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Abstract

How does an evolutionary process interact with a decentralized� distributed system in order
to produce globally coordinated behavior� Using a genetic algorithm �GA� to evolve cellular au	
tomata �CAs�� we show that the evolution of spontaneous synchronization� one type of emergent
coordination� takes advantage of the underlying medium
s potential to form embedded particles�
The particles� typically phase defects between synchronous regions� are designed by the evolu	
tionary process to resolve frustrations in the global phase� We describe in detail one typical
solution discovered by the GA� delineating the discovered synchronization algorithm in terms of
embedded particles and their interactions� We also use the particle	level description to analyze
the evolutionary sequence by which this solution was discovered� Our results have implications
both for understanding emergent collective behavior in natural systems and for the automatic
programming of decentralized spatially extended multiprocessor systems�

�� Introduction

The spontaneous synchronization of independent processes is one of the more widely observed
dynamical behaviors in nature� In many such phenomena� synchronization serves a vital role
in the collective function of the constituent processes� The spiral waves exhibited during the
developmental and reproductive stages of the Dictyostelium slime mold ��
� the morphogenesis of
embryonic structures in early development ���
� the synchronized oscillations of neural assemblies
which have been thought to play a signi�cant role in encoding information ��
� and the marked
seasonal variation in the breeding activity of sexually reproducing populations are just a few
examples of the temporal emergence of global synchronization�

The importance of global synchronization has been recognized for decades outside of natural
science as well� From the earliest days of analog and digital computer design� the functioning
of an entire computing device has been critically dependent on achieving global synchronization
among the individual processing units� Typically� the design choice has been to use a central
controller which coordinates the behavior of all parts of the device� In this way� the interaction of
individual units is modulated so that the transfer of information among the units is meaningful�

But what if the option of a central controller is not available� Given the widespread ap	
pearance of synchronization in decentralized and spatially extended systems in nature� evidently
evolution has successfully overcome this problem� Evolution has e�ectively taken advantage of
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the spatially local dynamics in its production of organisms which� on the one hand� consist of
potentially independent subsystems� but whose behavior and survival� on the other hand� rely
on emergent synchronization� These observations leave us with an unanswered but biologically
signi�cant question� By what mechanisms does evolution take advantage of nature
s inherent
dynamics�

We explore this question in a simple framework by coupling an evolutionary process�a ge	
netic algorithm �GA��to a population of behaviorally rich dynamical systems�one	dimensional
cellular automata �CAs�� In this scheme� survival of an individual CA is determined by its ability
to perform a synchronization task�

Recent progress in understanding the intrinsic information processing in spatially extended
systems such as CAs has provided a new set of tools for the analysis of temporally and evolu	
tionarily emergent behavior ��� �� �
� Beyond describing solutions to the computational task� in
this paper we use these tools to analyze in some detail the individual CA behavioral mechanisms
responsible for increased �tness� We also analyze how these mechanisms interact with selection
to drive the CA population to increasingly sophisticated synchronization strategies�

�� Cellular Automata

CAs are arguably the simplest example of decentralized� spatially extended systems� In spite
of their simple de�nition they exhibit rich dynamics which over the last decade have come to
be widely appreciated ��� ��� ��
� A CA consists of a collection of time	dependent variables sit�
called the local states� arrayed on a lattice of N sites �or cells�� i � �� �� ���� N � �� We will
take each to be a Boolean variable� sit � f�� �g� The collection of all local states is called the
con�guration� st � s�t s

�
t � � � s

N��
t � s� denotes an initial con�guration �IC�� Typically� the equation

of motion for a CA is speci�ed by a look	up table � that maps a site
s neighborhood �it to a new
local state for that site at the next time step � sit�� � ���it�� where �

i
t � si�rt � � � sit � � � s

i�r
t and

r is called the CA
s radius� �In contexts in which i and t are not relevant� we will simply use �
with no sub	 or superscripts to denote a neighborhood�� The global equation of motion � maps
a con�guration at one time step to the next� st�� � ��st�� where it is understood that the local
function � is applied simultaneously to all lattice sites� It is also useful to de�ne an operator
� that operates on a set of con�gurations or substrings of con�gurations�that is� on a formal
language�by applying � separately to each member of the set�

The CAs in the GA experiments reported below had r � �� N � ���� and spatially periodic
boundary conditions� sit � si�Nt �

�� The Synchronization Task

Our goal is to �nd a CA that� given any initial con�guration s�� within M time steps reaches a
�nal con�guration that oscillates between all �s and all �s on successive time steps� ���N � � �N

and ���N � � �N � M � the desired upper bound on the synchronization time� is a parameter of the
task that depends on the lattice size N � This is perhaps the simplest non	trivial synchronization
task for a CA�

The task is nontrivial since synchronous oscillation is a global property of a con�guration�
whereas a small	radius �e�g�� r � �� CA employs only local interactions mediated by the sites
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neighborhoods� Thus� while the locality of interaction can directly lead to regions of local syn	
chrony� it is more di�cult to design a CA that will guarantee that spatially distant regions are
in phase� Since regions that are not in synchrony can be distributed throughout the lattice�
a successful CA must transfer information over large space	time distances �� N� to remove
phase defects separating regions that are locally synchronous� in order to produce a globally
synchronous con�guration�

For reference� consider a simple benchmark radius � CA �osc� which is a naive candidate
solution with �osc��N � � �N and �osc��N � � �N � Its look	up table is de�ned by� �osc��� � � if
� � ��� �osc��� � � otherwise�

We de�ned the performance PN
K ��� of a given CA � on a lattice of size N to be the fraction

of K randomly chosen initial con�gurations on which � produces correct �nal behavior� We then
measured PN

���
��osc� to be ����� ����� and ����� for N � ���� ���� and ���� respectively� �The

behavior of a CA on these three values of N give a good idea of how the behavior scales with
lattice size��

�osc is not a successful solution precisely because it is unable to remove phase defects� A
more sophisticated CA must be found to produce the desired collective behavior� It turned out
that the successful solutions discovered by our GA were surprisingly interesting and complex�

�� Details and Results of GA Experiments

We used a GA� patterned after that in our previous work on density classi�cation ��� �� ��
�
to evolve CAs that perform the synchronization task� The GA begins with a population of P
randomly generated �chromosomes��bit strings encoding CAs by listing each �
s output bits in
lexicographic order of neighborhood con�guration� For binary r � � CAs� the chromosomes are
of length ����� ��r���� The size of the space the GA searches is thus �����far too large for any
kind of exhaustive search�

With the lattice size �xed at N � ���� the �tness FI��� of a CA in the population is calculated
by randomly choosing I ICs that are uniformly distributed over �� � ����� ���
 �where �� denotes
the fraction of �s in s�� and iterating � on each IC for a maximum of M time steps� FI��� is the
fraction of the I ICs on which � produces the correct �nal dynamics� an oscillation between �N

and �N � No partial credit is given for incompletely synchronized �nal con�gurations�

In our experiments� we used FI��� as an estimate of PN
K ��� with I � K and N � ���� It

should be pointed out that sampling ICs in FI��� with uniform distribution over �� � ����� ���

is highly skewed with respect to the unbiased distribution of ICs in PN

K ���� which is binomially
distributed over �� � ����� ���
 and very strongly peaked at �� � ���� Preliminary experiments
indicated that while both kinds of distributions allowed the GA to �nd high performance rules�
the uniform distribution helped the GA to make more rapid progress in early generations�

In each generation the GA goes through the following steps� �i� A new set of I ICs is generated
from the uniform distribution� �ii� FI��� is calculated for each � in the population� �iii� The
population is ranked in order of �tness� equally �t CAs are ranked randomly relative to one
another� �iv� E of the highest �tness ��elite�� CAs are copied without modi�cation to the next
generation� �v� The remaining �P � E� CAs for the next generation are formed by single	point
crossovers between pairs of elite CAs chosen randomly with replacement� The o�spring from each
crossover are each mutated m times� where a mutation consists of �ipping a randomly chosen bit
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in a chromosome� This de�nes one generation of the GA� it is repeated G times for one GA run�

FI��� is a random variable since its value depends on the particular set of I ICs selected to
evaluate �� Thus� a CA
s �tness varies stochastically from generation to generation� For this
reason� we choose a new set of ICs at each generation

For our experiments we set P � ���� E � ��� I � ���� m � �� and G � ��� M was chosen
from a Poisson distribution with mean ��� �slightly greater than �N�� Varying M prevents
selecting CAs that are adapted to a particular M � A justi�cation of these parameter settings is
given in ��
�

We performed a total of �� GA runs� Since F������ is only a rough estimate of performance�
we more stringently measured the quality of the GA
s solutions by calculating PN

���
��� with

N � f���� ���� ���g for the best CAs in the �nal generation of each run� In ��� of the runs
the GA discovered successful CAs �PN

���
� ����� More detailed analysis of these successful CAs

showed that although they were distinct in detail� they used similar strategies for performing the
synchronization task� Interestingly� when the GA was restricted to evolve CAs with r � � and
r � �� all the evolved CAs had PN

���
� � for N � f���� ���� ���g� �Better performing CAs with

r � � can be designed by hand�� Thus r � � appears to be the minimal radius for which the GA
can successfully solve this problem�
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Figure �� �a� Space�time diagram of �sync starting with a random initial condition� �b� The same space�
time diagram after �ltering with a spatial transducer that maps all domains to white and all defects to
black� Greek letters label particles described in the text�

Figure �a gives a space	time diagram for one of the GA	discovered CAs with ���� perfor	
mance� here called �sync� This diagram plots �� successive con�gurations on a lattice of size
N � �� �with time going down the page� starting from a randomly chosen IC� with �	sites col	
ored black and �	sites colored white� In this example� global synchronization occurs at time step
���

How are we to understand the strategy employed by �sync to reach global synchronization�
Notice that� under the GA� while crossover and mutation act on the local mappings comprising a
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CA look	up table �the �genotype��� selection is performed according to the dynamical behavior
of CAs over a sample of ICs �the �phenotype��� As is typical in real	world evolution� it is very
di�cult to understand or predict the phenotype from studying the genotype� So we are faced
with a problem familiar to biologists and increasingly familiar to evolutionary computationalists�
how do we understand the successful complex systems �e�g�� �sync� that our GA has constructed�

	� Computational Mechanics of Cellular Automata

Our approach to understanding the computation performed by the successful CAs is to adopt the
�computational mechanics� framework for CAs developed by Crutch�eld and Hanson ��� �� �
�
This framework describes the �intrinsic computation� embedded in the temporal development of
the spatial con�gurations in terms of domains� particles� and particle interactions� A domain is�
roughly� a homogeneous region of space	time in which the same �pattern� appears� For example�
in Figure �a� two types of domains can be seen� regions in which the all	�s pattern alternates
with the all	�s pattern� and regions of jagged black diagonal lines alternating with jagged white
diagonal lines� The notion of a domain can be formalized by describing the domain
s pattern
using the minimal deterministic �nite automaton �DFA� that accepts all and only those spatial
con�gurations that are consistent with the pattern�

Since the domains in Figure �a are described by simple DFAs� they represent relatively simple
patterns� Once the domains have been detected� nonlinear �lters can be constructed to �lter
them out� leaving just the deviations from those regularities �Figure �b�� The resulting �ltered
space	time diagram reveals the propagation of domain boundaries� If these boundaries remain
spatially localized over time� then they are called particles� �For the discussion later� we have
labeled some of the particles in Figure �b with Greek letters�� These �embedded� particles
are one of the main mechanisms for carrying information over long space	time distances� This
information might indicate� for example� the partial result of some local processing which has
occurred elsewhere at an earlier time� Logical operations on the information particles carry are
performed when they interact� The collection of domains� domain boundaries� particles� and
particle interactions for a CA represents the basic information	processing elements embedded in
the CA
s behavior�the CA
s �intrinsic� computation�

In the example presented in Figure �a the domains and particles are easy to see by inspection�
However� often CAs produce space	time behaviors in which regularities exist but are not so
easily discernible� Crutch�eld and Hanson have developed automatic induction methods for
�reconstructing� domains in space	time data and for building the nonlinear �lters that reveal
the hidden particles� allowing the intrinsic computation to be analyzed� In Figure �b� the �ltering
not only allows us to determine the location of the particles in the space	time diagram� but it
also helps in readily identifying the spatial and temporal features of the particles�

To perform the synchronization task� �sync produces local regions of synchronization �alter	
nating �� and �� patterns� where w� represents some number of repetitions of string w�� In
many cases� adjacent synchronized regions are out of phase� Wherever such phase defects occur�
�sync resolves them by propagating particles�the boundaries between the synchronized regions
and the jagged region�in opposite directions� Encoded in �sync
s look	up table are interactions
involving these particles that allow one or the other competing synchronized region to annihilate
the other and to itself expand� Similar sets of interactions continue to take place among the
remaining synchronized regions until the entire con�guration has one coherent phase�
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Figure �� Evolutionary history of �sync
 �a� F��� versus generation for the most �t CA in each population�
The arrows indicate the generations in which the GA discovered each new signi�cantly improved strategy�
�b���f� Space�time diagrams illustrating the behavior of the best � at each of the �ve generations marked
in �a�� The ICs are disordered except for �b�� which consists of a single � in the center of a �eld of 	s� The
same Greek letters in di�erent �gures represent di�erent types of particles�

In the next section we will make this intuitive description more rigorous� In particular� we
will describe the evolutionary path by which our GA discovered �sync� using the computational
mechanics framework to analyze the mechanisms embedded in the increasingly �t CAs created
by the GA as a run progresses�


� The Evolution to Synchronization

Figure �a plots the best �tness in the population versus generation for the �rst �� generations
of the run in which �sync was evolved� The �gure shows that� over time� the best �tness in the
population is marked by periods of sharp increases� Qualitatively� the overall increase in �tness
can be divided into �ve �epochs�� The �rst epoch starts at generation � and each of the following
epochs corresponds to the discovery of a new� signi�cantly improved strategy for performing the
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synchronization task� Similar epochs were seen in most of the runs resulting in CAs with ����
performance� In Figure �a� the beginning of each epoch is labeled with the best CA in the
population at that generation�

Epoch �� Growth of Disordered Regions� To perform the synchronization task� a CA
� must have ����� � � and ����� � �� These mappings insure that local regions will have
the desired oscillation� Such a synchronized region is a domain�denote it S�with a temporal
periodicity of two� �� � ������ and �� � ������ Since the existence of the S domain is guaranteed
by �xing just two bits in the chromosome� approximately ��� of the CAs in a random initial
population have S�

However� S
s stability under small perturbations depends on other output bits� For example�
�� is a generation � CA with these two bits set correctly� but under �� a small perturbation in S
leads to the creation of a disordered region� This is shown in Figure �b� where the IC contains a
single � at the center site� In the �gure� the disordered region grows until it occupies the whole
lattice� This behavior is typical of CAs in generation � that have the two end bits set correctly�
Increasing the number of perturbation sites in S leads to a simultaneous creation of disordered
regions all over the lattice� which subsequently merge to eliminate synchronous regions� Thus�
CAs like �� have zero �tness unless one of the test ICs has �� � ��� or �� � ����

Epoch �� Stabilization of the Synchronous Domain� The best CA at generation ��
��� has F��� � ����� indicating that it successfully synchronizes on only a small fraction of the
ICs� Although this is only a small increase in �tness� the space	time behavior of �� �Figure �c�
is very di�erent from that of ��� Unlike ��� �� eliminates disordered regions by expanding �and
thereby stabilizing� local synchronous domains� The stability of the synchronous regions comes
about because �� maps all the eight neighborhoods with six or more �s to �� and seven out of
eight neighborhoods with six or more �s to �� Under our lexicographic ordering� most of these
bits are clustered at the left and right ends of the chromosome� This means it is easy for the
crossover operator to bring them together from two separate CAs to create CAs like ���

Figure �c shows that under ��� the synchronous regions fail to occupy the entire lattice� A
signi�cant number of constant	velocity particles �here� boundaries between adjacent S domains�
persist inde�nitely and prevent global synchronization from being reached� Due to the temporal
periodicity of the S domains� the two adjacent S domains at any boundary can be either in	
phase or out	of	phase with each other� We will represent the in	phase and the out	of	phase defects
between two S domains as SS and SS respectively� A more detailed analysis of ��
s space	time
behavior shows that it supports one type of stable SS particle� �� and three di�erent types of
stable SS particles� �� 	� and 
� each with di�erent velocities� Examples of these particles are
labeled in Figure �c� and their properties and interactions are summarized in Table �� �We should
note that we have used the same set of Greek letters to represent di�erent types of particles in
di�erent rules��

For most ICs� application of �� quickly results in the appearance of these particles� which then
go on to interact� assuming they have distinct velocities� A survey of their interactions indicates
that the � particle dominates� it persists after collision with any of the SS particles� Interactions
among the three SS particles do take place� resulting in either a single � or a pair of �
s� Thus�
none of the interactions are annihilative� particles are produced in all interactions� As a result�
once a set of particles comes into existence in the space	time diagram� one can guarantee that at
least one particle persists in the �nal con�guration� For almost all values of ��� ��
s formation
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of persistent particles ultimately prevents it from attaining global synchrony� Only when �� is
very close to ��� or ��� does �� reach the correct �nal con�gurations� This accounts for its very
low �tness�

Cellular Automata Particles and Interactions

Chromosome Generation Label Domain Temporal Velocity
�P���

���
�P���

���
�P���

���
� Boundary Periodicity

�� � � � SS � ����
F�A��CE� � SS 
 ���

B���
�EA �	�		� � SS � ����
D��CB�
A 	�		� � SS � 	
EB��C
A	 	�		� � � �� �� � � �� �� � � �� �

�� � � � SS � ����
F�A�AE�F � SS � 	
CF�BC�E� �	����
D��CB�
C 	�	�� � � �� �
�C���E�	 	�	��

�� � �� � SS 
 �� �

F�A�AE�F � SS � 	
CE�BC�E� �	���� � SS �� �� 

C��CB�
E 	���� � SS � ���
�C���CA	 	���� � � �� �� � � �� �� � � �� �

�sync � �		 � SS � 	
FEB�C�EA � DS � �
B�E	C
DA ���		� � SD � ��
�
�
A�AA ��		� � DS 
 ��
F
�	C�A	 ��		� � SD � �

� DD � ��
Decay
�� � � � Annihilative
 � � � � �� �� � � �
Reactive
 � � � � � �d mod 
 � ��� � � � � �� � � � � �
Reversible
 � � � � � � � �d mod 
 �� ��� � � � � � � �

Table �� �sync and its ancestors
 Particles and their dynamics for the best CAs in early generations of the
run that found �sync� The table shows only the common particles and common two�particle interactions
that play a signi�cant role in determining �tness� � indicates a domain with no particles� Each CA � is given
as a hexadecimal string which� when translated to a binary string� gives the output bits of � in lexicographic
order �	 � 	� on the left��

Epoch �� Suppression of In
Phase Defects� Following the discovery of ��� the next
sharp increase in �tness is observed in generation �� when the best CA in the population� ���
has F��� � ����� The rise in �tness can be attributed to ��
s ability to suppress in	phase �SS�
defects for ICs with very low or very high ���

The space	time behavior of �� is dominated by two new and di�erent SS particles� labeled
� and � �see Table �� examples are labeled in Figure �d�� In addition to the suppression of
SS boundaries� � and � annihilate each other� even on some ICs with intermediate ��� �� is
able to reach synchronous con�gurations due to these annihilations� However� since the velocity
di�erence between � and � is only ���� the two particles might fail to annihilate each other
before the maximum of M time steps have elapsed�

In spite of these improvements� �� still fails on a large fraction of its �tness tests� Often the
same type of particle occurs more than once in the con�guration� Since they travel at the same
velocity� these identical particles cannot interact� so they persist in the absence of particles of a
di�erent type� Global synchrony is achieved �possibly in more than M time steps� only when the
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number of � particles and � particles in any con�guration are equal� Our studies of �� show that
the probability of occurrence of � is about twice that of �� so their numbers are often unequal�

From the standpoint of the genetic operators acting on the CA rules� a small change in the
relevant entries in � is su�cient to signi�cantly modify the properties of the domain boundaries�
As a result� it is the mutation operator that seems to play the primary role in this and subsequent
epochs in discovering high	performance CAs�

Epoch �� Re�nement of Particle Velocities� A much improved CA� ��� is found in
generation ��� Its typical behavior is illustrated in Figure �e� �� di�ers from �� in two respects�
both of which result in improved performance� First� as noted in Table �� the velocity di�erence
between � and 	� the two most commonly occurring particles produced by ��� is larger �� as
compared to ��� in ���� so their annihilative interaction typically occurs more quickly� This
means �� has a better chance of reaching a synchronized state withinM time steps� Second� the
probabilities of occurrence of � and 	 are almost equal� meaning that there is a greater likelihood
they will pairwise annihilate� leaving only a single synchronized domain�

In spite of these improvements� it is easy to determine that ��
s strategy will ultimately fail
to synchronize on a signi�cant fraction of ICs� As long as SS particles exist in the space	time
diagram� there is a non	zero probability that a pair of SS defect sites would be occupied by
a pair of identical particles moving in parallel� In the absence of other particles in the lattice
such a particle pair could exist inde�nitely� preventing global synchrony� Thus a completely new
strategy is required to overcome persistent parallel	traveling particles�

Epoch �� The Final Innovation� In the ��th generation a �nal dramatic increase in �tness
is observed when �� is discovered� �� has F��� � ���� and displays quite di�erent space	time
behavior �Figure �f�� Following the discovery of �� and until the end of the run in generation
���� the best CAs in each generation have F��� � ����� Also� no signi�cant variation in the
space	time behavior is noticeable among the best CAs in this run� In particular� ��
s strategy is
very similar to that of �sync� a perfected version of �� that appeared in the last generation� Here
we will make our earlier intuitive description of �sync
s strategy more rigorous�

As can be seen in Figure �a� after the �rst few time steps the space	time behavior of �sync
is dominated by two distinct types of domains and their associated particles� While one of the
domains is the familiar S� the other domain�denoted D in Table �� consists of temporally
alternating and spatially shifted repetitions of ���� and ����� The result is a pattern with
temporal and spatial period �� In terms of the domain
s regular language� though� D has temporal
period �� ������� � ���������� and ������� � �����������

Using a transducer that recognizes the S and D regular languages� Figure �a can be �ltered to
display the propagation of the particles embedded in the space	time behavior of �sync �Figure �b��
As pointed out earlier� such �ltered space	time diagrams allow us to readily analyze the complex
dynamics of �sync
s particles and their interactions� As shown in Table �� �sync supports �ve
stable particles� and one unstable �particle�� �� which occurs at SS boundaries� � �lives� for
only one time step� after which it decays into two other particles� 	 and �� respectively occurring
at SD and DS boundaries� � moves to the right with velocity �� while 	 moves to the left at
the same speed�

The following simple scenario illustrates the role of the unstable particle � in �sync
s synchro	
nization strategy� Let �sync start from a simple IC consisting of a pair of SS domain boundaries
which are a small distance from one another� Each SS domain boundary forms the particle ��

�



which exists for only one time step and then decays into a �		 pair� with � and 	 traveling at
equal and opposite velocities� In this example� two such pairs are formed� and the �rst inter	
action is between the two interior particles� the � from the left pair and the 	 from the right
pair� As a result of this interaction� the two interior particles are replaced by 
 and �� which
have velocities of 	� and �� respectively� Due to their greater speed� the new interior particles
can intercept the remaining � and 	 particles� Since the pair of interactions 	  
 � � and
�  � � � are annihilative� and because the resulting domain is S� the con�guration is now
globally synchronized�� The basic innovation of �sync over �� is the formation of the D domain�
which allows two globally out	of	phase S domains to compete according to their relative size and
so allows for the resolution of global phase frustration� D achieves this by replacing S domains
with itself�a nonsynchronizable region�

The particle interactions in the �ltered space	time diagram in Figure �b �starting from a
random IC� are somewhat more complicated than in this simple example� but it is still possible
to identify essentially the same set of particle interactions ��  	 � 
  �� �  	 � �� and
	  
� �� that e�ect the global synchronization in the CA�

�� Concluding Remarks

In summary� the GA found embedded	particle CA solutions to the synchronization task� Al	
though such perfectly performing CAs were distinct in detail and produced di�erent domains
and particles� they all used similar strategies for performing the task� It is impressive that the
GA was able to discover complex orchestrations of particle interactions resulting in ���� correct
solutions such as that described for �sync� The computational mechanics framework allowed us
to �deconstruct� the GA
s solutions and understand them in terms of particle interactions� In
general� particle	level descriptions amount to a rigorous language for describing computation in
spatially extended systems�

Several issues� important for putting the preceding results in a more general context� should
be mentioned in closing� First� implicit in the de�nition of a CA is a globally synchronous update
clock� That is� a CA
s local states are updated at the same time across the lattice� �And this
is a fundamental architectural di�erence with many of the natural processes mentioned in the
introduction�� But since each site has a processor � which determines local behavior and site	
to	site interactions� the e�ect of the underlying global update need not be manifest directly in
globally synchronous con�gurations	� In this light� our choice of the synchronization task means
that we have considered one particular aspect of how this dynamical behavior might emerge� i�e��
can local information processing and communication be designed by a GA to take advantage of
the globally synchronous update signal�

Second� this observation suggests an alternative and potentially more important study to
undertake� the evolution of a decentralized� distributed system whose components are fully

�One necessary re�nement to this explanation comes from noticing that the ��� interaction depends on the
inter�particle distance d� where 	 � d � �r� If d mod 
 �� �� then we have the interaction � � � � � � �� But if d
mod 
 � �� then we have � � � � �� The particle � is essentially a defect in the D domain�

�Indeed� one of the earliest mathematical articulations of a similar synchronization problem in a distributed
system�the �ring�squad synchronization problem �FSSP��uses a globally synchronous update clock� In spite
of the global update mechanism� it is the site�to�site interactions among the individual processors in the FSSP
that makes the problem interesting and di�cult� Although FSSP was �rst proposed by Myhill in ����� it is still
being actively studied ��
��

��



asynchronous� We hope to return to this more di�cult GA study in the future�

Third and �nally� biological evolution is a vastly more complex process than the restricted
framework we
ve adopted here� Its very complexity argues for new methods of simplifying its
analysis�methods that are sensitive to the interaction between the nonlinear dynamics of indi	
vidual behavior� on the one hand� and population dynamics guided by natural selection� on the
other� Our goal is to delineate the evolutionary mechanisms that drive the emergence of useful
structure� Given this� we believe that detailed analysis of simpli�ed models� such as the one
presented above� is a prerequisite to understanding the emergence and diversity of life�
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