-mess]/m1

is active at time-step t-1, but no bridge-supported specialist is active at that time.
Further, assume that environmental message f-targ indicates that food is “in sight”,
and that the “approach” response is currently being executed.  Let

[m1]&[food-pres]/m2  <c>
be activated at time-step t.   The three criteria for generating a bridge-supported
specialist have been satisifed, so the new bridge-supported specialist

[m1]&[food-targ]/m3  <a>
is formed.  The bridge condition and one condition of the pre-existing specialist are
simultaneously generalized, so that the bridging classifier now has the form

[hunger-mess,m3]/m1,
and the pre-existing specialist now has the form

[m1,m3]&[food-pres]/m2  <c>.

The bridge-generating mechanism clearly works hand-in-glove with the
bridge-supported-specialist mechanism.  The first mechanism provides the
“founders” upon which increasingly long sequences of specialists are built.  The
specialists formed by the specialist mechanism are coupled so that the bucket
brigade transfers credit back up the line.  Moreover, the bridge’s strength is
immediately increased by the bucket brigade, because the bridge is active at the
time of reinforcement.   As a result, when the sequence is next activated, there is a
quick increase in the strength of the initial specialist classifier in the sequence,
because the bridge is a “supplier” to that initial classifier.  In other words, because
of the bridge, credit need not filter back slowly, trial-by-trial, to the stage-setting
initiator.



4.  Execution.

While it seems plausible that an agent using these mechanisms will generate
effective resource-acquiring behaviors, “the proof is in the pudding”.  No amount of
abstract argumentation will provide a “proof” -- there are just too many ways the
process can go wrong.  For example, the generating mechanisms may generate an
unwieldy clutter of classifiers that interfere with each other, or the bucket brigade
may interfere with the long-term stability of the bridge-supported sequences,
preventing critical overrides of default rule(s).  An executable, proof-of-principle
model is necessary (the counterpart, in this more mundane context, of von
Neumann’s model showing that self-reproducing machines are possible).

To this end, the foregoing model has been implemented in Mathematica.
The agent starts with a single classifier

[fatigue-mess, hunger-mess]/m  <s,a,f,l,r,c>.
This classifier serves as a broad default, with enough ‘?’ in its output message to
assure that the conditions of all 6 effectors are satisfied.  To resolve the effector
conflict, as detailed above, the effectors go into a competition where each is equally
likely to be a winner.  The result is a random sequence of effector actions,
producing a kind of random walk in the environment.

Under the action of the generating mechanisms, the agent acquired the
following repertoire after just 250 time steps in a typical run of the program:

(1) [fatigue-mess, hunger-mess]/m  <s,a,f,l,r,c>.

(2) [hunger-mess,m3]/m1
(3) [m1,m3]&[food-pres]/m2  <c>
(4) [m1,m4]&[food-targ]/m3  <a>

(5) [fatigue-mess,m7]/m5
(6) [m5,m7]&[shelter-pres]/m6  <s>
(7) [m5]&[shelter-targ]/m7  <a>

There were no other classifiers; the strengths of these classifiers at time-step 300
were, in the order given,

{1000, 958, 1000, 685, 733, 995, 500},
where 1000 is the maximum strength allowed.

At the end of 500 time-steps the repertoire had expanded to include

(8) [m5]&[no shelter]/m8  <r>

with  classifiers (5) and (7) modified to



(5’) [fatigue-mess,m7,m8]/m5
(7’) [m5,m8]&[shelter-targ]/m7  <a>

There still was no clutter, and the strengths of the classifiers were
{1000, 1000, 1000, 787, 733, 926, 1000, 500}.

Logic alone would suggest that the generated classifier sequences produce an
improved search for patches, as compared to the random search generated by the
default classifier.  Still, a rough measure of the improvement is helpful.  One way to
measure performance in this context is to keep track of the average level of the
reservoirs.  As a control experiment, the above run was repeated without triggered
generation.  For this run, the average reservoir levels between time steps 200 and
500 were 108 and 109, respectively.  During the same time interval, in the above
triggered generation run, the average reservoir levels were 212 and 182.

Of course, a few runs like these only hint at the long-run structure of the
agent, and they only suggest the effects of these generating mechanisms alongside
the GA in more complex environments.  However, the run described does constitute
an existence proof that an agent can use experience to go from a simple default to a
more complex goal-directed repertoire, without external supervision.

5.  Relevance to the evolution of signaling networks.

Because of the message-passing basis of the demonstration, this existence
proof is suggestive for other signaling networks.  There are details, of course, that
only have clear counterparts in some signaling networks.  The bucket-brigade, for
instance, has a clear counterpart in economic networks, but it is less clear what the
counterpart would be in a bio-circuit.  Still, there is a clear path from this model to
models that are much closer to real bio-circuits.  In this section I’ll sketch that path
for bio-circuits, noting that the relation extends mutatis mutandis to other signaling
networks with agents that employ message-passing, such as food webs, neural
networks, ecosystems, and markets.

Control, synthesis, and transport in  biological cells are all mediated by the
complex signaling networks we’ve been calling bio-circuits.  The interactions are
typically conditional interactions that use proteins and other bio-molecules as
signals.  They involve positive and negative feedback, repression and de-repression
of genes, and coactivation of multiple genes.  The ubiquitous Krebs citric acid cycle
and the Lambda Switch in E. coli are familiar examples of highly regulated bio-
circuits.  Chemotaxis in E. coli and the formation of the fruiting body in slime mold
offer more complex examples, while the interaction of induction and competence in
a developing metazoan provides a still more complex example.  Ultimately, bio-
circuits underpin "epistatic" interactions among genes, giving rise to effects ranging
from the repression and de-repression of genes to the directed placement of



proteins, such as cell surface receptors.

Even when the same genes are being expressed, bio-circuitry produces
dynamic sequences of protein synthesis, modification, and regulation. But the
complexity does not end there:  Because bio-circuitry can turn genes on and off,
there can be complex, time-mediated interactions between genes.  For example, in a
circuit as simple as the lambda switch in E. Coli, which of two gene-controlled
pathways is invoked (lysis or lysogenesis) depends upon a complex bio-circuit with
sophisticated interactions triggered by the cell's environment.

There are useful commonalties between bio-circuits and classifier systems.
First of all, classifier systems exhibit the characteristics of signaling networks set
out in section 1:

• Parallelism and coordination
• Conditional action
• Modularity
• Adaptation and evolution.

In addition to these characteristics, tagging is a mechanism that is shared with bio-
circuits..  Tags in a bio-circuit are exemplified by the particular amino acid
sequences that identify antigens, the sets of amino acids that define actives site in
enzymes, and the amino acid sequences that bind to specific loci in DNA.   Tags go
under a variety of names in molecular biology -- receptors, ligands, motifs, active
sites, and so on -- and they are critical in controlling reactions involving
transcription factors, enhancers, activators, and co-activators, and the like.  In each
case, there is a sub-configuration of the carrier (polypeptide, RNA, DNA, ...) that
satisfies some binding condition.  The counterpart in a classifier system is a rule of
the form

IF (message with apropos tag present} THEN (send message with new tag).

Tag-like motifs identify, and coordinate, modules in a bio-circuit, much as a
coordinated group of classifiers is activated by messages with similar tags.  The
condition for activation of a module can be more or less precise, the equivalent of
adding or deleting #’s in a classifier condition. For example, one major enhancer for
cancerous growth is a reduced selectivity for growth factors in the cascade initiating
cell division, allowing the cell to divide in foreign contexts.  We will come shortly
to the evolutionary “tuning” of tags as a critical feature of cell phylogeny.

There is a straightforward way to go from simple classifier models, of the kind
examined in the last section, to more realistic classifier models of bio-circuits.  One
starts with a coarse-grained, over-general model that describes a few well-
established generalizations.  Then through a series of iterations, one reaches a
classifier model of a  bio-circuit, wherein each classifier specifies what happens to
some actual biomolecular cell constituent (signaling protein, promoter, repressor, or
the like).

For example, starting with a healthy cell, we might adopt as a starting point



four simple rules to model the transformation of a normal cell to a cancer mass:

(1)  IF [healthy cell & DNA damage] THEN [apoptosis or immortality].
(2)  IF [immortality]                         THEN [stable existence or genetic
instability].
(3)  IF [genetic instability]               THEN [ephemeral clonal expansion or
robust clonal expansion].
(4)  IF [robust clonal expansion] THEN [cancer mass].

This initial set of rules serves as a framework for more elaborate models that are
more closely connected to actual observations.  Rule (1), for instance, might be
elaborated to:

(1.1)  IF [healthy cell & DNA damage] THEN [apoptosis or mutation for resistance
to     apoptosis].
(1.2)  IF [resistance to apoptosis]           THEN [susceptibility to growth inhibitory 

     signals or mutation for loss of 
     susceptibility to growth

inhibitory      signals].
(1.3)  IF [loss of susceptibility to     THEN [selective growth advantage and 

      growth inhibitory signals]                     immortality].

It takes several such iterations to arrive at a model where (i) the conditions
(the IF part) are specified in terms of actual cell constituents (signaling proteins,
promoters. repressors, and the like), and (ii) the actions (the THEN part), likewise
involve the production of cell constituents (through gene expression, for instance).
Rules at this level may also represent DNA loci that are repressed or de-repressed
by proteins having particular tags (e.g., configurations that provide binding action).
Representing DNA loci allows us to examine a critical aspect of cell-development:
the effects of repressors, promoters, and the like, on the dynamics of the bio-circuit.
A classifier model at this level can be tested against data produced, for example, by
microassays.

There’s a fragment of a bio-circuit involved in tumor growth that can be used
to exemplify an IF/THEN model at the level of bio-molecules.
The rule

IF[ras gene expressed]  THEN[tumorigenesis]
can serve as the default starting point.  The specialist rules at the bio-molecule level
have a growth factor (gf) as their central component.  Growth factors control the
growth and replication of cells; normal cells only replicate when a highly selective,
organ-specific growth factor receptor is activated by the appropriate growth factor:

(initiation) IF[apropos growth factor]  THEN[gf receptor activated].

The cascade of events leading to mitotic transcription (replication) is initiated by
the bio-molecule Ras-GTP.  Ras-GTP is obtained by adding a phosphorous ion (P)



to Ras-GDP, a reversible process controlled by the bio-molecules GDS and GAP.
These relations can be represented by the following simple set of IF/THEN rules:

(regulation) IF[gf receptor activated]&[GDS]&[Ras-GDP]  THEN[Ras-GTP].
IF[gf receptor activated]&[GAP]&[Ras-GTP]   THEN[Ras-GDP].

(execution) IF[Ras-GTP]  THEN[mitotic transcription & stress fiber cascades].

Even this simple set of rules suggests several factors relevant to tumor growth:
(i) genes producing GAP could be tumor suppressors.
(ii) genes producing GDS could be oncogenes.
(iii) a mutation in the ras gene, allowing susceptibility of Ras to inappropriate

growth       factors, could cause inappropriate activation of Ras.
(iv)  stress fiber cascades in inappropriate conditions, e.g. production of 
       membrane ruffles, could be used as indicators of aberration.

Because this bio-circuit fragment is so simple -- a single two-component
regulatory process and one expressed gene --  these suggestions are readily apparent
to “common sense”.  However, when we come to more complex bio-circuits with
interlocking feedback loops and interacting gene expression, the resulting behavior
is far from apparent.  The situation then is much like trying to determine the
behavior of a lengthy computer program using only the listing of instructions, a
notoriously difficult task.

Even when the full description of the bio-circuit is available, it is quite
difficult to anticipate the effects of gene mutations, exogenous signals, and the like.
Yet, it is just these interlocking causative factors that offer possibilities for targeted
intervention.  As with a computer program, execution of the bio-circuit “program”
under controlled conditions becomes one of the few feasible ways of attaining this
understanding.  Sometimes in vivo or in vitro experiments can serve this purpose,
but control can be extremely difficult, as decades of benchwork in the study of
cancer has made clear.  Computer-based models of bio-circuits offer a powerful
complement to this benchwork, suggesting lines of research that might not be
apparent otherwise.

Once the classifier system reaches the bio-molecular level, there are several
useful properties of the model that aid in exploring the activities of the
corresponding bio-circuit:

(i)  There is a clear correspondence between each component rule of the
model and each component of the bio-circuit.

(ii)  It is easy to develop standard models of important modular bio-circuits
such as the Krebs cycle or the lambda switch.  By using appropriate tags to
mimic receptors and ligands, these modules are easily incorporated in larger
bio-circuits, offering a convenience like that of standard sub-routines in a computer
program.

(iii) Because the classifier system is computation-universal, the model is



easily modified to account for any shortcomings or errors vis-a-vis the bio-
circuit.  In contrast, models using simultaneous linear differential equations
(typical in physics and chemistry) can handle conditional actions only with great
difficulty, limiting such models to the simplest bio-circuits

(iv)  Classifier systems are built to be used as grist for a genetic algorithm, so
they can be subjected to artificial evolution, making it possible to explore
phylogenetic relationships between different bio-circuits.  It is easy to trace
generalizations or specializations of conditions under an evolutionary regime, say
by point mutation, because of the role of # (‘don’t care”) and ? (fits all) in
defining conditions and messages.  As an example, a good classifier system
model for early-stage cancer would enable us to observe the likelihood of
mutations that transform the cancer to a more aggressive stage.

When constructing a bio-circuit model, it is important to look for basic
building blocks in the system being modeled.  Just as enzymes have basic structural
components -- alpha helices, beta sheets, and the like -- constructed from a 20-
amino-acid alphabet, so there are standard “signaling” proteins for turning genes
“on” and “off”.  There are also standard “ autocatalytic bio-circuits”, such as the
citric acid cycle, that perform similar functions over extraordinarily wide ranges of
species.  The goal is to come up with building blocks that can be fitted together to
make larger building blocks.

Extracting building blocks is accomplished by examining the quantities
measured to keep track of the system's behavior.  The construction of a flight
simulator provides an easy example:  You list the modules that generate the
instrument readings in the plane's cockpit; you then determine the rules that
describe how the modules interact.  The process has much in common with defining
a new board game by listing the pieces and rules.  This description in terms of
modules or building blocks is not just a matter of convenience; when we look to the
evolution of bio-circuits we see the same basic building blocks occurring over and
over again in different combinations.

Models built around classifiers complement, but contrast strongly with, the
statistical models produced by bioinformatics.  Genome sequencing has made it
possible for us to identify the building blocks of important signaling networks,
while new tools such as automated gene sequencing, cDNA micro-assays, and
tissue arrays produce torrents of data about these components.  It is difficult to
organize this torrent in ways that tell us more about the signaling networks.  As
with building blocks sitting in a box, many known components await assembly into
coherent structures.  In attempting to assemble these building blocks, it is helpful to
note again that modules in bio-circuits, as chains of conditional interactions with
feedback loops, are quite like sub-routines for a computer.

It is impossible to reconstruct a computer  program from the statistics of its
output.   For similar reasons,  the interactions in a bio-circuit (e.g., cooperative
repression) are usually hidden from bio-informatic data searches.  This limitation on



statistical techniques is familiar in other areas:   No one would expect to use the
statistics of a chess game (number of times each piece was moved, for example) to
recover the conditional strategic maneuvers of the game.  On the other hand, we can
execute a classifier system model, much like playing a game of chess, to see if it
simulates known data (cascades, feedbacks, and the like).  In particular, we can
examine the dynamic time-sequence of gene expression, so we can learn how the
action of the bio-circuit is altered by transformations in the cell DNA.  Correlations,
regressions, and similar statistical techniques can increase confidence that a
proposed bio-circuit reconciles the data, but statistical techniques alone cannot
reveal the circuit.

There is a particular role for bio-circuit models as provisional hypotheses for
guiding and refining experiments:  They tell us “where to look”.  To see just what
this means, it is helpful to turn to physics.  In physics, the theory of relativity
suggested that the path of light passing near a substantial mass would be bent.  In
particular, the image of a distant star, observed from earth as it orbited the sun,
would be displaced if the sun came close to the line of sight to the star.  Theory,
then , suggested observations of relative star positions during an eclipse (which
would allow star images near the sun to be seen).  These new and unusual
observations were one of the first verifications of the theory of relativity.   In a
similar fashion, bio-circuits models should suggest new experiments for filling in
missing signal pathways.

There is a question about the bio-circuits of different species that, if answered,
will make a strong contribution to our understanding of biological signaling
networks:   Why and how do certain motifs become common in bio-circuits, acting
as building blocks for a wide range of functionally similar proteins, while other
configurations remain particular and local?  In short:  How are building blocks
selected and how do they spread across species?  Darwin gained insights into the
origin of species by tracing the origin and variations of the beaks of Galapagos
finches.  Similarly, a phylogeny of the origin and variations of common bio-circuit
modules should tell us much about the origins and organization of bio-circuits.
And, if some of these modules are implicated in diseases or cancers, we gain targets
for targeted intervention.
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