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Biological systems – from cells to 
tissues to individuals to societ-
ies – are hierarchically organized 

(e.g. Feldman & Eschel, 1982; Buss 1987; 
Smith & Szathmáry, 1998; Valentine 
& May, 1996; Michod, 2000; Frank, 
2003). To many, hierarchical organiza-
tion suggests the nesting of components or 
individuals into groups, with these groups 
aggregating into yet larger groups. But this 
view – at least super!cially – privileges 
space and matter over time and informa-
tion. Many types of neural coding, for 
example, require averaging or summing over neural !ring rates. 
"e neurons’ spatial location – that they are in proximity – is, 
of course, important, but at least as important to the encoding 

The explanation for the complex, multi-scale structure of biological and social systems 
lies in their manipulation of space and time to reduce uncertainty about the future.

is their behavior in time. Likewise, in 
some monkey societies, as I will discuss 
in detail later in this review, individuals 
estimate the future cost of social inter-
action by encoding the average outcome 
of past interactions in special signals and 
then summing over these signals.  

In both examples, information from 
events distributed in time as well as space  
(Figure 1) is captured with encodings 
that are used to control some behavioral 
output. My collaborators and I in the 
Center for Complexity & Collective 

Computation are exploring the idea that hierarchical organiza-
tion at its core is a nesting of these kinds of functional encodings. 
As I will explain, we think these functional encodings result 
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Figure 1. The dimensionality of the time-space 
continuum, with properties postulated when x 
does not equal 3 and y is larger than 1. Life on 
earth exists in three spatial dimensions and one 
temporal dimension. Biological systems effec-
tively “discretize” time and space to reduce 
environmental uncertainty by coarse-graining 
and compressing environmental time series to 
!nd regularities. Components use the coarse-
grained descriptions to predict the future, 
tuning their behavior to their predictions. 
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from biological systems 
manipulating space and 
time (Figure 2) to facilitate 
information extraction, 
which in turn facilitates 
more e!cient extraction 
of energy.

Th is  information 
hierarchy appears to be 
a universal property of 
biological systems and 
may be the key to one of 
life’s greatest mysteries – 
the origins of biological 
complexity. In this essay, 
I review a body of work by 
David Krakauer, myself, 
and our research group 
that has been inspired 
by many years of work at 

the Santa Fe Institute (e.g. Crutch"eld, 1994; Gell-Mann, 
1996; Gell-Mann & Lloyd, 1996; Fontana & Buss, 1996; 
West, Brown, & Enquist, 1997; Fontana & Schuster, 1998; 
Ancel & Fontana, 2000; Stadler, Stadler, Wagner, & Fontana, 
2001; Smith, 2003; Crutch"eld & Görnerup, 2006; Smith, 
2008). Our work suggests that complexity and the multi-scale 
structure of biological systems are the predictable outcome 
of evolutionary dynamics driven by uncertainty minimiza-
tion (Krakauer, 2011; Flack, 2012; Flack, Erwin, Elliot, & 
Krakauer, 2013). 

#is recasting of the evolutionary process as an inferential 
one1 (Bergstrom & Rosvall, 2009; Krakauer, 2011) is based on 
the premise that organisms and other biological systems can 
be viewed as hypotheses about the present and future environ-
ments they or their o$spring will encounter, induced from the 
history of past environmental states they or their ancestors have 
experienced (e.g. Crutch"eld & Feldman, 2001; Krakauer & 
Zannotto, 2009; Ellison, Flack, & Krakauer, in prep). #is 
premise, of course, only holds if the past is prologue – that is, 
has regularities, and the regularities can be estimated and even 
manipulated (as in niche construction) by biological systems or 
their components to produce adaptive behavior (Flack, Erwin, 
Elliot, & Krakauer, 2013; Ellison, Flack, & Krakauer, in prep). 

If these premises are correct, life at its core is computa-
tional, and a central question becomes: How do systems and 
their components estimate and control the regularity in their 
environments and use these estimates to tune their strategies? 
I suggest that the answer to this question, and the explanation 
for complexity, is that biological systems manipulate spatial 
and temporal structure to produce order – low variance – at 
local scales.

UNCERTAINTY REDUCTION
#e story I want to tell starts with the observation that with 
each new level of organization typically comes new function-
ality – a new feature with positive payo$ consequences for the 
system as a whole, or for its components (Flack, Erwin, Elliot, 

1 !is idea is related to work on Maxwell’s Demon (e.g. Krakauer, 
2011; Mandal, Quan, & Jarzynski, 2013) and the Carnot cycle (e.g. 
Smith, 2003), but we do not yet understand the mapping.

Figure 2. Biological systems – from 
(left to right) Volvox colonies, to slime 
molds, to animal societies, to large-scale 
ecosystems such as reefs, to human 
cities – are hierarchically organized, with 
multiple functionally important time and 
space scales. All feature: 1) components 
with only partially aligned interests 
exhibiting coherent behavior at the 
aggregate level; 2) components that turn 
over and that co-exist in the system at 
varying stages of development;  
3) social structure that persists but 
component behavior that !uctuates; and 
4) macroscopic variation in temporal 
and spatial structure and coupling with 
microscopic behavior, which has func-
tional implications when the components 
can perceive – in evolutionary, develop-
mental, or ecological time – regularities 
at the macroscopic scale.

1. 2.
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& Krakauer, 2013). Policing in a pigtailed macaque group is an 
example. Once a heavy tailed distribution of power – de!ned as 
the degree of consensus in the group that an individual can win 
!ghts (see Flack & Krakauer, 2006; Boehm & Flack, 2010; Brush, 
Krakauer, & Flack, 
2013) – becomes e"ec-
tively institutionalized 
(here meaning hard to 
change) policing (an 
intrinsically costly 
strateg y) becomes 
a"ordable, at least to 
those animals that sit 
in the tail of the power 
distribution: those 
super powerful monkeys who are rarely or never challenged 
when they break up !ghts (Flack, de Waal, & Krakauer, 2005; 
Flack, Girvan, de Waal, & Krakauer, 2006). 
  My collaborators and I propose that a primary driver of the 
emergence of new functionality such as policing is the reduc-
tion of environmental uncertainty through the construction 
of nested dynamical processes with a range of characteris-
tic time constants (Flack, Erwin, Elliot, & Krakauer, 2013). 
#ese nested dynamical processes arise as components extract 
regularities from fast, microscopic behavior by coarse-grain-
ing (or compressing) the history of events to which they have 
been exposed. 

Proteins, for example, can have a long half-life relative to 
RNA transcripts, and can be thought of as the summed output 
of translation. Cells have a long half-life relative to proteins, 

and are a function of the summed output of arrays of spatially 
structured proteins. Both proteins and cells represent some 
average measure of the noisier activity of their constituents. 
Similarly, a pigtailed macaque’s estimate of its power is a kind 

of average measure of 
the collective percep-
tion in the group 
that the macaque is 
capable of winning 
fights, and this is a 
better predictor of 
the cost the macaque 
will pay during !ghts 
than the outcome of 
any single melee, as 

these outcomes can $uctuate for contextual reasons. #ese 
coarse-grainings, or averages, are encoded as slow variables 
(Flack & de Waal, 2007; Flack, 2012; Flack, Erwin, Elliot, 
& Krakauer, 2013; see also Feret, Danos, Krivine, Harner, & 
Fontana, 2009, for a similar idea). Slow variables may have a 
spatial component as well as a temporal component, as in the 
protein and cell examples (Figure 6), or, minimally, only a 
temporal component, as in the monkey example.

As a consequence of integrating over abundant microscopic 
processes, slow variables provide better predictors of the local 
future con!guration of a system than the states of the $uctuating 
microscopic components. In doing so, they promote accelerated 
rates of microscopic adaptation. Slow variables facilitate adapta-
tion in two ways: #ey allow components to !ne-tune their 
behavior, and they free components to search, at low cost, a larger 

3. 4. 5.

Slow variables provide better predictors 
of the local future con!guration of a 

system than the states of the "uctuating 
microscopic components.”
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Figure 3. A sea urchin gene regulatory circuit. The empirically derived circuit describes the Boolean rules for coordinating genes and 
proteins to produce aspects of the sea urchin’s phenotype – in this case, the position of cells in the endomesoderm at 30 hours since 
fertilization. Edges indicate whether a node induces a state change in another node, here genes and proteins. The circuit is a rigorous 
starting point for addressing questions about the logic of development and its evolution. In computational terms, the input is the set of 
relevant genes and proteins and the output is the target phenotypic feature. 
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space of strategies for extracting resources from the environment 
(Flack, 2012; Flack, Erwin, Elliot, & Krakauer, 2013). !is 
phenomenon is illustrated by the power-in-support-of-policing 
example and also by work on the role of neutral networks in 
RNA folding. In the RNA case, many di"erent sequences can 
fold into the same secondary structure. !is implies that over 
evolutionary time, structure changes more slowly than sequence, 
thereby permitting sequences to explore many con#gurations 
under normalizing selection (Fontana & Schuster, 1998; Schuster 
& Fontana, 1999; Ferrada & Krakauer, in prep).

NEW LEVELS OF ORGANIZATION
As an interaction history builds up at the microscopic level, 
the coarse-grained representations of the microscopic behav-
ior consolidate, becoming for the components increasingly 
robust predictors of the system’s future state. 

We speak of a new organizational level when the system’s 
components rely to a greater extent on these coarse-grained or 
compressed descriptions of the system’s dynamics for adaptive 
decision-making than on local $uctuations in the microscop-
ic behavior and when the coarse-grained estimates made by 
components are largely in agreement (Krakauer, Bertschinger, 
Ay, Olbrich, & Flack, in review). !e idea is that convergence on 
these “good-enough” estimates underlies non-spurious correlated 
behavior among the components. !is in turn leads to an increase 
in local predictability (e.g. Flack & de Waal, 2007; Brush, Krakauer, 
& Flack, 2013) and drives the construction of the information 
hierarchy. (Note that increased predictability can seem the product 
of downward causation in the absence of careful analysis of the 
bottom-up mechanisms that actually produced it.)

THE STATISTICAL MECHANICS & THERMODYNAMICS OF BIOLOGY
Another way of thinking about slow variables is as a functionally 
important subset of the system’s potentially many macroscop-
ic properties. An advantage of this recasting is that it builds a 
bridge to physics, which over the course of its maturation as a 
#eld grappled with precisely the challenge now before biology: 
understanding the relationship between behavior at the individ-
ual or component level and behavior at the aggregate level.  

In physics
As discussed in Krakauer & Flack (2010), the debate in physics 
began with thermodynamics – an equilibrium theory treating 
aggregate variables – and came to a close with the maturation 
of statistical mechanics – a dynamical theory treating micro-
scopic variables.

!ermodynamics is the study of the macroscopic behavior 
of systems exchanging work and heat with connected systems or 
their environment. !e four laws of thermodynamics all operate 
on average quantities de#ned at equilibrium – temperature, 
pressure, entropy, volume, and energy. !ese macroscopic 
variables exist in fundamental relationships with each other, as 
expressed, for example, in the ideal gas law. !ermodynamics is 
an extremely powerful framework as it provides experimentalists 
with explicit, principled recommendations about what variables 
should be measured and how they are expected to change relative 
to each other, but it is not a dynamical theory and o"ers no 
explanation for the mechanistic origins of the macroscopic 
variables it privileges. !is is the job of statistical mechanics. By 
providing the microscopic basis for the macroscopic variables 
in thermodynamics, statistical mechanics establishes the condi-
tions under which the equilibrium relations are no longer valid 
or expected to apply. !e essential intellectual technologies 
behind much of statistical mechanics are powerful tools for 
counting possible microscopic con#gurations of a system and 
connecting these to macroscopic averages. 

In biology
!is brief summary of the relation between thermodynam-
ics and statistical mechanics in physics is illuminating for two 
reasons. On the one hand it raises the possibility of a potentially 

This “Up to 30 Hour Overview” primarily shows the endomesoderm network architecture 
as it exists after 21 hours, with the additon of all PMC components starting at 6 hours, 

the inclusion of the Delta–Notch signal from PMC to Veg2, the presence of Wnt8 in Veg2 
Endoderm, the nB–TCF and Otx inputs into Blimp1 in NSM, and Gene X in the NSM; the 

latter four of these features are no longer present by 21 hours. Consult the other models 
to see all the network elements and interactions in he correct temporal context.

Copyright © 2001–2011 Hamid Bolouri and Eric Davidson
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deep division between physical and biological systems: So far 
– and admittedly biology is young – biology has had only limit-
ed success in empirically identifying important macroscopic 
properties and deriving these from !rst principles rooted in 
physical laws or deep evolved constraints2. "is may be the case 
because many of the more interesting macroscopic properties 
are slow variables that result from the collective behavior of 
adaptive components, and their functional value comes from 
how components use them, making them fundamentally subjec-
tive (see Gell-Mann & Lloyd, 1996 for more on subjectivity) 
and perhaps even nonstationary3.

On the other hand, the role of statistical mechanics in 
physics suggests a way forward. If we have intuition about 
which macroscopic properties are important – that is, which 
macroscopic properties are slow variables – and we can get 
good data on the relevant microscopic behavior, we can proceed 
by working upward from dynamical many-body formalisms 
to equilibrium descriptions with a few favored macroscopic 
degrees of freedom (Levin, Grenfell, Hastings, & Perelson, 
1997; Krakauer & Flack, 2010; Krakauer et al., 2011; Gintis, 
Doebeli, & Flack, 2012).

A STATISTICAL MECHANICS-COMPUTER SCIENCE-
INFORMATION THEORETIC HYBRID APPROACH
"e most common approach to studying the relationship between 
micro and macro in biological systems is perhaps dynamical 
systems and, more speci!cally, pattern formation (for examples, 
see Sumpter, 2006; Ball, 2009; Couzin, 2009; Payne et al., 2013). 
However, if, as we believe, the information hierarchy results from 
biological components collectively estimating regularities in their 
environments by coarse-graining or compressing time series data, 
a natural (and complementary) approach is to treat the micro 
and macro mapping explicitly as a computation.

Elements of computation in biological systems
Describing a biological process as a computation minimally 
requires that we are able to specify the output, the input, and 
the algorithm or circuit connecting the input to the output 
(Flack & Krakauer, 2011; see also Mitchell, 2010; Valiant, 
2013). A secondary concern is how to determine when the 
desired output has been generated. In computer science 
this is called the termination criterion or halting problem. 
In biology it potentially can be achieved by constructing 
nested dynamical processes with a range of timescales, with 
the slower timescale processes providing the “background” 
against which a strategy is evaluated (Flack & Krakauer, 2011), 
as discussed later in this paper in the section on Couplings. 

2  !e work on scaling in biological systems shows a fundamental relation-
ship between mass and metabolic rate, and this relationship can be derived 
from the biophysics (e.g. West, Brown, & Enquist, 1997). Bettencourt and 
West are now investigating whether similar fundamental relationships can be 
established for macroscopic properties of human social systems, like cities (e.g. 
Bettencourt, Lobo, Helbing, Kuhnert, & West, 2007; Bettencourt, 2013). 

3  With the important caveat that in biology the utility of a macroscop-
ic property as a predictor will likely increase as consensus among the 
components about the estimate increases, e"ectively reducing the subjec-
tivity and increasing stationarity (see also Gell-Mann & Lloyd, 1996).
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Figure 4. Cognitive effective theories for one macroscopic property of 
a macaque society: the distribution of !ght sizes (a). To reduce circuit 
complexity we return to the raw time series data and remove as much noise 
as possible by compressing the data. In the case of our macaque dataset, this 
reveals which individuals and subgroups are regular and predictable con"ict 
participants. We then search for possible strategies in response to these 
regular and predictable individuals and groups. This approach returns a family 
of circuits (b is an example), each of which has fewer nodes and edges than 
the full circuit (c). These circuits are simpler and more cognitively parsimo-
nious. We then test the reduced circuits against each other in simulation 
to determine how well they recover the target macroscopic properties.

a.

b.

c.
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A macroscopic property can be said to be an output of 
a computation if it can take on values that have functional 
consequences at the group or component level, if it is the result 
of a distributed and coordinated sequence of component inter-
actions under the operation of a strategy set, and if it is a stable 
output of input values 
that converges (termi-
nates) in biologically 
relevant time (Flack 
& Krakauer, 2011). 
Examples studied 
in biolog y include 
aspects of vision such 
as edge detection 
(e.g. Olshausen & 
Field, 2004), phenotypic traits such as the average position 
of cells in the developing endomesoderm of the sea urchin 
(e.g. Davidson, 2010; Peter & Davidson, 2011), switching 
in biomolecular signal-transduction cascades (e.g. Smith, 
Krishnamurthy, Fontana, & Krakauer, 2011), chromatin 
regulation (e.g. Prohaska, Stadler, & Krakauer, 2010), and 
social structures such as the distribution of !ght sizes (e.g. 
DeDeo, Krakauer, & Flack, 2010; Flack & Krakauer, 2011; 
Lee, Daniels, Krakauer, & Flack, in prep) and the distribution 

of power in monkey societies (e.g. Flack, 2012; Flack, Erwin, 
Elliot, & Krakauer, 2013).

"e input to the computation is the set of elements imple-
menting the rules or strategies. As with the output, we do not 
typically know a priori which of many possible inputs is relevant, 

and so we must make 
an informed guess 
based on the proper-
ties of the output. 
In the case of the sea 
urchin’s endomeso-
derm, we might start 
with a list of genes that 
have been implicated 
in the regulation of 

cell position. In the case of the distribution of !ght sizes in a 
monkey group, we might start with a list of individuals partic-
ipating in !ghts. 

Reconstructing the microscopic behavior
In biological systems the input plus the strategies constitute 
the system’s microscopic behavior. "ere are many approach-
es to reconstructing the system’s microscopic behavior. "e 
most powerful is an experiment in which upstream inputs to a 

Figure 5. A comparison of Markov organisms in two environments: a Markov environment (left) and a non-Markov environment (right). In the top two plots, 
organismal complexity is plotted against time for each organism (organisms are represented by varying colors) and for many different sequences of 500 
environmental observations; the bold red line shows the average organismal complexity, which in the Markov environment tends toward the environmental 
complexity and in the non-Markov environment exceeds it. In the bottom plots, the probability that a random organism has order k is plotted against time.
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In all biological systems there are 
multiple components interacting and 

simultaneously coarse graining to make 
predictions about the future.”
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target component are clamped o! and the output of the target 
component is held constant. "is allows the experimentalist 
to measure the target component’s speci#c contribution to 
the behavior of a downstream component (Pearl, 2010). "is 
type of approach is used to construct gene regulatory circuits 
mapping gene-gene and gene-protein interactions to pheno-
typic traits (Figure 3).

When such experiments are not possible, causal relation-
ships can be established using time series analysis in which 
clamping is approximated statistically (Ay, 2009; Pearl, 2010). 
My collaborators and I have developed a novel computational 
technique, called Inductive Game "eory (DeDeo, Krakauer, & 
Flack, 2010; Flack & Krakauer, 2011; Lee, Daniels, Krakauer, 
& Flack, in prep), that uses a variant of this statistical clamp-
ing principle to extract strategic decision-making rules, game 
structure, and (potentially) strategy cost from correlations 
observed in the time series data. 

Collective computation through stochastic circuits
In all biological systems, of course, there are multiple compo-
nents interacting and simultaneously coarse graining to make 
predictions about the future. Hence the computation is inher-
ently collective. A consequence of this is that it is not su$cient 
to simply extract from the time series the list of the strategies 

in play. We must also examine how di!erent con#gurations of 
strategies a!ect the macroscopic output. One way these con#g-
urations can be captured is by constructing Boolean circuits 
describing activation rules as illustrated by the gene regulato-
ry circuit shown in Figure 3, which controls cell position (the 
output) at thirty hours from fertilization in the sea urchin (Peter 
& Davidson, 2011). In the case of our work on micro to macro 
mappings in animal societies, we describe the space of micro-
scopic con#gurations using stochastic “social” circuits (Figure 
4) (DeDeo, Krakauer, & Flack, 2010; Flack & Krakauer, 2011; 
Lee, Daniels, Krakauer, & Flack, in prep).

Nodes in these circuits are the input to the computation. 
As discussed above, the input can be individuals or subgroups, 
or they can be de#ned in terms of component properties like 
age or neurophysiological state. A directed edge between two 
nodes indicates that the “receiving node” has a strategy for the 
“sending node” – and the edge weight can be interpreted as 
the above-null probability that the sending node plays the 
strategy in response to some behavior by the receiving node in 
a previous time step. Hence, an edge in these circuits quanti#es 
the strength of a causal relationship between the behaviors of a 
sending and receiving node. 

Sometimes components have multiple strategies in their 
repertoires. Which strategy is being played at time t may 

Figure 6. The cell can be thought of as a slow variable to the extent it is a function of the summed output of arrays of spatially 
structured proteins and has a long half-life compared to its proteins. Features that serve as slow variables provide better 
predictors of the local future configuration of a system than the states of the fluctuating microscopic components. We propose 
that when detectable by the system or its components, slow variables can reduce environmental uncertainty and, by increasing 
predictability, promote accelerated rates of microscopic adaptation. 
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vary with context. !ese meta-strategies can be captured 
in the circuit using di"erent types of gates specifying how 
a component’s myriad strategies combine (see also Feret, 
Davis, Krivine, Harmer, & Fontana, 2009). By varying the 
types of gates and/or the strength of causal relationships, 
we end up with multiple alternative circuits – a family of 
circuits – all of which are consistent with the microscopic 
behavior, albeit with di"erent degrees of precision (Lee, 
Daniels, Krakauer, & Flack, in prep).  Each circuit in the 
family is essentially a model of the micro-macro relationship 
and so serves as a hypothesis for how strategies combine 
over nodes (inputs) to produce to the target output (Lee, 
Daniels, Krakauer, & Flack, in prep). We test the circuits 
against each other in simulation to determine which can 
best recover the actual measured macroscopic behavior of 
our system. 

Cognitive effective theories for collective computation
!e circuits describing the microscopic behavior can be compli-
cated, with many “small” causes detailed, as illustrated by the gene 
regulatory circuit shown in Figure 3. !e challenge – once we 
have rigorous circuits – is to #gure out the circuit logic (Flack 
& Krakauer, 2011; 
see also Feret, Davis, 
Krivine, Harmer, & 
Fontana, 2009).

There are many 
ways to approach 
this problem. Our 
approach it is to build 
what’s called in physics 
an effective theory: a 
compact description 
of the causes of a macroscopic property.  E"ective theories for 
adaptive systems composed of adaptive components require 
an additional criterion beyond compactness. As discussed 
earlier in this essay, components in these systems are tuning 
their behaviors based on their own e"ective theories – coarse-
grained rules (see also Feret, Davis, Krivine, Harmer, & Fontana, 
2009) – that capture the regularities (Daniels, Krakauer, & 
Flack, 2012). If we are to build an e"ective theory that explains 
the origins of functional space and time scales – new levels of 
organization – and ultimately the information hierarchy, the 
e"ective theory must be consistent with component models of 
macroscopic behavior, as these models, through their e"ects on 
strategy choice, drive that process. In other words, our e!ective 
theory should explain how the system itself is computing. 

We begin the search for cognitively principled e"ective theories 
using what we know about component cognition to inform how 
we coarse-grain and compress the circuits (Flack & Krakauer, 2011; 
Lee, Daniels, Krakauer, & Flack, in prep). !is means taking into 
account, given the available data, the kinds of computations compo-
nents can perform and the error associated with these computations 
at the individual and collective levels, given component memory 
capacity and the quality of the “data sets” components use to estimate 

regularities (Krakauer, Flack, DeDeo, & Farmer, 2010; Flack & 
Krakauer, 2011; Daniels, Krakauer, & Flack, 2012; Ellison, Flack, 
& Krakauer, in prep; all building on Gell-Mann, 1996).

As we re#ne our understanding of the micro-macro mapping 
through construction of cognitive e"ective theories, we also 
re#ne our understanding of what time series data constitute the 
“right” input – and hence the building blocks of our system. 
And, by investigating whether our best-performing empiri-
cally justi#ed circuits can also account for other potentially 
important macroscopic properties, we can begin to establish 
which macroscopic properties might be fundamental and 
what their relation is to one another – the thermodynamics 
of biological collectives.

Couplings, information !ow, and macroscopic tuning
!roughout this essay I have stressed the importance of slowness 
(e"ective stationarity) for prediction. Slowness also has costs, 
however. Consider our power example. !e power structure 
must change slowly if individuals are to make worthwhile 
investments in strategies that work well given the structure, 
but it cannot change too slowly or it may cease to re$ect the 
underlying distribution of #ghting abilities on which it is based 

and, hence, cease to be 
a good predictor of 
interaction cost (Flack, 
2012; Flack, Erwin, 
Elliot, & Krakauer, 
2013). !e question 
we must answer is, 
what is the optimal 
coupling between 
macroscopic and 
microscopic change, 

and can systems, by manipulating how components are organized 
in space and time, get close to this optimal coupling? 

One approach to this problem is to quantify the degeneracy 
of the target macroscopic property and then perturb the circuits 
by either removing nodes, up- or down-regulating node behav-
ior, or restructuring higher order relationships (subcircuits) to 
determine how many changes at the microscopic level need to 
occur to induce a state change at the macroscopic level. 

Another approach is to ask how close the system is to a 
critical point – that is, how sensitive the target macroscopic 
property is to small changes in parameters describing the micro-
scopic behavior. Many studies suggest that biological systems 
of all types sit near the critical point (Mora & Bialek, 2011). 
A hypothesis we are exploring is that sitting near the critical 
point means that important changes at the microscopic scale 
will be visible at the macroscopic scale (Daniels, Krakauer, & 
Flack, in prep). Of course this also has disadvantages as it means 
small changes can potentially cause big institutional shi%s, 
undermining the utility of coarse-graining and slow variables 
for prediction (Flack, Erwin, Elliot, & Krakauer, 2013). 

If balancing trade-o"s between robustness and prediction 
on the one hand, and adaptability to changing environments 

A hypothesis we are exploring is that 
sitting near the critical point means that 

important changes at the microscopic scale 
will be visible at the macroscopic scale.”
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on the other, can be achieved by modulating the coupling 
between scales (Flack, Hammerstein, & Krakauer, 2012; Flack, 
Erwin, Elliot, & Krakauer, 2013), we should be able to make 
predictions about whether a system is far from, near, or at the 
critical point based on whether the data suggest that robustness 
or adaptability is more important given the environment and its 
characteristic timescale (Daniels, Krakauer, & Flack, in prep). 
!is presupposes that the system can optimize where it sits with 
respect to the critical point, implying active mechanisms for 
modulating the coupling. We are working to identify plausi-
ble mechanisms using a series of toy models to study how the 
type of feedback from the macroscopic or institutional level 
to the microscopic behavior in"uences the possibility of rapid 
institutional switches (Poon, Flack, & Krakauer, in prep; see 
also Sablo#, in prep for related work on the rise of the state in 
early human societies). 

COMPLEXITY
!is essay covers a lot of work, so allow me to summarize. I 
suggested that the origins of the information hierarchy lie in 
the manipulation of space and time to reduce environmental 
uncertainty. I further suggested that uncertainty reduction is 
maximized if the coarse-grained representations of the data the 
components compute are in agreement (because this increases 

the probability that everyone is making the same predictions 
and so tuning the same way). As this happens, the coarse-grained 
representations consolidate into robust, slow variables at the 
aggregate level, creating new levels of organization and giving 
the appearance of downward causation.

I proposed that a central challenge lies in understanding 
what the mapping is between the microscopic behavior and 
these new levels of organization. (How exactly do everyone’s 
coarse grainings converge?) I argued that in biology, a hybrid 
statistical mechanics-computer science-information theoretic 
approach (see also Krakauer et al., 2011) is required to establish 
such mappings. Once we have cognitively principled e#ective 
theories for mappings, we will have an understanding of how 
biological systems, by discretizing space and time, produce 
information hierarchies. 

Where are we, though, with respect to explaining the origins 
of biological complexity?

!e answer we are moving toward lies at the intersection 
of the central concepts in this essay. If evolution is an infer-
ential process with complex life being the result of biological 
systems extracting regularities from their environments to 
reduce uncertainty, a natural recasting of evolutionary dynam-
ics is in Bayesian terms (Ellison, Flack, & Krakauer, in prep). 
Under this view, organism and environment can be interpreted 
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as k-order Markov processes and modeled using !nite-state 
hidden Markov models (Figure 5). Organisms update prior 
models of the environment with posterior models of observed 
regularities. We are exploring how the Markov order (a proxy 
for memory) of organisms changes as organisms evolve to 
match their environment, quantifying !t to the environment 
with model selection. We use information-theoretic measures 
to quantify structure. Our approach allows us to evaluate the 
memory requirements of adapting to the environment given its 
Markov order, quantify the complexity of the models organ-
isms build to represent their environments, and quantitatively 
compare organismal and environmental complexity as our 
Markov organisms evolve. We hypothesize that high degrees of 
complexity result when there is regularity in the environment, 
but it takes a long history to perceive it and an elaborate model 
to encode it (Ellison, Flack, & Krakauer, in prep).
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