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Abstract

In this paper we address the problem of program discovery as de�ned by
Genetic Programming ����� We have two major results� First	 by combining
a hierarchical crossover operator with two traditional single point search algo

rithms� Simulated Annealing and Stochastic Iterated Hill Climbing	 we have
solved some problems with fewer �tness evaluations and a greater probability
of a success than Genetic Programming� Second	 we have managed to enhance
Genetic Programming by hybridizing it with the simple scheme of hill climbing
from a few individuals	 at a �xed interval of generations� The new hill climb

ing component has two options for generating candidate solutions� mutation or
crossover� When it uses crossover	 mates are either randomly created	 randomly
drawn from the population at large	 or drawn from a pool of �ttest individuals�

� Introduction

An important question to the Genetic Programming �GP� ���	 community is whether
the evolution
based approach to program discovery� as espoused by GP� is generally
superior to other adaptive search techniques� Or� because no single approach works
best in all situations� it is important to learn the salient characteristics of program
discovery �tness landscapes that make them amenable to a particular adaptive search
algorithm� Another obvious goal is to capitalize upon the strategies of other adap

tive search methods by incorporating them into an enhanced version of GP that
outperforms the canonical GP�
We recently ���	 designed a mutation operator� HVL
Mutate� that can be used

with a variable length hierarchical representation� HVL
Mutate changes a 
tree�
via shrinking� growth or internal substitution while preserving syntactic correctness�
We reported that mutation
based adaptive search with Hill Climbing or Simulated
Annealing ��	� using HVL
Mutate� can accomplish program discovery tasks� Further

more� sometimes one of these single point based algorithms required fewer �tness
evaluations to �nd a correct solution or found a solution more reliably �i�e� averaged
over an ensemble of runs��

While that work sought to bring the program discovery problem into the realm
of traditional search� this paper seeks to exploit and explore the nature of the
genetic
based crossover operator� Starting from the idea of Crossover Hill Climb

ing� 
XOHC�� which Terry Jones ��� �� �	 employed upon the �xed length binary
string representation of GAs� it was simple and straightforward to implement a similar
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XOHC algorithm for hierarchical variable length representation by exchanging GA
crossover for GP crossover� We describe this algorithm in Section ��� of this paper�
On the 
Block Stacking� and 
Boolean Multiplexer� problems XOHC outperformed
all other search algorithms we have tried to date�
We next combined Crossover with Simulated Annealing� 
XOSA�� Based upon

the successes of HVL
Mutate Simulated Annealing and Crossover Hill Climbing we
conjectured favorable results� Rather puzzlingly� this algorithm did not perform as
well as expected� It is described in Section ��� and its performance on each problem
is provided in Section ��

Finally� the results of Crossover Hill Climbing were su�ciently encouraging to
suggest adding a hill climbing component to GP� Currently GP is a population

based technique that provides a means of quickly focusing search on a �t area of
the search space� This is the recognized e�ect of the algorithm as� over time� the
population becomes more homogeneous due to selection based upon �tness and the
combinative e�ect of crossover� Mutation is usually set to a background rate and
plays only a minor role in terms of exploitative search �it ensures no premature
allele loss�� However� once a standard GA or GP algorithm has found �t areas
of the search space� it searches over only a small fraction of the neighbourhood
around each search point� It must derive its power from integrating multiple single
neighbourhood explorations in parallel over successive generations of a population�
This 
many points� few neighbours� strategy is in direct contrast to a hill climber or
simulated annealer which potentially focuses e�ort on a greater fraction of the search
neighbourhood of one point but only around one point at a time� This strategy
might be called 
few points� many neighbours�� The two strategies could clearly be
complementary ��� �� �� �	 with the GA component serving to 
zero in� on regions
of high �tness and the hill climbing component serving to thoroughly explore the
regions the GA has found�

Therefore� our conjecture was that GP plus a Crossover Hill Climbing component
might be pro�table on our suite of problems� In Section ��� we describe the details
of the 
GP�XOHC� algorithm� The conjecture was borne out by experimentation�
In particular� on the ��
bit Boolean Multiplexer problem� we were encouraged by an
improved probability of success and a decreased requirement on �tness evaluations�
We also implemented GP plus mutation
based hill climbing� 
GP�MU�HC�� which
is also described in Section ���� This permits the comparison of the hybrid with
a mutation based hill climber �using HVL
Mutate� to a crossover
based one� The
obvious qualitative di�erence is that mutation introduces totally unselected genetic
material while the crossover operator �if it draws a mate from the population at
large or from the pool of �ttest individuals� replaces swapped out genetic material
with material that has undergone selection by surviving through GP�s simulated
process of evolution� This is a crucial distinction that re�ects upon the e�cacy of the
hybrid or standard GP� If� on a given problem� random material proves as useful as
duly evolved and selected material� single
point search algorithms such as Simulated
Annealing and Hill Climbing may be a superior alternative to GP�
Section � summarizes the various search methods used� Section � describes the
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testsuite and experimental procedure� Section � of the paper covers the experimental
results and discussion� Section � is the conclusion and plans for future work�

� New Crossover�Based Search Algorithms

It is worthwhile to consider the dynamics of GP Crossover with respect to its range
of search over the search space �i�e� its neighbourhood�� given two mates� The neigh�
bourhood of two mates involved in crossover is the set of all o�spring that can possibly
be derived from crossing over the two mates and that are di�erent from them� The
term neighbour is synonymous with o�spring�

In GP Crossover� the maximum size of the neighbourhood is the product of
crossover points in the recipient and the donor�� The actual size depends upon the
sizes of the speci�c parents involved in the crossover and upon the redundancy of
o�spring �i�e� duplicate o�spring are not counted in the size of a neighbourhood��

There is signi�cant di�erence between the size of the crossover neighbourhoods
in GP Crossover and in standard GA crossover� In GAs that use a �xed length
representation� the maximum size of the GA Crossover neighbourhood is �l where l
is the length of the representation� The actual size of the neighbourhood is �l less
the number of duplicates� The �xed position representation of GAs implies that�
if each mate has the same value at a given position� all o�spring will only have
that value at that position� Let us term this incident 
allele redundancy�� In a
binary representation� the probability of allele redundancy at a bit position in two
independent strings is ��� and this considerably constrains the neighbourhood size�
With an alphabet of higher cardinality the probability of allele redundancy is less
but nonetheless when the two mates are equal� the number of duplicates equals �l
and the neighbourhood size equals zero�
In GP crossover� there are two reasons to expect less redundancy among the

neighbours of two mates� First� GP has a non
binary alphabet which reduces the
probability of the recipient and donor containing an identical subtree� Second� be

cause there is no �xed positioning in the representation� any primitive�s� in the donor
can be placed anywhere in the recipient and thus provide another o�spring� For ex

ample� consider two duplicate � node S
Expressions with a distinct root and child�
This is akin to the case of a binary alphabet and identical mates� In GP there are �
possible crossovers and while two of these produce duplicates� the remaining � pro

duce original trees� As another example� consider two duplicate � node S
Expressions
where the root has � children and each node is a distinct primitive� There are nine
o�spring in the crossover of the two mates but only three of the nine produce a
duplicate�

In summary� with GP Crossover� a crossover neighbourhood is likely to be larger
than that resulting from GA crossover because its maximum size is the product of
both mates� sizes rather than �l and because GP Crossover is likely to generate fewer

�In GP crossover the number of crossover points equals the number of primitives in the S�
Expression �or nodes in the tree� so the maximum size is equals the product of mates� sizes�
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duplicates than GA crossover�

��� XOHC Algorithm

Crossover hill climbing was �rst described by Terry Jones ��� �	� Recall that hill
climbing is a search algorithm that commences from a single solution point�� At each
step a candidate solution is generated using a 
move operator� of some sort� The
algorithm simply moves the search from the current solution to a candidate solution
if the candidate has better or equal� �tness� A parameter controls how many moves
will be tried from the current point before a random one replaces it�
The basic idea of crossover hill climbing is to use hill climbing as the move accep


tance criterion of the search and use crossover as the 
move
operator�� In this case�
the candidate solution is� therefore� generated from one 
current� solution and a ran

dom mate� Our version of GP crossover retains the essential spirit of GP crossover
in ���	 but is a simple two
parent to one
child function rather than a two
parent to
two
children version� One parent is the 
donor� and the other the 
recipient�� A
randomly chosen subtree is copied from the donor and replaces a subtree randomly
removed from the recipient�

The algorithm always maintains the �ttest
overall
solution �i�e� the �ttest point
of all points examined� and a current
solution� At the outset� a mate for the current

solution is randomly generated� For some number of attempts� 
mate�xo�tries�limit��
o�spring are generated via crossover from the pair of current solution and mate� If an
attempt yields an o�spring that is accepted� the o�spring replaces the current solution
and the process repeats with the number of crossover attempts reset to zero� If the
number of crossover attempts reaches mate�xo�tries�limit without an o�spring being
accepted� a new mate is chosen for the current
solution� The number of times the
current
solution is used� 
xo�tries�limit�� is also a parameter of the algorithm� After
xo�tries�limit crossovers� the current
solution is discarded and a new one randomly
generated� After a �xed number of �tness evaluations or when a perfect� solution is
found the algorithm terminates and returns the �tness of the �ttest
overall
solution�
We experimented with values for both parameters of this algorithm� Since a

mate is randomly generated� the algorithm was not very sensitive to the value of
mate�xo�tries�limit� However� xo�tries�limit is integral to the algorithm because it
sets a limit for crossover attempts after which the search moves randomly elsewhere�
If its value is set too low� the search may not �nd a �tter candidate even though one
exists in the neighbourhood� If it is set too high� the search may be trapped in a local
optimum� We used values equal to the most successful 
max�mutation� � values in
previously conducted HVL
Mutate Hill Climbing experiments ���	 and found them
satisfactory�

�We use the terms �solution� and �point�synonymously�
�Acceptance of equal 	tness candidate solutions is optional in hill climbing� We have chosen to

use it�
�Perfect means that a program scores the maximum 	tness and successfully solves each test case�
�This parameter controls how many mutations of the current solution are tried before it is replaced

by a random solution
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��� XOSA Algorithm

The standard version of Simulated Annealing� 
SA�� ��	 is based upon search which
traverses from one solution point to another� A mutation of the current point is
accepted and made the current point depending upon two criteria� the di�erence in
�tness between it and the current point� and� upon the current temperature� T � of
the SA system� A mutant is accepted outright if it is equal or superior in �tness to
the current point� Otherwise� it is accepted with a probability that decreases with
the temperature of the system and depending upon the �tness di�erence according
to a Boltzmann distribution� The temperature in a SA system is cooled in discrete
steps and if at each temperature the system reaches a simulated thermal equilibrium�
convergence to a global optimum is guaranteed� In practice� such a cooling schedule
is extremely slow but much faster approximations achieve good performance�

The SA component of our XOSA algorithm is basic� It uses normalized �tnesses�
The cooling schedule is determined by the a priori �xed initial ����� and �nal tem

peratures and upon the maximum number of evaluations�� The starting temperature
is always decreased to the �nal temperature over the given number of evaluations
according to an exponential cooling schedule�

The XOSA algorithm uses GP Crossover to generate candidate points from two

current� solutions and SA to decide whether a candidate should be accepted� It
has one non
standard parameter� xo�tries�limit� Every xo�tries�limit crossovers� the
weakest current solution is replaced with a random program� This ensures su�cient
novelty� The SA component can be viewed as a predicate� SA
ACCEPT� of � param

eters� The formal parameters are� �tness�of�current�state� �tness�of�candidate�state�
and temperature�� The predicate uses the current temperature� a calculated �tness
di�erential and a random number generator to indicate whether the candidate state
of the system should be accepted�

We designed three di�erent versions of XOSA� XOSA�Average� XOSA�One� and
XOSA�Each� which di�er in terms of what values are passed as arguments to the SA

ACCEPT predicate and in terms of how the current state is updated if acceptance
is indicated�

In XOSA�Average� the actual parameter for �tness�of�current�state is the average
�tness of the two current solutions� The actual parameter for �tness�of�candidate�
state is the average �tness of two candidate solutions derived from twice crossing over
the current solutions� If acceptance is indicated� both the candidate solutions replace
the current solutions� Since XOSA
Average uses the SA component for each pair of
�tness evaluations� the SA component is adjusted to use half as many steps in the
cooling schedule�
In XOSA�One� only one child is generated� via crossover� from the current solu


tions� The �tness of the weaker parent is the value for �tness�of�current�state and

�If more evaluations were allowed the cooling would be slower but would reach the same
temperature�

�Behind the scenes another component of the SA algorithm changes the system temperature when
appropriate�
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the �tness of the child is the value for �tness�of�candidate�state� The weakest parent
is replaced by the child� if acceptance is indicated�

XOSA�Each attempts to address a �
parent to �
children function and the option
of only accepting one child� If the weakest current solution can be replaced by the
�ttest child� this is done and then an attempt is made to exchange the �tter current
solution for the weakest child� Otherwise� an attempt is made to exchange the weakest
parent for the weakest child�

The only parameter of the crossover component of the algorithm is 
xo�tries�
limit�� Once this many crossover attempts have been made with the same pair of
parents� the weaker parent is replaced by a random program� Like xo�tries�limit in
XOHC �Section ���� this parameter is a sort of patience threshold� We used the
same values for it in XOSA as in XOHC�

��� GP�XOHC and GP�MU�HC Algorithm

The algorithms designed for hybridized GP and hill climbing� GP � XOHC and
GP � MU�HC are simple� Encouragingly� they still perform e�ectively despite not
being adaptive� Every g generations� the f �ttest individuals in the population are
used as the starting points of a hill climbing search� Each hill climb lasts for e
evaluations� The best individual from each hill climb is placed in the next generation
and then the remaining individuals of the population for that generation are generated
standardly �i�e� with crossover or direct reproduction�� For the duration of a run
the move operator of the hill climb is either entirely GP Crossover or entirely HVL

Mutate� The parameters g� f � and e are supplied a priori to the run� We ran three
parameter settings� We always used f � �� When the climb was ��� evaluations� the
interval g was either � or � generations� When the climb was ��� evaluations� the
interval g was � generations�
The interesting design issue is how to obtain mates for the crossover hill climb�

Should one exploit the knowledge embodied by the current population by using its
membership as a source of mates� We experimented with � options� Random� Best�
and Population� With the Random option� mates are not drawn from the population
at all� but are randomly created� With the Best and Population options� mates are
drawn from the group of individuals with the highest �tness or randomly drawn from
the population at large� respectively�

The algorithm must adjust the maximum number of generations to take into
account the additional evaluations used by the hill climbing� A maximum which gives
a close approximation to the a priori given maximum number of �tness evaluations
and population size is calculated� In the case of ����� evaluations and a population
of ��� �which is used in every GP�HC run�� for a run with f � �� g � � and e � ���
the maximum generations is �� and the maximum evaluations is ������ For f � ��
g � �� e � ���� the maximum generations is �� and the maximum evaluations is
������ Finally� for f � �� g � �� e � ���� the maximum generations is �� and the
maximum evaluations is ������

We decided to check for the presence of a perfect individual only at the end of a
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generation� With this decision it does not matter whether hill climbing is done before
or after the normal GP crossover of a generation� One consequence is that the actual
number of �tness evaluations reported for successful runs is slightly over
estimated
but no more than if a standard GP run were executed and the same check done at
the end of each generation�

� Test Suite and Methodology

We experiment with � problems� the �
bit Boolean Multiplexer ��
Mult�� the ��
bit
Boolean Multiplexer� ���
Mult�� Block Stacking and sorting �Sort
A and Sort
B�� The
Multiplexer task is to decode address bits and return the data value at the address�
�
Mult uses the primitives IF� OR� NOT� AND which take �� �� �� and � arguments
respectively� There are � variables �i�e� primitives which take no arguments�� A��
A�� D��� � � �D� which are bound before execution to the address bits and data values
of a test case� All �� possible con�gurations of the problem are enumerated as test
cases� A program�s raw �tness is the number of con�gurations for which it returns
the correct data value for the given address� ��
Mult is simply a larger scale version
of �
Mult using � address bits �A�
 A�� and � data values �D�
D��� The test suite
consists of ���� test cases�

Block Stacking is well explained in ���	� Succinctly� the task is to stack labeled
blocks upon a table in correct order according to a given goal list starting from any
arbitrary con�guration of the stack and remaining blocks on the table� Block Stack

ing uses � 
sensors� which are primitives encoded to return state information� All
sensor primitives have zero arguments� It also uses � primitives which are operators
for manipulating blocks� They take either � or � arguments� A structured sample
containing ��� of the possible test cases was used as a test suite� The raw �tness of
a program is the number of test cases for which the stack is correct�

The task of a sorting program is to arrange the elements of an array in ascending
order� A description of the primitives used is in ���	� A program is run �� times� each
time with a di�erent array bound to the primitive �array�� The arrays in the test
suite range in size and sorted order� In Sort
A the raw �tness of a program is the sum
of the number of elements found in the correct position after running the program� In
Sort
B the raw �tness is the summed permutation order ��	 of each array after each
execution� The intention of experimenting with two di�erent �tness functions and
the same repertoire of primitives is to isolate the impact of speci�c �tness functions
on a �tness landscape�

In order to compare results among GP� GP�HC� XOHC and XOSA� each run
was permitted the same maximum number of evaluations� Our benchmark GP runs
were run with a population of ��� for �� generations which �given �tness evaluations
for the initial generation� sums to a maximum of ����� �tness evaluations per run�
This approximate number of evaluations was used for GP�HC runs �see Section
��� for details� and XOSA and XOHC were given a precise maximum of �����
evaluations� At least �� runs of each problem were executed� A run is deemed
successful if an individual scores the maximum �tness� The �tness values in the GP
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and GP�HC runs for all �ve problems were scaled by linear and exponential factors
of �� In standard GP reproduction �i�e�� not during hill climbing� the crossover
operator was applied ��� of the time with the remaining ��� of individuals chosen
by selection being directly copied into the next generation� We used a T
test with
��� con�dence to determine if runs were signi�cantly di�erent�
Regarding tabular data� the column 
Evals Used� expresses how many evaluation

were used as a percentage of the actual maximum evaluations allowed each run� The
column 
Fittest Individual� is an average of the best �tness of each run taken as
a percentage of the perfect �tness� Standard deviation �gures are in parentheses�
Where relevant� previous results of HVL
Mutate Hill Climbing� 
MU�HC�� HVL

Mutate Simulated Annealing� 
MU�SA�� and GP experiments with other crossover
operators are included� The standard GP Crossover is abbreviated at 
GP
XO��

Ht
Fair
XO� groups subtrees by height� selects one group and one subtree from
that group at random for exchange� 
Fair
XO� selects among subtrees with equal
probability�

� Experimental Results

Table �� �
Bit Boolean Multiplexer
Prob of Fittest Evals Evals Used

� Bit Boolean Multiplexer Success Individual Used in Succ Run
�	
 �	
 �	
 �	


GP with Ht�Fair�XO ��
� ���
�
 ��
� ��
�
 ��
� ��
�
GP with GP�XO ��
� ���
�
 ��
� ��
�
 ��
� ��
�

XOHC� xo�tries�limit � ��� ���
� ���
� ��
�� ��
�� ���
�

XOHC� xo�tries�limit � ���� ��
� ���
�
 ��
� ��
� ��
�

XOSA� Each ��
� ���
�
 ��
� ��
� ��
�
XOSA�One ��
� ���
�
 ��
� ��
� ��
�
XOSA� Ave �
� ���
�
 ��
� ��
� ��
�

MU � HC� xo�tries�limit � ��� ��
� ���
�
 ��
� ��
� ��
�
MU � HC� xo�tries�limit � ��K ��
� ���
�
 ��
� ��
� ��
�

MU � SA ���
� ���
� ��
� ��
� ��
�


GP �MU � HC� f � �
e � ���� g � � ��
� ���
�
 ��
� ��
� ��
� ���
�

e � ���� g � � ��
� ���
�
 ��
� ��
� ��
� ��
�

e � ���� g � � ��
� ���
�
 ��
� ��
� ��
� ���
�


GP � XOHC f � �� e � ���� g � �
Best ��
� ���
�
 ��
� ��
�
 ��
� ��
� ���
�

Random ��
� ���
�
 ��
� ��
�
 ��
� ���
�
 ��
� ���
�

Pop ��
� ���
�
 ��
� ��
�
 ��
� ���
�
 ��
� ���
�


GP � XOHC f � �� e � ���� g � �
Best ��
� ���
�
 ��
� ��
�
 ��
� ��
� ���
�

Random ��
� ��
�
 ��
� ��
�
 ��
� ��
� ���
�

Pop ���
� ���
� ��
� ��
� ���
�


� Bit Boolean Multiplexer� Table � summarizes the results for �
Mult� This
is clearly a relatively easy problem� Three of the algorithms stood out signi�

cantly by solving the problem ���� of the time� These were XOHC� MU�SA and
GP�XOHC�population� Among these �� the ranking in terms of evaluations used to
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�nd the perfect solution was� ��XOHC� ��GP  XOHC� ��MU � SA�
The improvement in the probability of success due to the hill climbing component

being added to GP was statistically signi�cant ��� 
 ����� In the GP experiments�
the runs with higher probability of success unfortunately required more evaluations
than the runs with lower probability of success� The �tness evaluations of GP�XOHC
were signi�cantly �� 
 ��� lower than GP� Thus� GP�HC was not only more reliable
but also less computationally expensive�

Table �� ��
Bit Boolean Multiplexer
Prob of Best of Fittest Evals Evals Used



 Bit Boolean Multiplexer Success All Runs Ind Used in Succ
�	
 �	
 �	
 �	
 Run ���

GP with Ht�Fair�XO � ��
� ��
� ���
GP with GP�XO � ��
� ��
� ���

XOHC� xo�tries�limit���� ��
� ���
� ��
� ��
� ��
�
XOHC� xo�tries�limit����� ��
� ���
� ��
� ��
� ��
�

XOSA� Each � ��
� ��
� ���
�
XOSA�One � ��
� ��
� ���
�
XOSA� Ave � ��
� ��
� ���
�

MU � HC

xo�tries�limit � ��� � ��
� ��
� ���
�
xo�tries�limit � ���� � ��
� ��
� ���
�

MU � SA ��
� ���
� ��
� ��
� ��
�

GP �MU �XO� f � 

e � ���� g � � � ��
� ��
� ���
�
e � ���� g � � �
� ���
� ��
� ��
� ��
�

GP �XOHC� f � 
� e � 
��� g � �
Best � ��
� ��
� ���
�
Random �
� ���
� ��
� ��
� ��
�
Population � ��
� ��
� ���
�

�� Bit Boolean Multiplexer� Once Hill Climbing was combined with GP� it
was �nally possible to �nd a perfect solution to the ��
Mult in ����� �tness eval

uations� This had not ever been done with GP alone� While� the GP hybrids did
yield an improvement over GP� they did not better XOHC and MU�SA which were
�signi�cantly� the best� Of the new crossover algorithms� XOHC was equal in terms
of probability of success to MU�SA� XOSA performed the worst of all algorithms�

Sorting� The Sorting search landscapes appear to di�er in some salient char

acteristic�s� from the group of �
Mult� ��
Mult and Block Stacking� We conjecture
this because the hybrid GP�XOHC algorithm was not an improvement for Sort
A or
Sort
B and both problems were the only ones upon which XOSA performed encour

agingly� One GP�MU�HC hybrid �e � ���� g � �� solved both Sort
A and Sort
B
���� of the time� This was a signi�cant improvement over GP alone and the best
algorithm for the sorting problems�

Block Stacking� Phrased in its present manner� Block Stacking is a very easy
problem for every algorithm we tried� except GP! Among the algorithms that solved
all runs� based upon the number of �tness evaluations used� the ranking �with statis

tical signi�cance� was �� XOHC� �� GP�XOHC� �� GP�MU�HC� and ��MU�SA�
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All GP hybrids reached ���� success rates� On GP�MU�HC �e � ���� g � �� �����
of the runs solved the problem via hill climbing� In fact� on quite a few runs� more
than one hill climb �av� ��� � found the perfect solution� For e � ���� g � � there
were� on average ��� successful hill climbs over the ����� of the runs that converged
via hill climbing� The GP�XOHC runs had similar statistics�

Table �� Sort
A and Sort
B
Sort�A Sort�B

Prob of Evals Evals Used Prob of Evals Evals Used
Sort�A and Sort�B Success Used in Succ Run Success Used in Succ Run

�	
 �	
 �	
 �	
 �	
 �	


GP with Fair�XO ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�
 ��
� ���
�
 ��
� ���
�

GP with GP�XO ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�
 ��
� ���
�
 ��
� ���
�


XOHC� xo�tries�limit� �� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�


XOSA� Each ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
�� ���
�

XOSA�One ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA� Ave ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�


MU � SA ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�


GP �MU � HC� f � �
e � ���� g � � ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�

e � ���� g � � ���
� ��
� ��
� ���
�
 ���
� ��
� ��
� ���
�


GP � XOHC� Pop� f � �
e � ���� g � � ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�

e � ���� g � � ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�



Table �� Block Stacking
Prob of Fittest Evals Evals Used

Block Stacking Success Individual Used in Succ Run
�	
 �	
 �	
 �	


GP with GP�XO ��
� ���
�
 ��
� ��
� ��
� ���
�


XOHC� xo�tries�limit���� ���
� ���
� �
� �
� ��
�


XOSA� Each ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA�One ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA� Ave ��
� ���
�
 ��
� ��
� ��
� ���
��


MU �HC� max�mu���� ��
� ���
�
 ��
� ��
� ��
� ���
�


MU � SA ���
� ���
� ��
� ���
�
 ��
�

GP �MU �HC� f � �
e � ����g � � ���
� ���
� �
� �
� ��
�

e � ����g � � ���
� ���
� ��
� ��
� ���
�


GP �XOHC� Pop� f � �
e � ����g � � ���
� ���
� �
� �
� ��
�

e � ����g � � ���
� ���
� ��
� ��
� ���
�


GP �XOHC� Random� f � �
e � ����g � � ���
� ���
� ��
� ��
� ��
�


��� Summary of Algorithms

XOHC is conclusively a search algorithm worth consideration� It outperformed or
equaled the best of the other algorithms on �
Mult� ��
Mult and Block Stacking�

��



However� its poor performance on Sorting is a reminder that no search algorithm can
be expected to always be superior�
Given the strong performance of XOHC� XOSA was predicted to have merit but

its results did not� Perhaps� an adjustment in the temperature schedule or xo�tries�
limit value might be in order� Given the robust performance of GP HC hybrids and
XOHC� it seems an unlikely algorithm to use again� On each problem� except Sort

B� there was signi�cant di�erence among the three versions �Average� Each� One��
While Average was never solely best� Best and Each exchanged rankings on di�erent
problems�

Among the Hill Climbing and SA algorithms� we are still somewhat confused
that� on any given problem� neither both algorithms with the same operator nor
both operators with the same algorithm had correlated performance� Our prelimi

nary conjecture is that since HVL
Mutate has a larger search neighbourhood than
crossover� SA works better than hill climbing because it does not have to explore the
neighbourhood thoroughly �i�e� it accepts bad moves�� Since XO has a smaller search
neighbourhood� hill climbing is better than SA because time is not lost doing many
wasted evaluations� on a landscape with few local optima� In such a landscape� hill
climbing is perfectly exploitative whereas SA is too explorative�
The hybrid of GP plus Hill Climbing was better than GP alone on all problems�

in both forms � GP�XOHC� GP�MU�HC� with at least one parameter setting�
Prior to using this search strategy� GP had not been superior nor sometimes even
on par with SA and Hill Climbing� With hybridization the evolution inspired search
model is� at the least� comparable� We observed no consistent signi�cant ordering
between the mutation hill climbing option or crossover hill climbing option across the
testsuite�

Regarding the relative merits of the Random� Best� and Population options of
GP�XOHC� current data is not decisive� Qualitatively� Best may not be explorative
enough because it is limited to a mate pool that may be very small� Preliminarily�
Best was outperformed on �
Mult but comparable on ��
Mult� Population worked
better than Random on �
Mult but the results were reversed on ��
Mult� On Block
Stacking and both sorting problems Random and Population were equal�

� Conclusion and Future Work

Comparison is a vital part of evolution
based program discovery search research� By
mixing and matching operators and search strategies we have produced new algo

rithms that improve upon existing ones� We have started to di�erentiate among our
small suite of problems based upon the response of di�erent algorithms to them� That
encourages us to seek quantitative measures of correlation between search landscapes
and search algorithms� In particular� we are pursuing characterizing the genotypic
distance distribution in search operator neighbourhoods�

��
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