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Abstract

An exploratory technique is introduced for investigating how much of the
irregularity in an aperiodic time series is due to low-dimensional chaotic dynam
ics, as opposed to stochastic or high-dimensional dynamics. Nonlinear models
are constructed with a variable smoothing parameter which at one extreme de
fines a nonlinear deterministic model, and at. the other extreme defines a linear
stochastic model. The accuracy of the resulting short-term forecasts as a func
tion of the smoothing parameter reveals much about the underlying dynamics
generating the time series. The technique is applied to a variety of experimen
tal and naturally occurring time series data, and the results are compared to
dimension calculations.
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1 Introduction

The nonlinear modeling and forecasting of time series data has a relatively recent
history. The statistics community has constructed stochastic nonlinear models since
about 1980; for a review see Tong(1990). Independently, the dynamical systems com
munity, motivated by the phenomenon of chaos, has constructed deterministic non
linear models since about 1987; see Crutchfield and MacNamara(1987), Farmer and
Sidorowich(1987,1988) and Casdagli(1989) and references therein. In this paper, a
forecasting algorithm is presented which constructs a range of models which attempts
to "bridge the gap" between the stochastic and deterministic approaches. The fore
casting algorithm is applied to a variety of experimental and naturally occurring time
series data, in order to investigate whether the data exhibit low-dimensional chaotic
behaviour, as opposed to high-dimensional or stochastic behaviour. The idea is that
if models near the deterministic extreme give the most accurate short-term forecasts,
then this is strong evidence for low-dimensional chaotic behaviour in the data. Simi
lar ideas have recently been applied to economic data, and no evidence was found for
nonlinear forecastability or low-dimensional chaos (Briggs(1990), Hseih(1991)) .

.Several of the time series analysed in this. paper are.generated from nonlinear dy
namical systems which are expected to be high-dimensional, or highly stochastic. The
forecasting algorithm can be used to investigate whether the nonlinearity underlying
such time series can be detected by fitting a range of nonlinear stochastic models
of low dimension. Preliminary results suggesting nonlinear forecastability in sunspot
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data have been obtained by Farmer and Gibson using these ideas; see Casdagli et
al.(1991b).

Rather than presenting a detailed application to one specific time series, in this
paper results are presented for a wide variety of time series in order to provide the
reader with a perspective of the domain of applicability of the above ideas. Care
ful hypothesis testing is avoided in favour of a more exploratory approach to data
analysis, and the results in this paper should be viewed as preliminary investigations.
The organisation of this paper is as follows. Section 2 contains a brief summary of
ideas in dynamical systems which are relevant to time series analysis; for more in
formation see the reviews by Eckmann and Ruelle(1985), Eubank and Farmer(1989),
and Grassberger et al.(1991). Results in this paper will be interpreted using these
concepts. In Section 3 a forecasting algorithm with a variable smoothing parameter is
presented for nonlinear modeling, and its properties illustrated with numerically gen
erated time series. In Section 4 the forecasting algorithm is applied to experimentally
generated time series from electronic circuits, fluid turbulence and flame dynamics.
In Section 5 the forecasting algorithm is applied to time series from speech, EEGs
(ElectroEncephaloGrams), measles and sunspots. In Section 6 the results of the fore
casting algorithm are compared to results from correlation dimension calculations,
which have also been used to identify low-dimensional chaos. In Section 7 the main
conclusions and open questions are summarised.

2 Chaos and deterministic modeling

Chaos is about the irregular behaviour of solutions to deterministic equations of
motion, and has received much attention from mathematicians and physicists over
recent years. The equations must be nonlinear to generate chaotic solutions, but apart
from that can be remarkably simple. A nonlinear difference equation in one variable
can generate chaos and an ODE (Ordinary Differential Equation) in three variables
can generate chaos. Chaotic solutions exhibit broad band spectra, and masquerade
as random time series when analysed using linear techniques. Chaotic solutions are
only accurate for a length of time governed by the errors on initial conditions and
the Lyapunov exponent of the system, which quantifies the exponential divergence of
trajectories in chaotic systems. However, when considered in the underlying state
space, in many cases chaotic, solutions 'relax onto a strange attractor which has a
fractal structure and typically a non-integral dimension.

Given that deterministic equations in a small number of variables can generate
complicated behaviour, the question arises: how much of the complicated behaviour
observed in nature can in fact be described by deterministic equations with a small

",·,number·of variables?,.The.obvious answeLis·nonK~at"a>small·enough,scalethe laws
of quantum mechanics apply, and a fully deterministic description is fundamentally
impossible. On the other hand, at larger scales, many equations derived from the laws
of physics are deterministic, and hold to an excellent degree of accuracy. Moreover,
there are several examples of such equations which are nonlinear, have a small number
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of variables, and exhibit chaotic behaviour. Examples range from equations describing
mechanical and electrical systems to the motion of the orbit of Pluto. In these low
degree of freedom systems, deterministic ODEs derived from the laws of physics can
be used to numerically establish the existence of chaos, and to perform short-term
forecasting and time series analysis.

More recently it has been shown that deterministic ODEs with a small num
ber of variables can accurately model phenomena in the physics of many degree of
freedom systems near the transition to chaos. Motivated by results in dynamical
systems theory, Ruelle and Takens(1971) conjectured that the transition to turbu
lence observed in fluid dynamics experiments may be explained by a bifurcation to
a low-dimensional strange attractor. This conjecture, which was in direct conflict
with the high-dimensional Landau picture of turbulence, has been confirmed by the
universality results of Fiegenbaum, mathematical results in PDEs (Partial Differen
tial Equations) (for example see Doering et al.(1988) and references therein), as well
as by numerical and physical experiments. Thus, near the transition to chaos, the
many degrees of freedom are in fact coupled together coherently, and an enormous
dimension reduction takes place.

The dimension of the attractors of many degree of freedom systems may increase
rather rapidly after the transition to chaos. Thus the problem arises as to how to
estimate the dimension of the strange attractor which underlies an irregular time series
generated by a many degree of freedom system such as a fluid. Unfortunately, it is
extremely difficult to estimate the dimension of attractors by numerical integration
of PDEs. Dimension estimation is an important problem, because if the time series
exhibits low-dimensionalbehaviour, then it should be possible to accurately model the
underlying system with a small number of ODEs, rather than numerically intractable
PDEs, and hence obtain insight into the behaviour of the system. This problem is
also of great interest in systems for which the underlying physics is not understood.

Techniques of state space reconstruction were introduced by Packard et al.(1980)
and Takens(1981), which show that it is, in principle, possible to address the above
problem of dimension estimation by direct observations of a long enough time series of
measurements of the system of interest, as follows. Suppose an observed scalar time
series X" X2, .. is generated by aD-dimensional attractor of a deterministic dynamical
system with d degrees of freedom

s(t) = pt(s(O))

Xi = h(s(iT,))

(1)

(2)

where s(t) E ~d denotes the state of the system at time t, pt is the time-t evolution
of a smooth dynamics, T, is the sampling rate, and h : ~d -> ~ is a scalar valued
measurement function. Define the delay vectors 1:i of embedding dimension m and
delay time T (which by convention I take to be an integer in this paper) by

(3)
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Takens proved that if m > 2d then, subject to genericity assumptions on F, hand
T., a smooth dynamics is induced on delay vectors, so that for all integers T and T,

there exists a smooth map fT : ~m --t ~ such that

(4)

for all integers i. For geometrical illustrations of Takens' theorem, and generalisations
to the case of low-level "observational noise" (i.e noise added to the right hand side of
(2)), see Casdagli et a1.(1991a). Takens' theorem implies that the delay vectors;!;.i fill
out a "reconstructed" attractor in ~m which is diffeomorphic to the original attractor.
In particular ,. the dimension of the reconstructed attractor is D, independently of m,
and is invariant with respect to the measurement function h. Stronger results of
this kind have been established by Sauer et a1.(1990). In particular, it is typically
sufficient to take m > 2D for (4) to hold, and if D < m < 2D, (4) holds for almost
everywhere. By contrast, if the time series is generated by a stationary stochastic
process then, for all values of m, a noise term is expected to appear on the right hand
side of (4) and the delay vectors are expected to fill out a set of dimension m.

A variety of algorithms for time series analysis have been proposed to exploit the
above mathematical results. In the cases m = 1,2,3 various graphical techniques can
be used to investigate the geometry and dynamics of the state space reconstruction.
For example, a "phase portrait" obtained by plotting Xi against Xi_T often provides
much insight, and is used throughout this paper to display time series data. In
some applications, graphical techniques give striking evidence for low-dimensional
chaos. Examples include data from a dripping faucet (Shaw(1984)), experiments in
fluid dynamics (see Eckmann and Ruelle(1985)) and biological oscillations (see Glass
and Mackey (1988)). "Recurrence plots" introduced by Eckmann et a1.(1987) are
useful for the analysis of non-stationary data. The correlation dimension algorithm
of Grassberger and Procaccia (1983) is a numerical technique for investigating the
geometry of a reconstructed aUractor in higher embedding dimensions than those
available to most graphical techniques, and will be considered in Section 6.!.

In this paper, attention is focused on forecasting algorithms, which attempt to
approximate the unknown nonlinear map f in (4) from time series data Xl, .. , XN. In
practice there is always a noise term on the right hand side of (4) due to observational
errors and, for example, thermodynamic fluctuations. However, if the effects of noise
are small, and if the dimension D of the attractor is low, then with a modest amount
of data (say N ~ 10D ), it is possible to obtain an accurate approximation to f. The
approximation can be tested by making out of sample, short-term forecasts, which
should be much more accurate than expected if there were a substantial stochas
tic component on the right hand side of (4). On the other hand, if the dimension
D is large, ,there will be insufficient data to ,approximate c{4) with it deterministic
model with m > D, and one is forced to approximate (4) with a (possibly nonlinear)
stochastic model with m < D. In this weak sense, a high-dimensional deterministic
system is equivalent to a stochastic system. Moreover, it can be shown that, for high
dimensional chaotic systems with low-level observational noise, a large noise term in
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(4) can be induced by the process of state space reconstruction from a scalar time
series, so that even a knowledge of the functional forms of F and h in (1,2) does not
allow for accurate short-term forecasting of the time series, irrespective of the length
of the time series (Casdagli et al.(1991a)). In this strong sense, a high-dimensional
chaotic system is equivalent to a stochastic system. The forecasting algorithm pre
sented in Section 3 is designed to explore a wide variety of models from the nonlinear
deterministic extreme to the linear stochastic extreme, in order to investigate the
dimensionality of the time series.

The properties of low-dimensional chaotic systems with low levels of noise are now
rather well understood, even mathematically. However, although low-dimensional
chaos is expected to be common in few degree of freedom systems, it is expected
to be rare in many degree of freedom systems, except near the transition to chaos.
Consequently, the attention of many physicists has shifted to the study of high
dimensional systems. Several idealised models have been studied numerically, and
a variety of interesting "collective phenomena" observed, such as spatio-temporal
chaos (see Crutchfield and Kaneko(1988) and references therein), robust intermit
tency (Keeler and Farmer(1986)) and self-organised criticality (Bak et al.(1987)).
There have been some preliminary attempts to fit such models to spatio- temporal
data. The phenomena discovered in these idealised models may also have qualita
tive implications for the analysis of scalar time series from many degree of freedom
systems. In particular, some of the models provide potential alternatives to frac
tional Brownian motion models, which have been used to investigate "long-memory"
time series with slowly decaying power spectra. However, it is not clear how to
develop quantitative tests for time series analysis which distinguish between these
alternatives. In addition to its use for detecting low-dimensional chaos, the forecast
ing algorithm presented in Section 3 can be used to investigate whether time series
from high-dimensional deterministic systems can be approximately modeled with low
dimensional nonlinear stochastic models, as has been suggested in the case when there
are large, spatially coherent structures in the system (Broornhead et al.(1990)).

3 A forecasting algorithm

3.1 Description

The idea behind the forecasting algorithm used in this paper is straightforward: con
struct piecewise-linear approximations to the unknown function iT of (4) using a
variable number k of neighbours. A small value of k corresponds to a deterministic
approach to modeling (Farmer and Sidorowich(1987)). The largest value of k corre
sponds to fitting a stochastic linear autoregressive model. Intermediate values of k
correspond to fitting nonlinear stochastic models. Nonlinear stochastic models of a
similar type have been constructed by Tong and Lim(1980), with relatively large k
values, in the case of short time series. The algorithm described below is a computa
tionally efficient implementation of this idea; the longest computations presented in
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this paper took a few hours of CPU time on a SUN4 workstation.

(A) Divide the time series into two separate parts; a fitting set Xl, .. , XN
j

and a
testing set XNj+l, .. , XNj+N,.

(B) Choose an embedding dimension m, a delay time T, and a forecasting time T.

(C) Choose a delay vector I:.i with i :2: N f for a T-step ahead forecasting test.

(D) Compute the distances dij of the test vector I:.i from the delay vectors I:.j,

1 + (m -1)T :::: j :::: Nf - T in the fitting set, using the maximum norm for
computational efficiency.

(E) Order the distances dij , find the k nearest neighbours I:.j(l)' .. ,I:.j(k) of I:.i, and fit
an affine model of the form (5), where the parameters Qo, .. , Q m are computed by
ordinary least squares.

m

Xj(l)+T >::! Qo +L QnXj(I)-(n-I)T
n=l

1= 1, .. , k (5)

Vary the number of nearest neighbours k at several representative values between
2(m + 1) and N f - T - (m -1)70 I used the "heapsort" algorithm described in
Press et al. (1988) to order the distances dij . The parameters Qo, .. , Q m can be
obtained by solving the normal equations for the linear system (5), which can be
updated recursively as k is increased and solved using LU decomposition for
computational efficiency.

(F) Use the fitted model (5) to estimate a T step ahead forecast xi+T(k) for the test
vector ;];.i, and compute its error ei(k) = IXi+T(k) - Xi+TI.

(G) Repeat steps (C) through (F) for all i in the testing set, and compute the
normalised RMS forecasting error

(6)

where (J is the standard deviation of the time series. In long, finely sampled time
series, I often space the delay vectors ;];.i used for testing N s > 1 units of the
sampling time apart. This reduces the amount of CPU time for a fixed amount of
data, without significantly affecting statistical averages.

(H) Choose the delay time T and the forecasting time T by discretion. In chaotic
. s)'stems,they should not be chosen too large. In. finely. sampled continuous time
systems, they should not be chosen too small. In this paper, T is chosen by trial and
error, in order to obtain low values for Em(k). For a review of theoretical issues
involved in choosing T, see Casd30gli et 301.(1991a). Finally, vary the embedding
dimension m, and study the curves Em(k) as a function of k.
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(7)

3.2 Numerical example

In order to test the algorithm, noise free time series were generated from numerical
simulations of deterministic dynamical systems. Independent identically distributed
Gaussian noise of variance £2 was added to the noise free time series, using a pseudo
random number generator, to simulate observational noise. Define the noise level to
be the ratio of £ to the standard deviation of the noise free time series. Fig. 1a shows
Em(k) curves for an example with a 3.6 dimensional attractor and a 2% noise level.
The noise free time series was obtained by sampling a numerical solution to the delay
differential equation (7) of Mackey and Glass(1977) with parameter 6 = 30, initial
condition x(t) = 0.9 for 0 ::; t ::; 6, and sampling rate T s = 6.

dx(t) 0.2x(t - 6)
d:t = -O.lx(t) + 1+ [x(t _ 6))10

Fitting and testing sets were chosen with N f = 40000, Nt = 400 and N, = 1.
Greatly improved,torecasts of nonlinear models over linear models are obtained as
the embedding dimension m is increased, until a "plateau" is reached at m = 6.
The most accurate forecasts are obtained with values of k near the deterministic
extreme, which allows one to correctly conclude that the time series is essentially
low-dimensional.

Fig. 1b shows Es(k) curves for an example with an attractor of dimension 1.7,
for noise levels 0%, 2%, 20% and 100%. The noise free time series was obtained
from a model of the form (1,2) with the dynamics given by the map f : B{2 -7 B{2 of
Ikeda(1979) defined by

f(x, y) = (1 +a(x cos t - Y sin t), a(x sin t + y cos t)) (8)

where t = 0.4 - 6.0/(1 +x 2+y2) and with the parameter f1 = 0.9. The measurement
function was taken to be h(x, y) = x. It can be seen from Fig. 1b that greatly improved
forecasts are obtained over the linear model for the noise levels 0% and 2%, and these
time series are correctly identified as essentially low-dimensional. However, when the
noise level is increased to 20%, the forecastability is lost to the extent that one can
only conclude that the time series is nonlinear. It could be either low-dimensional
and noisy, or high-dimensional. Finally, at a noise level of 100%, it is difficult to
detect any nonlinearity at all from an inspection of Fig. lb. It would be interesting to
apply the forecasting algorithm to high-dimensional numerical time series data, but
in the remainder of this paper I concentrate on analysing experimental and naturally
occurring time series data.

3.3 Remarks

Theoretical properties of the Em (k) curves may be summarised as follows. In the
case that the noise is negligible, forecasting errors are dominated by the inaccuracies
in fitting a piecewise linear model to the smooth map f in (4), and the scaling law

(9)
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is anticipated for m > 2D, where C is a "curvature" constant and D denotes the di
mension of the attractor; compare Farmer and Sidorowich(1987) and Casdagli(1989).
In general, a fractal attractor has a range of dimensions associated with it, and it can
be argued that the precise value of D in the scaling law (9) is given by D q , where q is
the solution to (q-I)Dq = -4, and D q are the Renyi dimensions of the attractor (see
Badii and Politi(1985) for definitions and similar arguments). The scaling law (9)
can be shown to simplify if the RMS average (6) is replaced by the geometric mean;
the appropriate value of D in (9) is then the information dimension D1 . The dashed
lines in Fig. I were obtained by.substituting known values for D1 into the scaling law
(9), since, for each of these attractors, the relevant Renyi dimensions are close to D1 .

The constant C is difficult to estimate from first principles, and in Fig. I is chosen
arbitrarily to illustrate the scaling behaviour (9) of Em(k) with k. In this regime
of negligible noise, large values of k should be avoided to obtain accurate forecasts,
particularly when the dimension D of the attractor is small.

In the case where observational noise of level < is added to (2), a noise term is
induced on the right hand side of (4), which enforces a limitation to forecastability
as Nf ---? 00, and the scaling law (9) breaks down. This effect can be computed in a
small < approximation, and the horizontal line "I" in Fig. I b was computed from the
functional forms of f and h for this example (see Casdagli et al.(199Ia)). In this noise
dominated regime, small values of k should be avoided to obtain the most accurate
forecasts due to problems of statistical estimation (see Casdagli(1991)). An optimal
choice of k will in general involve a compromise between nonlinear deterministic effects
and the effects of noise and statistical estimation. Similar considerations apply to
optimising the choice of the embedding dimension m. Of course, if the underlying
dynamics generating the time series is not understood, the parameters k and m should
be varied to investigate the unknown dynamics, and this is the approach taken.in
Sections 4 and 5.

From a more practical point of view, there are some pitfalls in drawing conclusions
from an inspection of the Em(k) curves as follows. First, in extreme situations, low
dimensional chaos can be misidentified as stochastic behaviour. In fact, all of the time
series analysed in Fig. I carne from low-dimensional deterministic dynamics, since the
pseudo-random number generator that I used was based on the deterministic process
<i+1 = a<i+b (modI). However, a was taken very large, and the forecasting algorithm
requires a very large amount of time series data to discover such rules. Pseudo-random
number generators are somewhat pathological examples of low-dimensional chaos,
and such misidentification problems are not expected with time series from natural
processes, if an appropriately high sampling rate is used. Second, the results of the
forecasting algorithm should be carefully interpreted in the case of non-stationary
time series. In the applications to experimental time series presented in Section
c4;"ito is'implicitly assumed that the ·expe1'iments·are ..sufficientIy ,well controlled so
that stationarity holds to a good degree of approximation. Other problems with the
interpretation of results from the forecasting algorithm will be discussed as they arise
in later sections of the paper.
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4 Experimental time series

4.1 Coupled diodes

Electrical circuits containing diodes are a useful source of experimental time series for
testing ideas in nonlinear dynamics (for example see Gunaratne et a1.(1989)). ,Diodes
have a nonlinear, approximately deterministic, response to applied electrical currents.
The forecasting algorithm of Section 3 was applied to time series data generated by
measuring currents in circuits containing n coupled diodes, for n = 2,4,6. Since these
are essentially few degree of freedom systems, any irregular behaviour observed in the
time series data is expected to be mostly due to low-dimensional chaos. The time
series were sampled at the frequency of the periodic driving voltage, so it is natural
to fix the delay time T = 1 and the forecasting time T = 1. Fig. 2a (resp. 2c, 2e)
shows a phase portrait for the case n = 2 (resp. n = 4,6). Fig. 2b (resp. 2d, 2f)
shows the corresponding Em (k) curves. The fitting and testing sets were chosen with
NJ = 20000, Nt = 400 and N s = 1.

Evidently there is much structure in the phase portraits. The attractor of Fig. 2a
appears to display a wide range of Renyi dimensions. In this case, the Em(k) curves
were also computed using a geometric mean in place of (6); these are the dotted
curves in Fig. 2b. This was the only case where I used the geometric mean. As
remarked in Section 3.3, the geometric mean has some nice theoretical properties,
but in practice I have often found it to have poor convergence properties as the size
of the testing set is increased. It can be seen from Fig. 2b that deterministic (low
k) models give substantial improvements in predictive accuracy over linear models,
and the n = 2 time series is identified as low-dimensional chaos, with Dr ~ 3.5
according to the scaling law (9). In the case n = 4, it can be seen from Fig. 2d that
the improvement in predictive accuracy of the nonlinear models over linear models
has declined considerably, and nonlinear stochastic models with k values towards the
deterministic extreme give about a 40% improvement in predictive accuracy. Finally,
in the case n = 6, it can be seen from Fig. 2f that the nonlinear stochastic models at
intermediate values of k give only about a 10% improvement in predictive accuracy
over linear models.

In this example, the results of the forecasting algorithm are only unambiguous in
the case n = 2. One might conjecture that the reason for the decay in predictive
accuracy as n is increased from 2 to 6 is not only that the dimension of the recon
structed attractor is increased, but that the dynamics induced on the reconstructed
attractor is more complicated, especially in view of the low sampling rate. On the
other hand, one might conjecture that stochastic, thermal effects in diodes become
more important as n is increased. In Section 6.1 result are presented from dimension

.calculations and an attempt is made to resolve this dichotomy. It would also be inter
esting to address the above dichotomy by attempting to forecast the time series using
information in the ODEs which are believed to accurately model diodes (see Brorson
et al.(1983)). Algorithms have been developed by Geweke(1989) and Breeden and
Hubler(1990) which might be useful for such problems.

9



4.2 Fluid turbulence

Experiments in fluid turbulence provide a rich source of time series data, due to the
potentially enormous number of degrees of freedom available. The forecasting al
gorithm of Section 3 was applied to time series believed to be at the two extremes
of weak turbulence and strong turbulence. The first time series, shown in Fig. 3a,
was generated by measuring temperature differences between two plates enclosing a
Rayleigh-Benard convection experiment near the transition to turbulence (see Haucke
and Ecke(1987)). The second time series, shown in Fig. 3c, was generated by measur
ing a component of the velocity at a point in a Taylor-Couette experiment at a highly
turbulent regime (Reynolds number pj 105 ). Since these are many degree of freedom
systems, low-dimensional chaos is only expected for the first time series, which is near
the transition to turbulence. The application of the forecasting algorithm is compli
cated due to the absence of a natural choice for T and T. A systematic variation of
these parameters remains to be done. The choices used for Fig. 3 seem to be reason
able. Figs. 3a and 3c show phase portraits, and Figs. 3b and 3d show corresponding
Em(k) curves. The fitting and testing sets were chosen with N f = 20000, Nt = 400
and N s = 10.

For the weakly turbulent time series, Fig. 3a reveals that the motion is confined to
a toroidal region of phase space. In Fig. 3b deterministic (low k) models clearly give
substantial improvements in predictive accuracy over linear models, and this time
series is identified as low-dimensional chaos, with D pj 3.0 according to the scaling
law (9). This is consistent with the Ruelle-Takens conjecture, and the results of Hauke
and Ecke(1987) and Farmer and Sidorowich(1987) on this time series. It can be seen
from Fig. 3b that to obtain the most accurate forecasts, m = 20 is needed, which
is surprisingly large. If the time series indeed has a low noise level then, from the
results of Sauer et al.(1991), m = 2D +1 pj 7 should be sufficient.

By contrast, for the highly turbulent time series, Fig. 3c reveals little structure
other than occasional intermittent bursts. In Fig. 3d, linear models are seen to be
superior to deterministic models, and nonlinear stochastic models at intermediate
values of k give only about a 3% improvement in predictive accuracy over linear
models. In this case the time series is identified as high-dimensional with possibly a
small amount of nonlinearity which can be exploited by nonlinear stochastic modeling
in low embedding dimensions m. However, it is not clear that a linear stochastic
model is adequate to describe qualitative features of this time series, because of the
large intermittent bursts apparent in Fig. 3c. As mentioned at the end of Section 2,
such intermittent bursts often occur as the result of collective phenomena in high
dimensional systems, and are expected to be a fundamentally nonlinear effect.

4.3 Flame dynamics

Experiments in flame dynamics have been performed by Gorman and Robbins(1991)
in order to investigate spatio- temporal chaos in such systems. Phase portraits of time
series obtained from measurements of the light intensity at a point in the flame are
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shown in Fig. 4. Spectral methods (extensively used by Gorman and Robbins) indi
cate that the time series shown in Fig. 4a comes from a quasiperiodic, non-chaotic
regime, and indeed the phase portrait resembles a two-dimensional torus. For the
time series shown in Fig. 4c, the spectrum is broad band, and direct observations
of the spatio-temporal motion of the flame (which have been recorded on videotape)
reveal a strongly spatially coherent motion; so -that this time series is expected to
exhibit low-dimensional chaos. For the time series shown in Fig. 4e, the spectrum is
slowly decaying, and direct observations of the spatio-temporal motion of the flame
reveals complicated patterns of about 20 interacting pockets of flame activity, known
as "cellular flames", so that this time series is expected to be of rather high dimen
sion. The structures of the phase portraits shown in Fig. 4 are consistent with these
observations. Again, the application of the forecasting algorithm of Section 3 is com
plicated due to the absence of a natural choice for T and T. The choices used in Fig. 4
seem to be reasonable. The fitting and testing sets were chosen with Nf = 15000,
Nt = 400 and N s = 10. Since the total length of each time series was N ~ 200000,
only every tenth point was retained before applying the forecasting algorithm in the
cases where the time series were finely sampled.

The results shown in Fig. 4f for cellular flames are similar to those obtained in the
case of the highly turbulent fluid shown in Fig. 3d. Even though the turbulence is not
fully developed in the case of cellular flames, the underlying nonlinear dynamics is not
of a form which can be detected using this forecasting algorithm. The results shown
in Figs. 4b and 4d are more difficult to interpret. Fig. 4b at first seems to contradict
the graphical evidence for approximately deterministic motion on a two-dimensional
torus shown in Fig. 4a, since the improvements in accuracy of nonlinear models over
linear models is only about 50%. However, this is not surprising, since the non
chaotic motion in this example is sufficiently simple that it might be expected to be
well approximated by a linear model. On the other hand, it can be seen from Fig. 4d
that the nonlinear stochastic models at intermediate values of k give more than 100%
improvement in predictive accuracy over linear models. Similar behaviour occurred
in the Em(k) curves for the low-dimensional chaotic example of Fig. 1b at a 20% noise
level, and in the 4-coupled diodes example of Fig. 2d. At this stage I can only conclude
that the time series shown in Fig. 4c is either low-dimensional with a moderate amount
of noise (this could be dynamical noise, i.e. noise added to the right hand side of (1),
rather than observational noise, at a level of say 20%), or of moderate dimension
(say D ~ 6). Further information is required to resolve this dichotomy. Since direct
observations of the spatio- temporal motion reveal strong spatial coherence in this
example, I suspect that the low-dimensional possibility is more likely. A quantitative
analysis of the spatio-temporal time series data could potentially resolve this issue,
but unfortunately the data is not yet available in digitised form.
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5 Observational time series

The time series analysed in Section 4 were generated by carefully controlled experi
ments on physical systems. By contrast, in this section I analyse time series generated
by a variety of "naturally occurring" systems which are less well understood, and
which in some cases cannot be controlled at all.

5.1 Speech

Improved techniques for the short-term forecasting of speech time series are of po
tential commercial use in transmission coding, and there is evidence for nonlinear
structure in speech time series (Kumar and Mullik(1990), Townshend(1990)). The
forecasting algorithm of Section 3 was applied to a time series of pressure fluctuations
recorded from the sentence "We lost the golden chain". A phase portrait of part of
the time series is shown in Fig. 5a. The large amplitude, low-frequency, oscillations
correspond to vowels. Fig. 5c shows a phase portrait of the time series after it has
been passed through a moving pole linear filter which is designed to extract both
linear and non-stationary structure from the original time series. The corresponding
Em(k) curves shown in Figs. 5b and 5d were obtained by taking Nf = 20000, Nt = 400
and N s = 60. In Fig. 5b (resp. 5d) the best nonlinear stochastic models outperform
linear models by a factor of about 50% (resp. 100%). A clear interpretation of these
results is complicated due to the non-stationarity of this short sentence (this is evi
dent in Fig. 5d, since linear models give a value of Em(k) significantly greater than
1). The effects of non-stationarity would be expected to become less important for
longer time series of speech data. At this stage, I would hesitate to conclude from
the results of Fig. 5 that the time series exhibits evidence"of low-dimensional chaos..
However, Fig. 5d does support the result of Townshend that a moving pole linear filter
is unable to extract all the forecastable structure from the original time series. There
are also good physical reasons for suspecting that speech time series are produced by
filtering non-stationary inputs through a few degree of freedom nonlinear filter, so it
is not surprising that substantial nonlinear effects show up in Fig. 5.

5.2 Electroencephalograms

There has been much recent interest in applying ideas from dynamical systems to
the analysis of EEGs and other physiological time series (see Babloyantz and Des
texhe(1986), Mayer-Kress and Layne(1987), Mayer-Kress et al.(1988) and Babloy
antz(1989)). The forecasting algorithm of Section 3 was applied to two such time
series. Fig. 6a (resp. 6c) shows a phase portrait of an EEG time series from a pa-

.. ,-tientwhois-resting--with eyes closed (resp. the ,same. patient ,with· f1uroxene induced
anesthesia). Observe that Fig. 6a appears more structured than Fig. 6c. The corre
sponding Em(k) curves shown in Figs. 6b and 6d were obtained by taking Nf = 12000,
Nt = 400 and Ns = 8, and reveal very little evidence for nonlinear forecastability.
Also, observe that linear models suffice to distinguish between these two time series,
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and give a difference of about 60% in forecastability. I conclude that there is very
little evidence for low-dimensional chaos in these time series. Indeed, these time se
ries come from a many degree of freedom system and, except in certain diseases, are
expected to exhibit high-dimensional behaviour. As in the case of fully developed
fluid turbulence, this does not necessarily imply that linear models are adequate to
describe the time series. Graphical techniques and dimension calculations which have
been used for purposes of signal classification do seem to reveal interesting nonlinear
structure in some EEG time series (see references at the beginning of this subsection).

5.3 Measles

Sugihara and May(1990) have applied deterministic forecasting algorithms to a variety
of short time series. In the case of the monthly New York measles time series, they
claimed to find evidence for deterministic chaos, as well as nonlinearity. Fig. 7a
shows a phase portrait of the measles time series, and a strong cyclical dynamics is
apparent" somewhat reminiscent of the Rossler attractor. Fig. 7b shows the results
of applying the forecasting algorithm of Section 3 with N f = Nt = 216 and N, = 1.
The best nonlinear stochastic models outperform linear models by a factor of about
15%. Since the test set consisted of 216 points, a careful hypothesis test would
be expected to yield a high statistical significance for evidence of nonlinearity in
the time series. This is indeed what was found by Sugihara and May. However, I
do not consider this improvement in accuracy to be large enough to conclude that
deterministic chaos is relevant to the measles time series. Indeed, recent results of
Ellner(1991) indicate that the forecasting results of Sugihara and May are consistent
with the more plausible alternative of an underlying stochastic population growth
model, rather than deterministic chaos. The nonlinearity in the population growth
model considered by Ellner may be removed by a logarithmic transformation. After
performing such a transformation on the measles time series and computing Em(k)
curves, I found that most of the evidence for nonlinearity in the original time series
disappeared. Since chaos cannot be removed by such a transformation, this supports
the alternative of Ellner.

Following the conventions of Sugihara and May, the forecasting algorithm of Sec
tion 3 was also applied to the first differenced measles time series, with N f = Nt = 216
and N, = 1, and using the correlation coefficient Pm(k) between predicted and actual
values of the time series in place of the RMS error Em(k) of (6). A phase portrait of
the first differenced time series is shown in Fig. 7c, and the Pm(k) curves are shown
in Fig. 7d. Also shown in Fig. 7d is the result of using a step function approximation
with k neighbours (obtained by averaging over k neighbours rather than fitting an
affine function of the form (5)), and the result of Sugihara and May's simplex al-

··gorithm.The best 'predictions are obtained"with stochasticopie<:ewis€"linear models,
and increase the correlation coefficient from linear models by about 20% (the Em(k)
curves for the first differenced measles data gave similar results, and assuming that
the variance of the predicted values is approximately equal to the variance of the ac
tual values, it follows that E;"(k) "'" 2(1 - p;"(k))). Also, it can be seen from Fig. 7d
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that if step function approximation is used, then much lower values of k give the best
predictions. The more sophisticated the function approximation technique used, the
more likely it is that stochastic or high-dimensional effects will be identified. This is
because a more sophisticated function approximation technique is likely to break down
faster as the smoothing parameter is decreased, due to its ability to fit to the noise.
Sugihara and May's simplex technique is essentially a kernel density technique, and
is more robust at small k than the piecewise-linear technique of Section 3. Although
the results shown in Fig. 7d appear to provide stronger evidence for nonlinearity than
those shown in Fig. 7b, I still do not consider this improvement in accuracy to be
large enough to conclude that the measles time series exhibits low-dimensional chaos.

5.4 Sunspots

The annual sunspot time series has been analysed by several authors (see for example
Tong(1990) and Weigend et al.(1990)), and strong evidence found for nonlinearity.
A phase portrait is shown in Fig. 7e and a strong cyclical dynamics is apparent,
corresponding to the famous "11 year cycle". Existing physical models for the interior
of the sun have been unable to explain this effect. Fig. 7f shows the results of applying
the forecasting algorithm of Section 3, with N f = Nt = 143 and N s = 1. Nonlinear
stochastic models are found to give about a 20% improvement over linear models
(compare Casdagli et al.(1991b)). However, I do not consider this improvement in
accuracy to be large enough to conclude that the sunspot time series exhibits low
dimensional chaos. In this case, a more reasonable alternative is that the underlying
nonlinear dynamics is high-dimensional, but with a sufficient amount of coherent
structure that can be exploited by a low-dimensional nonlinear stochastic model.

6 Relationship to other work

In this section I discuss the relationship of the forecasting algorithm of Section 3
to some existing techniques of nonlinear time series analysis. The emphasis is on
supplementing the existing techniques, rather than competing with them. When only
one technique is used to analyse a time series, the results are expected to be at best
incomplete, and at worst misleading.

6.1 Dimension calculations

The idea of varying neighbourhood sizes is intrinsic to dimension calculations, which
attempt to estimate the dimension D of an attractor directly. When carefully in
terpreted, dimension calculations on long time series can reliably distinguish low
dimensional from high-dimensional or stochastic behaviour in a stationary system;
see for example Mayer-Kress(1986), Mayer-Kress(1988), Abraham et al.(1989) and
Theiler(1991). For statistical issues, see Theiler(1990) and Smith(1991). Note that
results from dimension calculations on time series from non-stationary systems must
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be interpreted using different concepts, because time series from several stochastic
non-stationary systems (for example Brownian motion) are known to have finite di
mension (see for example Mandelbrot(19S5), Osborne and Provenzale(19S9) and Fal
coner(1990)). As noted in Section 3, forecasting algorithms should also be carefully
interpreted when applied to time series from non-stationary systems.

The correlation dimension algorithm of Grassberger and Procaccia(19S3) is defined
as follows. First define the correlation integral Cm(r) by

Cm(r) = #{(i,j) :11;[i -;[j 11< r }jNZ (10)

where N is the length of the time series, ;[i and ;[j are m-dimensional delay vectors,
II . II denotes the maximum norm, and "#" denotes "the number of points in the
set". Then if the attractor is of (correlation) dimension Dz , and ignoring the effects
of noise, it follows that Cm(r) obeys the scaling law

Cm(r) ~ rmin(m,D2 J N --+ 00, r --+ 0 (11 )

Fig. Sa shows Cm(r) curves for the case of 6 coupled diodes. Fig. Sb shows
corresponding vm(r) curves which estimate the slopes in Fig. Sa and are defined by

vm(r) = (logCm(r') -logCm(r))j(logr' -logr) (12)

where r' is taken so that Cm(r')jCm(r) ~ 5, following a (personal) recommendation
of Theiler. Fig. Sc (resp. Sd) shows vm(r) for 2 (resp. 4) coupled diodes. I interpret
the results shown in Fig. S as follows. Fig. Sc (resp. Sd) indicates convergence to
D z ~ 2.5 (resp. 3.5), according to the scaling law (11). Fig. Sb is more open to
interpretation, but perhaps indicates D z ~ 4.5. The forecasting results of Fig. 2 can
now be re-interpreted. I conjecture that the reason for the unimpressive nonlinear
forecasts in Figs. 2d and 2f is not that the dimension of the underlying attractor is
high, but that the dynamics induced on the reconstructed attractor is complicated
due to the low sampling rate. Of course, I might have misinterpreted the results of the
dimension calculations. As suggested in Section 4.1, information in the underlying
ODEs believed to accurately model the coupled diode system might be useful in
supporting or refuting the above conjecture.

Figs. 9a and 9b show Vm (r) curves for the fluid turbulence time series of Fig. 3.
The delay times T were the same as those used for Figs. 3a and 3c. Also, no distances
were computed between delay vectors ;[i and ;[j with Ii - j I < T in evaluating the
correlation integral (10), to avoid spurious low-dimensional effects (for example see
Theiler(19S6)). Fig. 9a indicates low-dimensional behaviour with D z ~ 3.0. Fig. 9b
indicates high-dimensional behaviour. The forecasting results of Figs. 3b and 3d
provide useful extra information to support.the results of these dimension calculations.
In the case of the highly turbulent time series, a small amount of extra structure was
picked up by the forecasting algorithm which was not apparent in the dimension
calculation. Figs. 9c and 9d show Vm (r) curves for the flame dynamics time series of
Figs. 4a and 4c, with the same conventions that were used for the fluid turbulence
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time series. The dimension calculations have not converged to a low dimension, but
when compared to Fig. 9b do not appear to be consistent with high-dimensional
behaviour either. This conclusion is supported by the forecasting results of Figs. 4b
and 4d.

Dimension calculations have been applied to short time series with some con
troversy (for example see Grassberger(1986) and Ruelle(1990)).However, Brock et
al.(1986) have developed a statistical test (the "BDS" test), based on dimension cal
culations which can be used reliably on short time series. The results are used to
reject various null hypotheses about the time series, rather than accept evidence for
chaos. See also Theiler et al.(199l). In this paper I have avoided hypothesis testing
in favour of a more exploratory approach. However, it is essential to perform hypoth
esis tests in the case of short time series to obtain statistically convincing results.
Forecasting algorithms have been applied to economic time series by Hseih(199l) to
decide between various alternative hypotheses when the BDS test rejects a null hy
pothesis. Lee et al.(1989) have compared the power of the BDS test against other
statistical tests for nonlinearity. Some of these results show that the BDS test may
identify nonlinear structures, such as conditional heteroskedasticity in economic time
series, which are of a form which cannot be detected by the forecasting strategy of
Section 3. It would therefore be interesting to apply the BDS test to the case of the
long, high-dimensional time series of Figs. 3c, 4e, 6a and 6c, to test the adequacy of
linear stochastic models for these systems.

6.2 Lyapunov exponents and multi-step forecasting

Algorithms for estimating Lyapunov exponents in deterministic systems have been
developed by Sano and Sawada(1985), Wolf et al.(1985) and Eckmann et al.(1986).
The algorithms estimate the rate of divergence of trajectories in deterministic ap
proximations to the map f in (4). Algorithms for estimating Lyapunov exponents
in nonlinear stochastic systems have been developed by McCaffrey et al.(199l). A
related approach is to investigate the behaviour of the average forecasting errors
Em(T) as the forecasting time T increases (Farmer and Sidorowich(1987)). Fig. 10
shows Em (T) curves for :fluid turbulence and :flame dynamics time series. The map
fT in (4) was approximated directly, rather than iteratively. Optimal values of m
and k were taken according to the results of Figs. 3 and 4, and found to be robust as
T is varied. Also shown in Fig. 10 are results obtained with linear models.

Fig. lOa shows a slow rate of decay of predictive accuracy for the nonlinear deter
ministic model, and provides strong evidence for a weakly chaotic system (compare
Farmer and Sidorowich(1987)). The results in Fig. lOb might be confused with evi
dence for low-dimensional chaos, since short-term forecasts decay rapidly. However,

,close'tooptimal"results,are, obtainedwith.adinearmodelrandare,consistent with
high-dimensional stochastic behaviour. The results in Fig. 10c might be confused
with evidence for a weakly chaotic system. However, since forecasts can be made
accurately for long times T using both linear and nonlinear models, these results
are strong evidence for a non-chaotic deterministic system, perturbed by noise. The
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results in Fig. 10d are more difficult to interpret. The rapid decay in the accuracy
of forecasts indicates either a low-dimensional chaotic system or a high-dimensional
stochastic system. The main new insight provided by Fig. 10 is the distinction drawn
between the multi-step forecast ability of the flame dynamics time series of Fig. 4a
and 4c.

Sugihara and May(1990) have investigated decays of nonlinear forecasts with time
on short time series, and have been able to convincingly distinguish chaotic behaviour
from limit cycles with additive noise. They concluded that the New York measles time
series is chaotic. However, the conclusion should have been that the measles time
series is not adequately described by a limit cycle with additive noise. As argued
by Ellner(1991), a more plausible alternative to chaos in the measles time series is
that it is described by a limit cycle with multiplicative noise. Hopefully, the remarks
of this subsection emphasise the difficulties in inferring low-dimensional chaos from
estimates of the rate of divergence of trajectories alone.

6.3 Other forecasting algorithms

Piecewise linear approximation is one of several multivariate function approximation
techniques which can be used for approximating the function f in (4). Other, more
computationally intensive, techniques have been shown to give more accurate fore
casts on numerical time series and some observational time series. Examples include
neural nets (Lapedes and Farber(1988), Weigend et al.(1990,1991)), radial basis func
tions (Casdagli(1989)) and locally weighted regression (Stokbro and Umberger(1991),
Mead et al.(1991)). "Smoothing" parameters can be varied in all of these techniques,
and the results of this paper suggest that a systematic variation of such parameters
from deterministic to stochastic extremes could usefully be applied to time series
analysis. With the current availability of computer resources, I believe such func
tion approximation techniques provide promising alternatives to the more traditional
nonparametric regression techniques of statistics based on kernel density estimation
(Silverman(1986)).

In this paper the underlying state space for nonlinear modeling was reconstructed
using delay vectors (3). Broomhead and King(1986) proposed a reconstruction tech
nique based on PCA (Principal Components Analysis), which attempts to improve on
delay coordinate reconstructions. Fraser(1989) has shown that this technique does not
always work well. Theoretical investigations into general reconstruction techniques
have been made by Casdagli et al.(1991a) and a local version of PCA proposed. The
Broomhead and King technique has been applied by Townshend(1990) to the model
ing of speech time series, and a local version of PCA has been applied by Hunter(1991)
to the modeling of time series from mechanical vibrations and ice ages. The results

....• .' '"":presented ·in this·'paper.'could, be usedas;'a,.benchIIlarkto;assess,.the.practical advan
tages of these more general reconstruction techniques for forecasting, compared to
delay coordinate reconstructions.

Forecasting algorithms have been applied to the problem of noise reduction by
several authors; for a review see Grassberger et al.(1991). The forecasting algorithm
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of Section 3 can be used for noise reduction by "two-sided forecasting", with T =
-(m-l)7/2 (and m odd), and investigating the Em(k) curves. Finally, Packard(1990)

.has developed a.genetic algorithm for searching for special regions of forecast ability
in state space reconstructions, which is of potential use in high-dimensional systems.
In the case of some economic time series, it has been found that if attention is focused
on special segments of the time series, then there can be a small, but statistically sig
nificant, amount of nonlinear forecastability (LeBaron(1991), Weigend et al.(1991)).
The global average (6) used in this paper is unlikely to be sensitive to such effects,
but might perhaps be modified.

7 Conclusions

The main results of this paper are as follows. Low-dimensional chaos was identified by
obtaining accurate short-term forecasts for time series from two coupled diodes and a
fluid near the transition to turbulence. Nonlinearity, but not low-dimensional chaos,
was identified in time series from four and six coupled diodes, and time series from
flame dynamics near the transition to turbulence. Nonlinearity was also identified
in time series from speech, measles and sunspots, confirming the results of others.
Linear forecasts were found to be close to optimal for time series from fluids and
flames far from the transition to turbulence, and for EEG time series. Several of
these conclusions could have been guessed at by inspection of the phase portraits, and
the use of graphical techniques should not be underestimated. The above results are
mostly consistent with prior expectations from dynamical systems theory. Although
the phenomenon of chaos may be ubiquitous, low-dimensional chaos is only expected
to be relevant to few degree of freedom systems (for example the coupled diodes
system in this paper), or many degree of freedom systems (for example the fluid and
flame systems in this paper) near the transition to chaos.

The results from the forecasting algorithm used in this paper were found to be
a useful supplement to, and often less ambiguous than, results produced by dimen
sion calculations. Unless carefully interpreted, dimension calculations often indicate
low-dimensional behaviour when it is not there. By contrast, the results from the
forecasting algorithm presented in this paper only rarely indicate low-dimensional
behaviour. However, in certain cases, dimension calculations can pick up interesting
structure unavailable to forecasting algorithms. For example, in the case of the four
coupled diodes time series, strong evidence for low-dimensional chaos was suggested
by dimension calculations even though the short- term forecasts for this time series
were not particularly accurate. Nonlinear dynamical systems are capable of such a
wide variety of behaviour that the use of a single technique of time series analysis
should not be relied upon too heavily.

A number of questions were raised in the course of these investigations as follows.
First, the conclusions reached on the four and six coupled diodes time series would
be clarified by attempting to obtain short-term forecasts using the underlying de
terministic equations believed to accurately model the system. In other cases where
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high levels of nonlinearity have been identified by "statistical" forecasting techniques,
this approach might aid in the development or improvement of more traditional "first
principles" models. Second, the results obtained for the flame dynamics time series
near the transition to turbulence remain ambiguous. It would be desirable to analyse
spatio-temporal time series data in order to obtain clearer conclusions about the un
derlying dynamics. Third, it would be interesting to use the BDS test in the case of
the time series from fluids and flames far from the transition to turbulence, and for
the EEG time series, to test for the adequacy of linear models. It might be expected
that the collective phenomena observed by physicists in idealised models of many
degree of freedom systems should also occur in these time series, and it would be
desirable to develop tests which can detect such phenomena in a time series. Finally,
if the objective is to obtain optimal forecasting accuracy, a wide range of nonlinear
forecasting strategies remain to be explored.
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Figure Captions

Figure b Forecasting errors for numerical data . . (a) )VIack"y~Glassequation. Em(k)
for m = 4,5,6,7. In this and subsequent figures, the embedding dimension m of the
Em(k) curves can be identified according to how far to the left of the figure the
Em(k) curve starts. The most accurate forecasts are obtained with m = 6 or 7. (b)
Ikeda map. Em(k) for m = 5 at noise levels 0%, 2%, 20% and 100%. Higher curves
correspond to higher noise levels. The dashed lines illustrate the scaling law (9),
and the horizontal line "I" corresponds to a fundamental limit to predictability due
to noise amplification of the 2% noise level; see Section 3.3.

Figure 2: Forecasting errors for n coupled diodes data. (a),(c),(e) Phase portraits
for the cases n = 2,4,6 with T = 1. In this and subsequent figures, not all of the
data is shown for long time series. (b),(d),(f) Em(k) for m = 3,4,5,6,7 and
T = T = 1. The dotted curves in (b) correspond to a geometric mean error. In (b)
(resp. (d), (f)) the most accurate forecasts are obtained with m = 5 (resp. 7,6).

Figure 3: Forecasting errors for fluid tllrbulence data. (a) (resp. (c)) Phase portrait
for weak (resp. strong) turbulence, with T = 20 (resp. T = 30). (b) (resp. (d))
Em(k) for m = 4,8,12,16,20, T = 20 (resp. T = 10) and T = 5 (resp. T = 2). The
most accurate forecasts are obtained with m = 20 (resp. 8).

Figure 4: Forecasting errors for flame dynamics data. (a) (resp. (c), (e)) Phase
portraits for what is believed to be a non-chaotic (resp. low-dimensional chaotic,
high-dimensional chaotic) system, with T = 40 (resp. T = 10,100). (b) (resp.
(d),(f)) Em(k) for m =4,8,12,16,20, T = 40 (resp. T = 10,50) and T = 10 (resp.
T = 2,10). The most accurate forecasts are obtained with m = 20 (resp. 20,8).

Figure 5: Forecasting errors for speech data. (a) (resp. (c)) Phase portrait of
original (resp. filtered) time series with T = 2 (resp. T = 1). (b),(d) Em(k) for
m = 4,8,12,16,20 and T = T = 1. The most accurate forecasts are obtained with
m= 16.

Figure 6: Forecasting errors for EEG data. (a),(c) Phase portraits with T = 10.
(b),(d) Em(k) for m = 4,8,12,16,20, T = 10 and T = 2.

Figure 7: Forecasting errors f01' measles and sunspot data. (a) (resp. (c), (e))
Phase portrait of measles (resp. first differenced measles, sunspots) time series with
T = 2 months (resp. T = 1 month, T = 2 years). (b) Em(k) for measles with
m = 2,3,4,5,6 and T = T = 1. (d) Correlation coefficient Pm(k) for first differenced
measles with m = 2,3,4,5,6 and T = T = 1. The dashed line denotes results from a
step function approximation technique with m = 6. The "X" denotes a result from
Sugihara and May's simplex algorithm, with k = m + 1 = 7 neighbours. (f) Em(k)
for sunspots with m = 3,4,5,6 and T = T = 1.
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Figure 8: Dimension calculations for n coupled diodes data for m = 2,3, .. ,8 and
T = 1 (a) Cm(r) curves for n = 6. Higher curves correspond to lower m. (b),(c),(d)
vm(r) curves for n = 6,2,4. Higher curves correspond to higher m until a saturation
is reached.

Figure 9:· Dimension calculations for fluid turbulence and flame dynamics data for.
m = 2,3, .. , 10. Higher curves correspond to higher m until a saturation is reached.
(a) (resp. (b)) Ilm(r) curves for the case of weak (resp. strong) fluid turbulence with
T = 20 (resp. T = 30). (c) (resp. (d)) vm(r) curves for what is believed to be a
non-chaotic (resp. low-dimensional chaotic) flame dynamics time series, with T = 40
(resp. T = 10).

Figure 10: Multi-step forecasting errors for fluid turbulence and flame dynamics
data. Dashed curves are for linear models, solid curves for nonlinear models. Also
shown are segments of time series data on the same time scale. (a) (resp. (b))
Em(T) curves for the case of weak (resp. strong) fluid turbulence with
m, T, k = 20,5,42 (resp. m, T, k = 8,2,20000). (c) (resp. (d)) Em(T) curves for what
is believed to be a non-chaotic (resp. low-dimensional chaotic) flame dynamics time
series, with m, T, k = 20,10,300 (resp. m, T, k = 20,2,200).
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