
Hybridized Crossover-Based
Search Techniques for Program
Discovery
Una-May O’Reilly
Franz Oppacher

SFI WORKING PAPER: 1995-02-007

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works may be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

Hybridized Crossover�Based Search Techniques for

Program Discovery

Una�May O�Reilly Franz Oppacher

Santa Fe Institute Carleton University
unamay�santafe�edu oppacher�scs�carleton�ca

Abstract

In this paper we address the problem of program discovery as de�ned by
Genetic Programming ����� We have two major results� First	 by combining
a hierarchical crossover operator with two traditional single point search algo

rithms� Simulated Annealing and Stochastic Iterated Hill Climbing	 we have
solved some problems with fewer �tness evaluations and a greater probability
of a success than Genetic Programming� Second	 we have managed to enhance
Genetic Programming by hybridizing it with the simple scheme of hill climbing
from a few individuals	 at a �xed interval of generations� The new hill climb

ing component has two options for generating candidate solutions� mutation or
crossover� When it uses crossover	 mates are either randomly created	 randomly
drawn from the population at large	 or drawn from a pool of �ttest individuals�

� Introduction

An important question to the Genetic Programming �GP� ���	 community is whether
the evolution
based approach to program discovery� as espoused by GP� is generally
superior to other adaptive search techniques� Or� because no single approach works
best in all situations� it is important to learn the salient characteristics of program
discovery �tness landscapes that make them amenable to a particular adaptive search
algorithm� Another obvious goal is to capitalize upon the strategies of other adap

tive search methods by incorporating them into an enhanced version of GP that
outperforms the canonical GP�
We recently ���	 designed a mutation operator� HVL
Mutate� that can be used

with a variable length hierarchical representation� HVL
Mutate changes a
tree�
via shrinking� growth or internal substitution while preserving syntactic correctness�
We reported that mutation
based adaptive search with Hill Climbing or Simulated
Annealing ��	� using HVL
Mutate� can accomplish program discovery tasks� Further

more� sometimes one of these single point based algorithms required fewer �tness
evaluations to �nd a correct solution or found a solution more reliably �i�e� averaged
over an ensemble of runs��

While that work sought to bring the program discovery problem into the realm
of traditional search� this paper seeks to exploit and explore the nature of the
genetic
based crossover operator� Starting from the idea of Crossover Hill Climb

ing�
XOHC�� which Terry Jones ��� �� �	 employed upon the �xed length binary
string representation of GAs� it was simple and straightforward to implement a similar

�

XOHC algorithm for hierarchical variable length representation by exchanging GA
crossover for GP crossover� We describe this algorithm in Section ��� of this paper�
On the
Block Stacking� and
Boolean Multiplexer� problems XOHC outperformed
all other search algorithms we have tried to date�
We next combined Crossover with Simulated Annealing�
XOSA�� Based upon

the successes of HVL
Mutate Simulated Annealing and Crossover Hill Climbing we
conjectured favorable results� Rather puzzlingly� this algorithm did not perform as
well as expected� It is described in Section ��� and its performance on each problem
is provided in Section ��

Finally� the results of Crossover Hill Climbing were su�ciently encouraging to
suggest adding a hill climbing component to GP� Currently GP is a population

based technique that provides a means of quickly focusing search on a �t area of
the search space� This is the recognized e�ect of the algorithm as� over time� the
population becomes more homogeneous due to selection based upon �tness and the
combinative e�ect of crossover� Mutation is usually set to a background rate and
plays only a minor role in terms of exploitative search �it ensures no premature
allele loss�� However� once a standard GA or GP algorithm has found �t areas
of the search space� it searches over only a small fraction of the neighbourhood
around each search point� It must derive its power from integrating multiple single
neighbourhood explorations in parallel over successive generations of a population�
This
many points� few neighbours� strategy is in direct contrast to a hill climber or
simulated annealer which potentially focuses e�ort on a greater fraction of the search
neighbourhood of one point but only around one point at a time� This strategy
might be called
few points� many neighbours�� The two strategies could clearly be
complementary ��� �� �� �	 with the GA component serving to
zero in� on regions
of high �tness and the hill climbing component serving to thoroughly explore the
regions the GA has found�

Therefore� our conjecture was that GP plus a Crossover Hill Climbing component
might be pro�table on our suite of problems� In Section ��� we describe the details
of the
GP�XOHC� algorithm� The conjecture was borne out by experimentation�
In particular� on the ��
bit Boolean Multiplexer problem� we were encouraged by an
improved probability of success and a decreased requirement on �tness evaluations�
We also implemented GP plus mutation
based hill climbing�
GP�MU�HC�� which
is also described in Section ���� This permits the comparison of the hybrid with
a mutation based hill climber �using HVL
Mutate� to a crossover
based one� The
obvious qualitative di�erence is that mutation introduces totally unselected genetic
material while the crossover operator �if it draws a mate from the population at
large or from the pool of �ttest individuals� replaces swapped out genetic material
with material that has undergone selection by surviving through GP�s simulated
process of evolution� This is a crucial distinction that re�ects upon the e�cacy of the
hybrid or standard GP� If� on a given problem� random material proves as useful as
duly evolved and selected material� single
point search algorithms such as Simulated
Annealing and Hill Climbing may be a superior alternative to GP�
Section � summarizes the various search methods used� Section � describes the

�

testsuite and experimental procedure� Section � of the paper covers the experimental
results and discussion� Section � is the conclusion and plans for future work�

� New Crossover�Based Search Algorithms

It is worthwhile to consider the dynamics of GP Crossover with respect to its range
of search over the search space �i�e� its neighbourhood�� given two mates� The neigh�
bourhood of two mates involved in crossover is the set of all o�spring that can possibly
be derived from crossing over the two mates and that are di�erent from them� The
term neighbour is synonymous with o�spring�

In GP Crossover� the maximum size of the neighbourhood is the product of
crossover points in the recipient and the donor�� The actual size depends upon the
sizes of the speci�c parents involved in the crossover and upon the redundancy of
o�spring �i�e� duplicate o�spring are not counted in the size of a neighbourhood��

There is signi�cant di�erence between the size of the crossover neighbourhoods
in GP Crossover and in standard GA crossover� In GAs that use a �xed length
representation� the maximum size of the GA Crossover neighbourhood is �l where l
is the length of the representation� The actual size of the neighbourhood is �l less
the number of duplicates� The �xed position representation of GAs implies that�
if each mate has the same value at a given position� all o�spring will only have
that value at that position� Let us term this incident
allele redundancy�� In a
binary representation� the probability of allele redundancy at a bit position in two
independent strings is ��� and this considerably constrains the neighbourhood size�
With an alphabet of higher cardinality the probability of allele redundancy is less
but nonetheless when the two mates are equal� the number of duplicates equals �l
and the neighbourhood size equals zero�
In GP crossover� there are two reasons to expect less redundancy among the

neighbours of two mates� First� GP has a non
binary alphabet which reduces the
probability of the recipient and donor containing an identical subtree� Second� be

cause there is no �xed positioning in the representation� any primitive�s� in the donor
can be placed anywhere in the recipient and thus provide another o�spring� For ex

ample� consider two duplicate � node S
Expressions with a distinct root and child�
This is akin to the case of a binary alphabet and identical mates� In GP there are �
possible crossovers and while two of these produce duplicates� the remaining � pro

duce original trees� As another example� consider two duplicate � node S
Expressions
where the root has � children and each node is a distinct primitive� There are nine
o�spring in the crossover of the two mates but only three of the nine produce a
duplicate�

In summary� with GP Crossover� a crossover neighbourhood is likely to be larger
than that resulting from GA crossover because its maximum size is the product of
both mates� sizes rather than �l and because GP Crossover is likely to generate fewer

�In GP crossover the number of crossover points equals the number of primitives in the S�
Expression �or nodes in the tree� so the maximum size is equals the product of mates� sizes�

�

duplicates than GA crossover�

��� XOHC Algorithm

Crossover hill climbing was �rst described by Terry Jones ��� �	� Recall that hill
climbing is a search algorithm that commences from a single solution point�� At each
step a candidate solution is generated using a
move operator� of some sort� The
algorithm simply moves the search from the current solution to a candidate solution
if the candidate has better or equal� �tness� A parameter controls how many moves
will be tried from the current point before a random one replaces it�
The basic idea of crossover hill climbing is to use hill climbing as the move accep

tance criterion of the search and use crossover as the
move
operator�� In this case�
the candidate solution is� therefore� generated from one
current� solution and a ran

dom mate� Our version of GP crossover retains the essential spirit of GP crossover
in ���	 but is a simple two
parent to one
child function rather than a two
parent to
two
children version� One parent is the
donor� and the other the
recipient�� A
randomly chosen subtree is copied from the donor and replaces a subtree randomly
removed from the recipient�

The algorithm always maintains the �ttest
overall
solution �i�e� the �ttest point
of all points examined� and a current
solution� At the outset� a mate for the current

solution is randomly generated� For some number of attempts�
mate�xo�tries�limit��
o�spring are generated via crossover from the pair of current solution and mate� If an
attempt yields an o�spring that is accepted� the o�spring replaces the current solution
and the process repeats with the number of crossover attempts reset to zero� If the
number of crossover attempts reaches mate�xo�tries�limit without an o�spring being
accepted� a new mate is chosen for the current
solution� The number of times the
current
solution is used�
xo�tries�limit�� is also a parameter of the algorithm� After
xo�tries�limit crossovers� the current
solution is discarded and a new one randomly
generated� After a �xed number of �tness evaluations or when a perfect� solution is
found the algorithm terminates and returns the �tness of the �ttest
overall
solution�
We experimented with values for both parameters of this algorithm� Since a

mate is randomly generated� the algorithm was not very sensitive to the value of
mate�xo�tries�limit� However� xo�tries�limit is integral to the algorithm because it
sets a limit for crossover attempts after which the search moves randomly elsewhere�
If its value is set too low� the search may not �nd a �tter candidate even though one
exists in the neighbourhood� If it is set too high� the search may be trapped in a local
optimum� We used values equal to the most successful
max�mutation� � values in
previously conducted HVL
Mutate Hill Climbing experiments ���	 and found them
satisfactory�

�We use the terms �solution� and �point�synonymously�
�Acceptance of equal 	tness candidate solutions is optional in hill climbing� We have chosen to

use it�
�Perfect means that a program scores the maximum 	tness and successfully solves each test case�
�This parameter controls how many mutations of the current solution are tried before it is replaced

by a random solution

�

��� XOSA Algorithm

The standard version of Simulated Annealing�
SA�� ��	 is based upon search which
traverses from one solution point to another� A mutation of the current point is
accepted and made the current point depending upon two criteria� the di�erence in
�tness between it and the current point� and� upon the current temperature� T � of
the SA system� A mutant is accepted outright if it is equal or superior in �tness to
the current point� Otherwise� it is accepted with a probability that decreases with
the temperature of the system and depending upon the �tness di�erence according
to a Boltzmann distribution� The temperature in a SA system is cooled in discrete
steps and if at each temperature the system reaches a simulated thermal equilibrium�
convergence to a global optimum is guaranteed� In practice� such a cooling schedule
is extremely slow but much faster approximations achieve good performance�

The SA component of our XOSA algorithm is basic� It uses normalized �tnesses�
The cooling schedule is determined by the a priori �xed initial ����� and �nal tem

peratures and upon the maximum number of evaluations�� The starting temperature
is always decreased to the �nal temperature over the given number of evaluations
according to an exponential cooling schedule�

The XOSA algorithm uses GP Crossover to generate candidate points from two

current� solutions and SA to decide whether a candidate should be accepted� It
has one non
standard parameter� xo�tries�limit� Every xo�tries�limit crossovers� the
weakest current solution is replaced with a random program� This ensures su�cient
novelty� The SA component can be viewed as a predicate� SA
ACCEPT� of � param

eters� The formal parameters are� �tness�of�current�state� �tness�of�candidate�state�
and temperature�� The predicate uses the current temperature� a calculated �tness
di�erential and a random number generator to indicate whether the candidate state
of the system should be accepted�

We designed three di�erent versions of XOSA� XOSA�Average� XOSA�One� and
XOSA�Each� which di�er in terms of what values are passed as arguments to the SA

ACCEPT predicate and in terms of how the current state is updated if acceptance
is indicated�

In XOSA�Average� the actual parameter for �tness�of�current�state is the average
�tness of the two current solutions� The actual parameter for �tness�of�candidate�
state is the average �tness of two candidate solutions derived from twice crossing over
the current solutions� If acceptance is indicated� both the candidate solutions replace
the current solutions� Since XOSA
Average uses the SA component for each pair of
�tness evaluations� the SA component is adjusted to use half as many steps in the
cooling schedule�
In XOSA�One� only one child is generated� via crossover� from the current solu

tions� The �tness of the weaker parent is the value for �tness�of�current�state and

�If more evaluations were allowed the cooling would be slower but would reach the same
temperature�

�Behind the scenes another component of the SA algorithm changes the system temperature when
appropriate�

�

the �tness of the child is the value for �tness�of�candidate�state� The weakest parent
is replaced by the child� if acceptance is indicated�

XOSA�Each attempts to address a �
parent to �
children function and the option
of only accepting one child� If the weakest current solution can be replaced by the
�ttest child� this is done and then an attempt is made to exchange the �tter current
solution for the weakest child� Otherwise� an attempt is made to exchange the weakest
parent for the weakest child�

The only parameter of the crossover component of the algorithm is
xo�tries�
limit�� Once this many crossover attempts have been made with the same pair of
parents� the weaker parent is replaced by a random program� Like xo�tries�limit in
XOHC �Section ���� this parameter is a sort of patience threshold� We used the
same values for it in XOSA as in XOHC�

��� GP�XOHC and GP�MU�HC Algorithm

The algorithms designed for hybridized GP and hill climbing� GP � XOHC and
GP � MU�HC are simple� Encouragingly� they still perform e�ectively despite not
being adaptive� Every g generations� the f �ttest individuals in the population are
used as the starting points of a hill climbing search� Each hill climb lasts for e
evaluations� The best individual from each hill climb is placed in the next generation
and then the remaining individuals of the population for that generation are generated
standardly �i�e� with crossover or direct reproduction�� For the duration of a run
the move operator of the hill climb is either entirely GP Crossover or entirely HVL

Mutate� The parameters g� f � and e are supplied a priori to the run� We ran three
parameter settings� We always used f � �� When the climb was ��� evaluations� the
interval g was either � or � generations� When the climb was ��� evaluations� the
interval g was � generations�
The interesting design issue is how to obtain mates for the crossover hill climb�

Should one exploit the knowledge embodied by the current population by using its
membership as a source of mates� We experimented with � options� Random� Best�
and Population� With the Random option� mates are not drawn from the population
at all� but are randomly created� With the Best and Population options� mates are
drawn from the group of individuals with the highest �tness or randomly drawn from
the population at large� respectively�

The algorithm must adjust the maximum number of generations to take into
account the additional evaluations used by the hill climbing� A maximum which gives
a close approximation to the a priori given maximum number of �tness evaluations
and population size is calculated� In the case of ����� evaluations and a population
of ��� �which is used in every GP�HC run�� for a run with f � �� g � � and e � ���
the maximum generations is �� and the maximum evaluations is ������ For f � ��
g � �� e � ���� the maximum generations is �� and the maximum evaluations is
������ Finally� for f � �� g � �� e � ���� the maximum generations is �� and the
maximum evaluations is ������

We decided to check for the presence of a perfect individual only at the end of a

�

generation� With this decision it does not matter whether hill climbing is done before
or after the normal GP crossover of a generation� One consequence is that the actual
number of �tness evaluations reported for successful runs is slightly over
estimated
but no more than if a standard GP run were executed and the same check done at
the end of each generation�

� Test Suite and Methodology

We experiment with � problems� the �
bit Boolean Multiplexer ��
Mult�� the ��
bit
Boolean Multiplexer� ���
Mult�� Block Stacking and sorting �Sort
A and Sort
B�� The
Multiplexer task is to decode address bits and return the data value at the address�
�
Mult uses the primitives IF� OR� NOT� AND which take �� �� �� and � arguments
respectively� There are � variables �i�e� primitives which take no arguments�� A��
A�� D��� � � �D� which are bound before execution to the address bits and data values
of a test case� All �� possible con�gurations of the problem are enumerated as test
cases� A program�s raw �tness is the number of con�gurations for which it returns
the correct data value for the given address� ��
Mult is simply a larger scale version
of �
Mult using � address bits �A�
 A�� and � data values �D�
D��� The test suite
consists of ���� test cases�

Block Stacking is well explained in ���	� Succinctly� the task is to stack labeled
blocks upon a table in correct order according to a given goal list starting from any
arbitrary con�guration of the stack and remaining blocks on the table� Block Stack

ing uses �
sensors� which are primitives encoded to return state information� All
sensor primitives have zero arguments� It also uses � primitives which are operators
for manipulating blocks� They take either � or � arguments� A structured sample
containing ��� of the possible test cases was used as a test suite� The raw �tness of
a program is the number of test cases for which the stack is correct�

The task of a sorting program is to arrange the elements of an array in ascending
order� A description of the primitives used is in ���	� A program is run �� times� each
time with a di�erent array bound to the primitive �array�� The arrays in the test
suite range in size and sorted order� In Sort
A the raw �tness of a program is the sum
of the number of elements found in the correct position after running the program� In
Sort
B the raw �tness is the summed permutation order ��	 of each array after each
execution� The intention of experimenting with two di�erent �tness functions and
the same repertoire of primitives is to isolate the impact of speci�c �tness functions
on a �tness landscape�

In order to compare results among GP� GP�HC� XOHC and XOSA� each run
was permitted the same maximum number of evaluations� Our benchmark GP runs
were run with a population of ��� for �� generations which �given �tness evaluations
for the initial generation� sums to a maximum of ����� �tness evaluations per run�
This approximate number of evaluations was used for GP�HC runs �see Section
��� for details� and XOSA and XOHC were given a precise maximum of �����
evaluations� At least �� runs of each problem were executed� A run is deemed
successful if an individual scores the maximum �tness� The �tness values in the GP

�

and GP�HC runs for all �ve problems were scaled by linear and exponential factors
of �� In standard GP reproduction �i�e�� not during hill climbing� the crossover
operator was applied ��� of the time with the remaining ��� of individuals chosen
by selection being directly copied into the next generation� We used a T
test with
��� con�dence to determine if runs were signi�cantly di�erent�
Regarding tabular data� the column
Evals Used� expresses how many evaluation

were used as a percentage of the actual maximum evaluations allowed each run� The
column
Fittest Individual� is an average of the best �tness of each run taken as
a percentage of the perfect �tness� Standard deviation �gures are in parentheses�
Where relevant� previous results of HVL
Mutate Hill Climbing�
MU�HC�� HVL

Mutate Simulated Annealing�
MU�SA�� and GP experiments with other crossover
operators are included� The standard GP Crossover is abbreviated at
GP
XO��

Ht
Fair
XO� groups subtrees by height� selects one group and one subtree from
that group at random for exchange�
Fair
XO� selects among subtrees with equal
probability�

� Experimental Results

Table �� �
Bit Boolean Multiplexer
Prob of Fittest Evals Evals Used

� Bit Boolean Multiplexer Success Individual Used in Succ Run
�	
 �	
 �	
 �	

GP with Ht�Fair�XO ��
� ���
�
 ��
� ��
�
 ��
� ��
�
GP with GP�XO ��
� ���
�
 ��
� ��
�
 ��
� ��
�

XOHC� xo�tries�limit � ��� ���
� ���
� ��
�� ��
�� ���
�

XOHC� xo�tries�limit � ���� ��
� ���
�
 ��
� ��
� ��
�

XOSA� Each ��
� ���
�
 ��
� ��
� ��
�
XOSA�One ��
� ���
�
 ��
� ��
� ��
�
XOSA� Ave �
� ���
�
 ��
� ��
� ��
�

MU � HC� xo�tries�limit � ��� ��
� ���
�
 ��
� ��
� ��
�
MU � HC� xo�tries�limit � ��K ��
� ���
�
 ��
� ��
� ��
�

MU � SA ���
� ���
� ��
� ��
� ��
�

GP �MU � HC� f � �
e � ���� g � � ��
� ���
�
 ��
� ��
� ��
� ���
�

e � ���� g � � ��
� ���
�
 ��
� ��
� ��
� ��
�

e � ���� g � � ��
� ���
�
 ��
� ��
� ��
� ���
�

GP � XOHC f � �� e � ���� g � �
Best ��
� ���
�
 ��
� ��
�
 ��
� ��
� ���
�

Random ��
� ���
�
 ��
� ��
�
 ��
� ���
�
 ��
� ���
�

Pop ��
� ���
�
 ��
� ��
�
 ��
� ���
�
 ��
� ���
�

GP � XOHC f � �� e � ���� g � �
Best ��
� ���
�
 ��
� ��
�
 ��
� ��
� ���
�

Random ��
� ��
�
 ��
� ��
�
 ��
� ��
� ���
�

Pop ���
� ���
� ��
� ��
� ���
�

� Bit Boolean Multiplexer� Table � summarizes the results for �
Mult� This
is clearly a relatively easy problem� Three of the algorithms stood out signi�

cantly by solving the problem ���� of the time� These were XOHC� MU�SA and
GP�XOHC�population� Among these �� the ranking in terms of evaluations used to

�

�nd the perfect solution was� ��XOHC� ��GP XOHC� ��MU � SA�
The improvement in the probability of success due to the hill climbing component

being added to GP was statistically signi�cant ���
 ����� In the GP experiments�
the runs with higher probability of success unfortunately required more evaluations
than the runs with lower probability of success� The �tness evaluations of GP�XOHC
were signi�cantly ��
 ��� lower than GP� Thus� GP�HC was not only more reliable
but also less computationally expensive�

Table �� ��
Bit Boolean Multiplexer
Prob of Best of Fittest Evals Evals Used

 Bit Boolean Multiplexer Success All Runs Ind Used in Succ
�	
 �	
 �	
 �	
 Run ���

GP with Ht�Fair�XO � ��
� ��
� ���
GP with GP�XO � ��
� ��
� ���

XOHC� xo�tries�limit���� ��
� ���
� ��
� ��
� ��
�
XOHC� xo�tries�limit����� ��
� ���
� ��
� ��
� ��
�

XOSA� Each � ��
� ��
� ���
�
XOSA�One � ��
� ��
� ���
�
XOSA� Ave � ��
� ��
� ���
�

MU � HC

xo�tries�limit � ��� � ��
� ��
� ���
�
xo�tries�limit � ���� � ��
� ��
� ���
�

MU � SA ��
� ���
� ��
� ��
� ��
�

GP �MU �XO� f �

e � ���� g � � � ��
� ��
� ���
�
e � ���� g � � �
� ���
� ��
� ��
� ��
�

GP �XOHC� f �
� e �
��� g � �
Best � ��
� ��
� ���
�
Random �
� ���
� ��
� ��
� ��
�
Population � ��
� ��
� ���
�

�� Bit Boolean Multiplexer� Once Hill Climbing was combined with GP� it
was �nally possible to �nd a perfect solution to the ��
Mult in ����� �tness eval

uations� This had not ever been done with GP alone� While� the GP hybrids did
yield an improvement over GP� they did not better XOHC and MU�SA which were
�signi�cantly� the best� Of the new crossover algorithms� XOHC was equal in terms
of probability of success to MU�SA� XOSA performed the worst of all algorithms�

Sorting� The Sorting search landscapes appear to di�er in some salient char

acteristic�s� from the group of �
Mult� ��
Mult and Block Stacking� We conjecture
this because the hybrid GP�XOHC algorithm was not an improvement for Sort
A or
Sort
B and both problems were the only ones upon which XOSA performed encour

agingly� One GP�MU�HC hybrid �e � ���� g � �� solved both Sort
A and Sort
B
���� of the time� This was a signi�cant improvement over GP alone and the best
algorithm for the sorting problems�

Block Stacking� Phrased in its present manner� Block Stacking is a very easy
problem for every algorithm we tried� except GP! Among the algorithms that solved
all runs� based upon the number of �tness evaluations used� the ranking �with statis

tical signi�cance� was �� XOHC� �� GP�XOHC� �� GP�MU�HC� and ��MU�SA�

�

All GP hybrids reached ���� success rates� On GP�MU�HC �e � ���� g � �� �����
of the runs solved the problem via hill climbing� In fact� on quite a few runs� more
than one hill climb �av� ��� � found the perfect solution� For e � ���� g � � there
were� on average ��� successful hill climbs over the ����� of the runs that converged
via hill climbing� The GP�XOHC runs had similar statistics�

Table �� Sort
A and Sort
B
Sort�A Sort�B

Prob of Evals Evals Used Prob of Evals Evals Used
Sort�A and Sort�B Success Used in Succ Run Success Used in Succ Run

�	
 �	
 �	
 �	
 �	
 �	

GP with Fair�XO ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�
 ��
� ���
�
 ��
� ���
�

GP with GP�XO ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�
 ��
� ���
�
 ��
� ���
�

XOHC� xo�tries�limit� �� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA� Each ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
�� ���
�

XOSA�One ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA� Ave ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�

MU � SA ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�

GP �MU � HC� f � �
e � ���� g � � ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ��
� ���
�

e � ���� g � � ���
� ��
� ��
� ���
�
 ���
� ��
� ��
� ���
�

GP � XOHC� Pop� f � �
e � ���� g � � ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�

e � ���� g � � ��
� ���
�
 ��
� ��
� ���
�
 ��
� ��
� ���
�
 ��
� ���
�

Table �� Block Stacking
Prob of Fittest Evals Evals Used

Block Stacking Success Individual Used in Succ Run
�	
 �	
 �	
 �	

GP with GP�XO ��
� ���
�
 ��
� ��
� ��
� ���
�

XOHC� xo�tries�limit���� ���
� ���
� �
� �
� ��
�

XOSA� Each ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA�One ��
� ���
�
 ��
� ��
� ��
� ���
�

XOSA� Ave ��
� ���
�
 ��
� ��
� ��
� ���
��

MU �HC� max�mu���� ��
� ���
�
 ��
� ��
� ��
� ���
�

MU � SA ���
� ���
� ��
� ���
�
 ��
�

GP �MU �HC� f � �
e � ����g � � ���
� ���
� �
� �
� ��
�

e � ����g � � ���
� ���
� ��
� ��
� ���
�

GP �XOHC� Pop� f � �
e � ����g � � ���
� ���
� �
� �
� ��
�

e � ����g � � ���
� ���
� ��
� ��
� ���
�

GP �XOHC� Random� f � �
e � ����g � � ���
� ���
� ��
� ��
� ��
�

��� Summary of Algorithms

XOHC is conclusively a search algorithm worth consideration� It outperformed or
equaled the best of the other algorithms on �
Mult� ��
Mult and Block Stacking�

��

However� its poor performance on Sorting is a reminder that no search algorithm can
be expected to always be superior�
Given the strong performance of XOHC� XOSA was predicted to have merit but

its results did not� Perhaps� an adjustment in the temperature schedule or xo�tries�
limit value might be in order� Given the robust performance of GP HC hybrids and
XOHC� it seems an unlikely algorithm to use again� On each problem� except Sort

B� there was signi�cant di�erence among the three versions �Average� Each� One��
While Average was never solely best� Best and Each exchanged rankings on di�erent
problems�

Among the Hill Climbing and SA algorithms� we are still somewhat confused
that� on any given problem� neither both algorithms with the same operator nor
both operators with the same algorithm had correlated performance� Our prelimi

nary conjecture is that since HVL
Mutate has a larger search neighbourhood than
crossover� SA works better than hill climbing because it does not have to explore the
neighbourhood thoroughly �i�e� it accepts bad moves�� Since XO has a smaller search
neighbourhood� hill climbing is better than SA because time is not lost doing many
wasted evaluations� on a landscape with few local optima� In such a landscape� hill
climbing is perfectly exploitative whereas SA is too explorative�
The hybrid of GP plus Hill Climbing was better than GP alone on all problems�

in both forms � GP�XOHC� GP�MU�HC� with at least one parameter setting�
Prior to using this search strategy� GP had not been superior nor sometimes even
on par with SA and Hill Climbing� With hybridization the evolution inspired search
model is� at the least� comparable� We observed no consistent signi�cant ordering
between the mutation hill climbing option or crossover hill climbing option across the
testsuite�

Regarding the relative merits of the Random� Best� and Population options of
GP�XOHC� current data is not decisive� Qualitatively� Best may not be explorative
enough because it is limited to a mate pool that may be very small� Preliminarily�
Best was outperformed on �
Mult but comparable on ��
Mult� Population worked
better than Random on �
Mult but the results were reversed on ��
Mult� On Block
Stacking and both sorting problems Random and Population were equal�

� Conclusion and Future Work

Comparison is a vital part of evolution
based program discovery search research� By
mixing and matching operators and search strategies we have produced new algo

rithms that improve upon existing ones� We have started to di�erentiate among our
small suite of problems based upon the response of di�erent algorithms to them� That
encourages us to seek quantitative measures of correlation between search landscapes
and search algorithms� In particular� we are pursuing characterizing the genotypic
distance distribution in search operator neighbourhoods�

��

Acknowledgments

U�M�O�R� wishes to especially thank Terry Jones for many useful discussions� She
also thanks the members of the Adaptive Computation program at the Santa Fe
Institute� researchers at SFI� and members of Stephanie Forrest�s graduate student
group�

References

�
� Aarts� E�� Korst� J�� Simulated Annealing and Boltzmann Machines� Wiley�
���

��� Chen� H�� Flann� N�� Parallel Simulated Annealing and Genetic Algorithms� A Space of Hybrid

Methods� Parallel Problem Solving from Nature III� Davidor� Schwefel� Manner �Eds�� Springer
Verlag �LNCS�� Berlin�
����

��� Davis� L� �Ed�� Genetic Algorithms and Simulated Annealing� Morgan Kaufmann� CA�
����

��� de Souza� P�� Talukdar� S�� Genetic Algorithms in Asynchronous Teams� Proceedings of �th In�
ternational Conference on Genetic Algorithms� R� Belew� L� Booker �Eds�� Morgan Kaufmann�
CA�
��
�

�
� Jones� Terry� Crossover Hillclimbing and the Dual Role of Crossover in Genetic Algorithms�
submitted to ICGA��
�

��� Jones� Terry� PhD� Dissertation in preparation� forthcoming in
��
�

��� Jones� Terry� Personal Communication�

��� Kido� T�� Kitano� H�� Nakashani� M�� A Hybrid Search for Genetic Algorithms� Combining

Genetic Algorithms� TABU Search� and Simulated Annealing� Proceedings of
th International
Conference on Genetic Algorithms� S� Forrest �Ed�� Morgan Kaufmann� CA�
����

��� Knuth� D�E�� The Art of Computer Programming� Addison�Wesley� MA�
����

�
�� Koza� J� R�� Genetic Programming� On the Programming of Computers by Means of Natural
Selection� Bradford Books�
����

�

� O�Reilly� U� M� and F� Oppacher �
����� Program Search with a Hierarchical Variable Length

Representation� Genetic Programming� Simulated Annealing and Hill Climbing� Parallel Prob�
lem Solving from Nature III� Davidor� Schwefel� Manner �Eds�� Springer Verlag �LNCS��
Berlin�
����

�
�� Press� W� H�� Numerical Recipes in C� the art of scienti	c computing� Cambridge University
Press�
����

��

