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“Verily at the first Chaos came to be, but next wide-bosomed 
Earth, the ever-sure foundations of all the deathless ones who 
hold the peaks of snowy Olympus, and dim Tartarus in the 
depth of the wide-pathed Earth, and Eros, fairest among the 
deathless gods, who unnerves the limbs and overcomes the 
mind and wise counsels of all gods and all men within them. 
From Chaos came forth Erebus and black Night; but of Night 
were born Aether and Day, whom she conceived and bare 
from union in love with Erebus. And Earth first bare starry 
Heaven, equal to herself, to cover her on every side, and to be 
an ever-sure abiding-place for the blessed gods.” — Hesiod, 
from the Theogony, Part 2, translated by H.G. Evelyn-White

THE CLASSICAL UNIVERSE is made up brick by brick, starting in 
the void and culminating with the earth: from the emptiness 
of night that gave rise to day, to the day that produces the 

outward order of the heavens, and finally to life upon the ground.  
The Theogony is a story describing the origins of energy and matter and 
information in the form of life. The Theogony exemplifies humanity’s 
great surprise that the universe should have emerged from chaos, 
that emptiness has not reigned eternal, and that the earth should 
be hospitable and supportive of multiform sentience. 
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“ Inorganic chemistry is essentially 
silent on the topic of biology. We do 
not exist. The theory of everything 

is a theory of everything except 
of those things that theorize. ”
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David Krakauer

David Krakauer

After almost three millennia our concerns are essentially the same 
as those of this celebrated Greek farmer and poet. In just less than 14 
billion years, the universe has generated, from nothing, more than 
100 billion galaxies, each of which contains on average 100 billion 
stars, and around many of these stars a system of planets. In our own 
Milky Way, tucked away in a local bubble of the Orion-Cygnus arm 
of the galaxy, 27,000 light years from the galactic center, spins our 
solar system, home to eight planets – four small and dense, and four 
large and gaseous. On one of these planets, the third nearest the sun, 
we find life. To the best of our knowledge, it is the only planet in 
our solar system supporting adaptive matter. 

From physical law we can derive essential properties of the sun, 
the elements, and the planets. The incredible machinery of the 
theories of gravity, quantum mechanics, and the standard model 

give us significant insights into the observable structure in the 
universe.  Optimistically, we can even deduce simple molecules 
from inorganic chemistry. And then the theory machine stops. 
Physics runs out of gas. Chemistry dries up. From the perspective 
of physics, our own solar system or galaxy are not in any way 
different from those anywhere else in the universe.  Inorganic 
chemistry is essentially silent on the topic of biology. We do not 
exist. The theory of everything is a theory of everything except of 
those things that theorize. 
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The projects described in this issue of the Bulletin are all 
efforts to grapple with some of the key ideas and concepts 
required to understand living systems, with an emphasis on 
evolution, both biological and cultural. We ask how, over 
long stretches of time, successively more effective mechanisms 
for storing and processing information have been adaptively 
engineered, and how these biological computing systems are 
used to predict, model, and control relevant states of noisy and 
living environments. We consider complexity through the lens 
of information processing, we seek to quantify how information 
is encoded in living systems (genomes and brains), and we 
suggest estimates for upper bounds in adaptive information 

capacity. Some of the concepts relevant to understanding 
biological complexity include hierarchy, individuality, criti-
cality, information/uncertainty, computation, and sociality. 

Stanislaw Lem in his science fiction chef-d’œuvre Solaris 
(1961) considers a planet swaddled by an inscrutable ocean 
capable of astonishing acts of reasoning. So vastly more intel-
ligent and powerful is the Ocean to the human explorers and 
scientists (Solarists) who dedicate their lives to its analysis 
and explication that humanity is forced to resign itself to 
ignorance over its ultimate mechanisms and motives. I have 
often wondered whether Solaris is not a metaphor for life on 
earth, where the methods of the Solarists are the traditional 
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Cronus mutilates his father, Uranus, at the behest 
of his mother, Gaia, in this scene from Greek 
mythology featured in Hesiod’s Theogony.methods of science. Solaris is a huge interconnected system of 

energy and information flows that defy traditional methods 
of reduction. Perhaps Solaris is waiting on complexity science: 
information theory, scaling, network theory, evolutionary 
dynamics, and computation. Perhaps we only stand a chance 
of understanding complex life when we approach it through 
the sciences of complexity – in which case, consider this 
issue of the Bulletin a temporary visa granting access to all 
of those restless explorers intent on the understanding of our 
terrestrial Solaris. ■



4    Santa Fe Institute Bulletin  Vol. 28

R ESEARCH on the origins, development, and dynam-
ics of complexity in biological systems has been a core 
topic of inquiry at the Santa Fe Institute since its 

founding 30 years ago in 1984. SFI’s scientists have worked 
to develop an understanding of a dizzying array of biological 
phenomena, from the origins of life, to transitions from single- 
to multi-cellularity, to evolutionary innovation at different 
levels of biological organization, to the relationship between 
ecological complexity and dynamical stability.

The intertwined concepts of energy and information are 
fundamental to any understanding of biological complexity. 
Biological systems are far from equilibrium, requiring a constant 
flow of energy to maintain their organization and function-
ality. The processing and encoding of information provides 
a means for life to manage and maintain energy acquisition, 
use, and dissipation.  

The work of former resident professors and current external 
faculty members Jessica Flack and David Krakauer (and their many 
colleagues) highlighted in this issue of the SFI Bulletin addresses 
the intimate dance between energy and information processing in 
biological systems – a dance they suggest gives rise to the complex, 
multi-scale structure we observe. 

This computational-thermodynamic view of biology provides 
a powerful, potentially generic framework for understanding the 
properties of any kind of complex adaptive system, including socio-
economic systems.  

Sincerely,

Jennifer Dunne, Chair of the Faculty, Santa Fe Institute

Biological Systems, Energy, and Information
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Y. pestis, the bacterium that causes bubonic 
plague (a.k.a. The Black Death of the Middle Ages)

 L ife on earth began some 3.5 billion 
years ago, not all that long after the 
planet itself first formed, and for 1.5 

billion years it chugged along, single-celled 
creatures self-replicating, dividing, diversi-
fying. Remarkably, it took that long – 7,500 
times longer than all of human history – for 
the first multicellular life to emerge, and still 
longer for it to evolve into life as we know it.

Despite that, the question many 
researchers ask isn’t what took so long, 
but rather why complex life would have 
evolved in the first place. Consider this: 
single-celled organisms make up more than 
half of the biomass on earth, and even one 
of the tiniest organisms – Y. pestis, better 
known as bubonic plague – can effortlessly, 
thoughtlessly kill you. 

Nature, it seems, doesn’t need you. 
Indeed, there isn’t any obvious reason 
it would go to the trouble of creating 
something as complex as a human being, 
complete with its differentiated organs and 
top-down control systems. And yet, despite 
four billion years of Nature’s great “meh,” 
here you are, alive, multicellular, complex 

– even intelligent enough to ponder your 
own existence.

What was Nature thinking? According 
to one argument, bacteria first bound 
together in colonies that enhanced cooper-
ation and hence survival. Eventually, those 
bacteria bound together physically as well, 
creating the first multicellular life. And 
so on.

“You could say that’s an answer, but then 
you could go a bit further and ask what is 
it exactly that makes you a better compet-

itor,” says David Krakauer, who with SFI 
External Professor Jessica Flack co-directs 
the Wisconsin Institute for Discovery’s 
Center for Complexity and Collective 
Computation, or C4, and SFI’s John 
Templeton Foundation-funded “Evolution 
of Complexity and Intelligence on Earth” 
research project. 

“Well, you’re outsmarting everyone else,” 
Krakauer says.

Simple versus complex
Despite its seeming indifference, Nature 
does seem to have thought highly enough 

Why Nature  
     Went to the Trouble 
          of Creating…You

BY NATHAN COLLINS

In a complex world where plants and animals and everything else are duking 
it out to survive, an organism stands to gain from becoming more complex. 

of complex structures to produce a few of 
them, and to have ratcheted up the complex-
ity further by embedding complex structures 
within complex structures – animals with 
hearts and lungs and circulatory systems, or 
groups of people capable of building their 
own social institutions.

But why? What purpose does it serve? 
“Why life is hierarchically organized is 
not at all obvious,” Flack says, and how 
an organism’s or a society’s complexity 
relates to the complexity of its environ-
ment remains unclear.

Our anthropomorphized Nature might 
have started with one very simple idea, 
what Krakauer calls the reflection princi-
ple, which presupposes that living things 
can’t be more complex than their environ-
ments, an idea rooted in experiments. “If 
you take organisms and you place them 
in simpler environments, they just throw 
everything [superfluous] away. They lose 
genes,” Krakauer says.

At the same time, the world does seem to 
favor an intelligent creature. Even the tiniest 
living things need to be able to comprehend, 
predict, and react to their environments; 
that’s what allows them to outsmart each 
other, he says. In a complex world where 
plants and animals and everything else are 
duking it out to survive, an organism stands 
to gain from becoming more complex.

That tension between simplicity and 
complexity is the starting point for C4 
postdoctoral fellow Christopher Ellison.
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Watch David Krakauer’s interview at 
www.santafe.edu/life

What does Nature care about hearts, brains, and other organs, or, for that 
matter, political parties – in other words, structures within structures?

“We’d like to understand the implica-
tions this has for the environment,” he 
says. “For example, do simple or complex 
organisms experience and live in simple or 
complex environments?”

Working with Flack and Krakauer, 
Ellison developed “Markov organisms,” 
computer-simulated creatures that merge 

insights from biology with information 
processing techniques from computer 
science, to help figure out how life balances 
these trade-offs. Rather than modeling real 

organisms themselves, he focuses on how 
information flows in the ecological system.

It’s early days, Ellison says, but his simula-
tions suggest that life will often evolve to 
match its environment’s complexity – findings 
that are in line with the reflection principle, 
but with some interesting caveats. For one 
thing, evolving Markov organisms tend to 

overshoot their worlds’ 
complexity and might 
take a long time to prune 
unnecessary complexities. 

They’re also suscepti-
ble to “basis mismatch,” a 
problem you know well 

if you’ve ever tried to explain to a tourist how 
to get around in your hometown. To you 
there are just a few steps, but to the novice 
it’s a complex process with many twists and 

turns, and every intersection represents a 
possible misdirection; in sprawling cities like 
Los Angeles, a direction as simple as “take 
Sunset to Vermont and turn left” becomes 
infinitely complex. Markov organisms are 
the same: if their way of solving a problem 
doesn’t line up with how their environments 
constructed it, Ellison’s simulations show, 
Markov organisms’ complexity keeps evolv-
ing upward forever.

But Ellison’s information-centric 
approach has some benefits. One, he says, 

“is that it attempts to answer the question 
of how complexity evolves in an organ-
ism-independent fashion,” meaning that 
the ideas apply equally well to anything 
from bacteria to politics. Similarly, Ellison’s 
method allows the team to describe both an 
organism and its environment’s complexity 
in the same terms, because both derive from 
the same underlying models of information 
processing. Surprisingly, that’s something 
few, if any, other researchers have done.

Constructing predictability
So it appears Nature might favor multicel-
lular life if it affords a certain computational 
power not readily available to single-celled 
organisms. But what does Nature care about 
hearts, brains, and other organs, or, for that 
matter, political parties – in other words, 
structures within structures? 

The answer, Flack says, is that living 
things like their worlds to be predictable, 
and what makes cells and people more likely 
to survive, Nature favors. 

Much of the structure we observe in the 
world, Flack says, probably evolved because 
structure begets stability, hence predictability. 
Groups of genes, cells, or animals change 
their collective behaviors slowly compared 
with individual genes, cells, or animals, giving 
the faster-moving individual components a 
chance to anticipate changes more easily.

Biologists call the idea that plants and 
animals – and genes and organs and so on 

– structure their environments to be more 
stable and predictable “niche construction,” 
and it usually applies to physical structure 
like ants building nests. But it also can be 
applied to temporal structure.

Politics offers, perhaps, a simple example. 
Early U.S. politicians were explicit about 
designing Congress and the rest of govern-
ment so that it would change gradually and 
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According to the reflection principle, organisms are reflections of their environments. Here the environment is represented as a prose excerpt from 
Darwin’s Origin of Species, wherein he contemplates an entangled bank filled with “endless forms most beautiful and most wonderful,” each evolved 
through natural selection. Organism A matches the environment’s complexity while Organism B is less complex than the environment and Organism C is 
more complex than the environment. The research team is asking when evolution satisfies or violates the reflection principle.

be more stable. Even when we complain 
about our slow-moving government, we 
are undoubtedly comforted by that very 
characteristic, because slow is predictable. 
And when our environment is predictable, 
we know how to make sound decisions.

So people construct relatively slow-mov-
ing, predictable institutions. At the same 
time, those institutions help shape the 
behavior of the individuals who created 
them, points out C4 postdoctoral fellow 
Philip Poon, who is examining feedback 
from institutions to explain (in the govern-
ment case) why, for example, Democrats and 
Republicans seem to trade off controlling 
the White House and Congress every few 
terms. A critical issue is, of course, how 
that feedback works from a mechanical 
perspective – that is, how the ways individ-
uals perceive and understand institutions 
influence their decision-making.

Drawing on the theory of phase transi-
tions, the same one that explains why 
changing a seemingly minor variable can 
suddenly shift an entire system from one 
state to another, Flack, Krakauer, and C4 
researcher and former SFI Postdoctoral 
Fellow Bryan Daniels argue that hierarchi-
cal structures bestow another advantage: 
efficient information flow from the 

collective to its individual parts. Systems 
perched on the edge of a phase transition 
are exquisitely sensitive, so that a small or 
localized change “leads to a large change in 
the global dynamics,” Daniels says. Though 
that might seem unstable or chaotic, systems 
near the critical point where a phase transi-

tion begins are actually quite predictable. 
Groups of macaque monkeys – one of 

Flack and the team’s earliest sources of data 
and inspiration – are one system that appears 
to be resting near a phase transition. When 
monkeys aren’t feeling especially aggres-
sive, Daniels says, things are stable, and “if I 
suddenly act out, nothing’s going to happen…
but if [the group is] sitting at the critical 
point then [my] contribution is always more 
important,” and one extra monkey picking a 
fight is enough to kick off a large-scale brawl.

Below the critical point, individual 
monkeys act fairly independently, but right 
at the transition, their behavior is tightly 

“When monkeys aren’t feeling especially aggressive, 
things are stable, but if the group is sitting at the 
critical point, one extra monkey picking a fight 
is enough to kick off a large-scale brawl.”

coordinated and individual monkeys act 
together as one. That, Krakauer empha-
sizes, eases the flow of information from 
the system as a whole to its constituent 
parts, making it all the more predictable. 
Nature is rife with examples: one bird’s 
sudden course correction changing the 

direction of an entire flock, alternating 
Democrat and Republican control of 
Congress, and so on.

Social circuitry
In the abstract, Nature has good reason 
to favor complexity and hierarchy – each 
in its own way makes the tasks of compre-
hension, prediction, and strategizing 
easier. But its a third concept, circuits, 
that grounds Flack and Krakauer’s team 
and lays the practical foundation for 
much of their work.

Usually the word “circuit” conjures 
images of the transistors, microprocessors, 



10    Santa Fe Institute Bulletin  Vol. 28

Time series representation of the distribution of fight sizes in a macaque society. Individuals who fought more than once are represented by a color. 
Grey squares represent individuals who fought only once. An outburst by an individual won’t normally tip the scales. But when the system is perched at 
a phase transition, a brawl among many individuals can erupt.

and lengths of copper wire that make up 
a computer. The analogy is apt. Like an 
electronic circuit, individual components 

– genes, organs, people – informational-
ly bind living things to form a kind of 
biological or social computer. In fact, the 
circuit approach to describing a system 
stems from a hunch that the hierarchical 
scales present throughout nature “arise 

Time

Fight 1
Fight 2

Individuals who fought more than once are represented by a color.
Grey squares represent individuals who fought only once. 
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through a process of collective computa-
tion,” creating slow-changing, predictable 
social and biological structures, Flack says.

Circuits are more than just an analo-
gy, though – they’re the tools that bridge 
the gap between individual and collective 
behavior. And in a scientific field where 
it’s easy to avoid real data, circuits are one 
way Flack and Krakauer’s research group 
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makes sure their theories are a good match 
to the real world. “Our group is committed 
to an empirical approach,” Flack says. “We 
believe that only when these measures are 
developed with an understanding of the 
data generated by real systems will they 
be useful.”

The process of building circuits begins 
by analyzing how a system’s individual 
parts work together. Using the macaque 
fight data, Flack, Krakauer, and former 
SFI Omidyar Fellow Simon DeDeo (now 
at Indiana University Bloomington) devel-
oped a statistical method they dubbed 
inductive game theory to analyze how 
the monkeys reacted to others’ fights. The 
resulting social circuit, Flack says, serves 
as a detailed model “for how the micro-
scopic behavior maps to the functionally 
important macroscopic features of social 
structure,” such as the distribution of fight 
sizes. In other words, to construct a social 
or biological circuit is to understand how a 
group builds and maintains stable, predict-
able information hierarchies.

The final step is to produce a simplified 
social circuit, what the researchers call a 

“cognitive effective theory,” that accurate-
ly predicts how groups behave. The aim 
is to extract the key sorts of interactions 



  April 2014  Santa Fe Institute Bulletin    11

responsible for power structures, fight-size 
distributions, or other macroscopic features, 
using “what we know about individual or 
component cognition to coarse grain or 
compress” social circuits, Flack says. Such 
compression is essential, she says, because 
living things can’t base their decisions on 
what every other living thing is doing; 
instead, they’re forced to pay attention to 
just a few patterns or details of what’s going 
on around them.

The key question here, as collaborator 
and Princeton University graduate student 
Eleanor Brush puts it, is how little infor-
mation individuals need to successfully 
outsmart others.

Accidental or inevitable
Answering questions like that one – or testing 
some of the team’s more abstract predic-
tions – remains a central challenge. Poon, 
for example, describes his studies of election 
cycles and policy change as “toy models” – 
they capture qualitative features of the data 
such as party switching, but don’t stand up 
to more precise, quantitative tests.

Meanwhile, Krakauer and others say 
it’s not always clear how to test particular 
hypotheses, such as the prediction that basis 
mismatch leads to ever-increasing complexity 

in living things. “We’re still looking for some 
compelling example,” Ellison says. “Part of 
the issue is that one can often play the devil’s 
advocate and call into question the example,” 
one reason why his work to construct formal, 
precise measures of complexity is so import-
ant, he says.

New techniques for rapidly analyzing 
genetic data, Krakauer says, might improve 
the situation. Combining those techniques 
with laboratory-based “experimental evolution,” 
in which researchers study the effects of precise 
environmental changes on small organisms 
such as bacteria, could help test some of the 
endeavor’s core ideas, such as the reflection 
principle or the role of phase transitions. 

Another potential avenue is to use “digital 
sources like computer games, where we can 
control, to a large extent, the form of the data 
or the conditions under which they were 
collected,” Krakauer says.

Testing their theories is just one part of the 
team’s ambitious aims. They hope, Flack says, A
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People gather in Washington, D.C. before Martin Luther King Jr.’s “I Have a Dream” speech on Aug. 28, 1963, to demand equalities. 
Individuals tend to move faster and be less predictable than the slow-moving institutions they create. 

to achieve nothing less than an understanding 
of why life is organized the way it is, from the 
smallest bacteria to the largest human insti-
tutions. That requires combining real-world 
observation and abstract mathematical theory 
in novel and creative ways.

And as if that wasn’t enough, Krakauer 
has one more question in mind: is life an 
accident, or is it inevitable? And if life is 
inevitable, well, are we alone? 

“If it’s not a product of a series of random 
accidents, but there’s an underlying law-like 
regularity, that would give us confidence in 
believing in the possibility of life present 
everywhere in the universe,” he says. “So 
when one asks why does it matter whether 
it’s chance or necessity, it matters if we care 
whether we’re alone are not.” ■

Nathan Collins is a freelance science writer, 
new father, and film aficionado based in 
San Francisco. 

“Living things can’t base their decisions on what 
every other living thing is doing; instead, they’re 
forced to pay attention to just a few patterns.”
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“…in mere Time, all things follow 
one another, and in mere Space 
all things are side by side; it is 
accordingly only by the combi-
nation of Time and Space that 
the representation of coexistence 
arises.”  

— Arthur Schopenhauer , On the Fourfold Root 

of the Principle of Sufficient Reason, 1813

Yves Tanguy, Indefinite Divisibility, 1942
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Biological systems – from cells to 
tissues to individuals to societ-
ies – are hierarchically organized 

(e.g. Feldman & Eschel, 1982; Buss 1987; 
Smith & Szathmáry, 1998; Valentine 
& May, 1996; Michod, 2000; Frank, 
2003). To many, hierarchical organiza-
tion suggests the nesting of components or 
individuals into groups, with these groups 
aggregating into yet larger groups. But this 
view – at least superficially – privileges 
space and matter over time and informa-
tion. Many types of neural coding, for 
example, require averaging or summing over neural firing rates. 
The neurons’ spatial location – that they are in proximity – is, 
of course, important, but at least as important to the encoding 

The explanation for the complex, multi-scale structure of biological and social systems 
lies in their manipulation of space and time to reduce uncertainty about the future.

is their behavior in time. Likewise, in 
some monkey societies, as I will discuss 
in detail later in this review, individuals 
estimate the future cost of social inter-
action by encoding the average outcome 
of past interactions in special signals and 
then summing over these signals.  

In both examples, information from 
events distributed in time as well as space  
(Figure 1) is captured with encodings 
that are used to control some behavioral 
output. My collaborators and I in the 
Center for Complexity & Collective 

Computation are exploring the idea that hierarchical organiza-
tion at its core is a nesting of these kinds of functional encodings. 
As I will explain, we think these functional encodings result 
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Figure 1. The dimensionality of the time-space 
continuum, with properties postulated when x 
does not equal 3 and y is larger than 1. Life on 
earth exists in three spatial dimensions and one 
temporal dimension. Biological systems effec-
tively “discretize” time and space to reduce 
environmental uncertainty by coarse-graining 
and compressing environmental time series to 
find regularities. Components use the coarse-
grained descriptions to predict the future, 
tuning their behavior to their predictions. 
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from biological systems 
manipulating space and 
time (Figure 2) to facilitate 
information extraction, 
which in turn facilitates 
more efficient extraction 
of energy.

Th is  information 
hierarchy appears to be 
a universal property of 
biological systems and 
may be the key to one of 
life’s greatest mysteries – 
the origins of biological 
complexity. In this essay, 
I review a body of work by 
David Krakauer, myself, 
and our research group 
that has been inspired 
by many years of work at 

the Santa Fe Institute (e.g. Crutchfield, 1994; Gell-Mann, 
1996; Gell-Mann & Lloyd, 1996; Fontana & Buss, 1996; 
West, Brown, & Enquist, 1997; Fontana & Schuster, 1998; 
Ancel & Fontana, 2000; Stadler, Stadler, Wagner, & Fontana, 
2001; Smith, 2003; Crutchfield & Görnerup, 2006; Smith, 
2008). Our work suggests that complexity and the multi-scale 
structure of biological systems are the predictable outcome 
of evolutionary dynamics driven by uncertainty minimiza-
tion (Krakauer, 2011; Flack, 2012; Flack, Erwin, Elliot, & 
Krakauer, 2013). 

This recasting of the evolutionary process as an inferential 
one1 (Bergstrom & Rosvall, 2009; Krakauer, 2011) is based on 
the premise that organisms and other biological systems can 
be viewed as hypotheses about the present and future environ-
ments they or their offspring will encounter, induced from the 
history of past environmental states they or their ancestors have 
experienced (e.g. Crutchfield & Feldman, 2001; Krakauer & 
Zannotto, 2009; Ellison, Flack, & Krakauer, in prep). This 
premise, of course, only holds if the past is prologue – that is, 
has regularities, and the regularities can be estimated and even 
manipulated (as in niche construction) by biological systems or 
their components to produce adaptive behavior (Flack, Erwin, 
Elliot, & Krakauer, 2013; Ellison, Flack, & Krakauer, in prep). 

If these premises are correct, life at its core is computa-
tional, and a central question becomes: How do systems and 
their components estimate and control the regularity in their 
environments and use these estimates to tune their strategies? 
I suggest that the answer to this question, and the explanation 
for complexity, is that biological systems manipulate spatial 
and temporal structure to produce order – low variance – at 
local scales.

UNCERTAINTY REDUCTION
The story I want to tell starts with the observation that with 
each new level of organization typically comes new function-
ality – a new feature with positive payoff consequences for the 
system as a whole, or for its components (Flack, Erwin, Elliot, 

1  This idea is related to work on Maxwell’s Demon (e.g. Krakauer, 
2011; Mandal, Quan, & Jarzynski, 2013) and the Carnot cycle (e.g. 
Smith, 2003), but we do not yet understand the mapping.

Figure 2. Biological systems – from 
(left to right) Volvox colonies, to slime 
molds, to animal societies, to large-scale 
ecosystems such as reefs, to human 
cities – are hierarchically organized, with 
multiple functionally important time and 
space scales. All feature: 1) components 
with only partially aligned interests 
exhibiting coherent behavior at the 
aggregate level; 2) components that turn 
over and that co-exist in the system at 
varying stages of development;  
3) social structure that persists but 
component behavior that fluctuates; and 
4) macroscopic variation in temporal 
and spatial structure and coupling with 
microscopic behavior, which has func-
tional implications when the components 
can perceive – in evolutionary, develop-
mental, or ecological time – regularities 
at the macroscopic scale.

1. 2.
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& Krakauer, 2013). Policing in a pigtailed macaque group is an 
example. Once a heavy tailed distribution of power – defined as 
the degree of consensus in the group that an individual can win 
fights (see Flack & Krakauer, 2006; Boehm & Flack, 2010; Brush, 
Krakauer, & Flack, 
2013) – becomes effec-
tively institutionalized 
(here meaning hard to 
change) policing (an 
intrinsically costly 
strateg y) becomes 
affordable, at least to 
those animals that sit 
in the tail of the power 
distribution: those 
super powerful monkeys who are rarely or never challenged 
when they break up fights (Flack, de Waal, & Krakauer, 2005; 
Flack, Girvan, de Waal, & Krakauer, 2006). 
    My collaborators and I propose that a primary driver of the 
emergence of new functionality such as policing is the reduc-
tion of environmental uncertainty through the construction 
of nested dynamical processes with a range of characteris-
tic time constants (Flack, Erwin, Elliot, & Krakauer, 2013). 
These nested dynamical processes arise as components extract 
regularities from fast, microscopic behavior by coarse-grain-
ing (or compressing) the history of events to which they have 
been exposed. 

Proteins, for example, can have a long half-life relative to 
RNA transcripts, and can be thought of as the summed output 
of translation. Cells have a long half-life relative to proteins, 

and are a function of the summed output of arrays of spatially 
structured proteins. Both proteins and cells represent some 
average measure of the noisier activity of their constituents. 
Similarly, a pigtailed macaque’s estimate of its power is a kind 

of average measure of 
the collective percep-
tion in the group 
that the macaque is 
capable of winning 
fights, and this is a 
better predictor of 
the cost the macaque 
will pay during fights 
than the outcome of 
any single melee, as 

these outcomes can fluctuate for contextual reasons. These 
coarse-grainings, or averages, are encoded as slow variables 
(Flack & de Waal, 2007; Flack, 2012; Flack, Erwin, Elliot, 
& Krakauer, 2013; see also Feret, Danos, Krivine, Harner, & 
Fontana, 2009, for a similar idea). Slow variables may have a 
spatial component as well as a temporal component, as in the 
protein and cell examples (Figure 6), or, minimally, only a 
temporal component, as in the monkey example.

As a consequence of integrating over abundant microscopic 
processes, slow variables provide better predictors of the local 
future configuration of a system than the states of the fluctuating 
microscopic components. In doing so, they promote accelerated 
rates of microscopic adaptation. Slow variables facilitate adapta-
tion in two ways: They allow components to fine-tune their 
behavior, and they free components to search, at low cost, a larger 

3. 4. 5.

Slow variables provide better predictors 
of the local future configuration of a 

system than the states of the fluctuating 
microscopic components.”
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Figure 3. A sea urchin gene regulatory circuit. The empirically derived circuit describes the Boolean rules for coordinating genes and 
proteins to produce aspects of the sea urchin’s phenotype – in this case, the position of cells in the endomesoderm at 30 hours since 
fertilization. Edges indicate whether a node induces a state change in another node, here genes and proteins. The circuit is a rigorous 
starting point for addressing questions about the logic of development and its evolution. In computational terms, the input is the set of 
relevant genes and proteins and the output is the target phenotypic feature. 



  April 2014  Santa Fe Institute Bulletin    17

E
R

IC
 D

A
V

ID
S

O
N

/C
A

LT
E

C
H

space of strategies for extracting resources from the environment 
(Flack, 2012; Flack, Erwin, Elliot, & Krakauer, 2013). This 
phenomenon is illustrated by the power-in-support-of-policing 
example and also by work on the role of neutral networks in 
RNA folding. In the RNA case, many different sequences can 
fold into the same secondary structure. This implies that over 
evolutionary time, structure changes more slowly than sequence, 
thereby permitting sequences to explore many configurations 
under normalizing selection (Fontana & Schuster, 1998; Schuster 
& Fontana, 1999; Ferrada & Krakauer, in prep).

NEW LEVELS OF ORGANIZATION
As an interaction history builds up at the microscopic level, 
the coarse-grained representations of the microscopic behav-
ior consolidate, becoming for the components increasingly 
robust predictors of the system’s future state. 

We speak of a new organizational level when the system’s 
components rely to a greater extent on these coarse-grained or 
compressed descriptions of the system’s dynamics for adaptive 
decision-making than on local fluctuations in the microscop-
ic behavior and when the coarse-grained estimates made by 
components are largely in agreement (Krakauer, Bertschinger, 
Ay, Olbrich, & Flack, in review). The idea is that convergence on 
these “good-enough” estimates underlies non-spurious correlated 
behavior among the components. This in turn leads to an increase 
in local predictability (e.g. Flack & de Waal, 2007; Brush, Krakauer, 
& Flack, 2013) and drives the construction of the information 
hierarchy. (Note that increased predictability can seem the product 
of downward causation in the absence of careful analysis of the 
bottom-up mechanisms that actually produced it.)

THE STATISTICAL MECHANICS & THERMODYNAMICS OF BIOLOGY
Another way of thinking about slow variables is as a functionally 
important subset of the system’s potentially many macroscop-
ic properties. An advantage of this recasting is that it builds a 
bridge to physics, which over the course of its maturation as a 
field grappled with precisely the challenge now before biology: 
understanding the relationship between behavior at the individ-
ual or component level and behavior at the aggregate level.  

In physics
As discussed in Krakauer & Flack (2010), the debate in physics 
began with thermodynamics – an equilibrium theory treating 
aggregate variables – and came to a close with the maturation 
of statistical mechanics – a dynamical theory treating micro-
scopic variables.

Thermodynamics is the study of the macroscopic behavior 
of systems exchanging work and heat with connected systems or 
their environment. The four laws of thermodynamics all operate 
on average quantities defined at equilibrium – temperature, 
pressure, entropy, volume, and energy. These macroscopic 
variables exist in fundamental relationships with each other, as 
expressed, for example, in the ideal gas law. Thermodynamics is 
an extremely powerful framework as it provides experimentalists 
with explicit, principled recommendations about what variables 
should be measured and how they are expected to change relative 
to each other, but it is not a dynamical theory and offers no 
explanation for the mechanistic origins of the macroscopic 
variables it privileges. This is the job of statistical mechanics. By 
providing the microscopic basis for the macroscopic variables 
in thermodynamics, statistical mechanics establishes the condi-
tions under which the equilibrium relations are no longer valid 
or expected to apply. The essential intellectual technologies 
behind much of statistical mechanics are powerful tools for 
counting possible microscopic configurations of a system and 
connecting these to macroscopic averages. 

In biology
This brief summary of the relation between thermodynam-
ics and statistical mechanics in physics is illuminating for two 
reasons. On the one hand it raises the possibility of a potentially 

This “Up to 30 Hour Overview” primarily shows the endomesoderm network architecture 
as it exists after 21 hours, with the additon of all PMC components starting at 6 hours, 

the inclusion of the Delta–Notch signal from PMC to Veg2, the presence of Wnt8 in Veg2 
Endoderm, the nB–TCF and Otx inputs into Blimp1 in NSM, and Gene X in the NSM; the 

latter four of these features are no longer present by 21 hours. Consult the other models 
to see all the network elements and interactions in he correct temporal context.

Copyright © 2001–2011 Hamid Bolouri and Eric Davidson
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deep division between physical and biological systems: So far 
– and admittedly biology is young – biology has had only limit-
ed success in empirically identifying important macroscopic 
properties and deriving these from first principles rooted in 
physical laws or deep evolved constraints2. This may be the case 
because many of the more interesting macroscopic properties 
are slow variables that result from the collective behavior of 
adaptive components, and their functional value comes from 
how components use them, making them fundamentally subjec-
tive (see Gell-Mann & Lloyd, 1996 for more on subjectivity) 
and perhaps even nonstationary3.

On the other hand, the role of statistical mechanics in 
physics suggests a way forward. If we have intuition about 
which macroscopic properties are important – that is, which 
macroscopic properties are slow variables – and we can get 
good data on the relevant microscopic behavior, we can proceed 
by working upward from dynamical many-body formalisms 
to equilibrium descriptions with a few favored macroscopic 
degrees of freedom (Levin, Grenfell, Hastings, & Perelson, 
1997; Krakauer & Flack, 2010; Krakauer et al., 2011; Gintis, 
Doebeli, & Flack, 2012).

A STATISTICAL MECHANICS-COMPUTER SCIENCE-
INFORMATION THEORETIC HYBRID APPROACH
The most common approach to studying the relationship between 
micro and macro in biological systems is perhaps dynamical 
systems and, more specifically, pattern formation (for examples, 
see Sumpter, 2006; Ball, 2009; Couzin, 2009; Payne et al., 2013). 
However, if, as we believe, the information hierarchy results from 
biological components collectively estimating regularities in their 
environments by coarse-graining or compressing time series data, 
a natural (and complementary) approach is to treat the micro 
and macro mapping explicitly as a computation.

Elements of computation in biological systems
Describing a biological process as a computation minimally 
requires that we are able to specify the output, the input, and 
the algorithm or circuit connecting the input to the output 
(Flack & Krakauer, 2011; see also Mitchell, 2010; Valiant, 
2013). A secondary concern is how to determine when the 
desired output has been generated. In computer science 
this is called the termination criterion or halting problem. 
In biology it potentially can be achieved by constructing 
nested dynamical processes with a range of timescales, with 
the slower timescale processes providing the “background” 
against which a strategy is evaluated (Flack & Krakauer, 2011), 
as discussed later in this paper in the section on Couplings. 

2   The work on scaling in biological systems shows a fundamental relation-
ship between mass and metabolic rate, and this relationship can be derived 
from the biophysics (e.g. West, Brown, & Enquist, 1997). Bettencourt and 
West are now investigating whether similar fundamental relationships can be 
established for macroscopic properties of human social systems, like cities (e.g. 
Bettencourt, Lobo, Helbing, Kuhnert, & West, 2007; Bettencourt, 2013). 

3   With the important caveat that in biology the utility of a macroscop-
ic property as a predictor will likely increase as consensus among the 
components about the estimate increases, effectively reducing the subjec-
tivity and increasing stationarity (see also Gell-Mann & Lloyd, 1996).
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Figure 4. Cognitive effective theories for one macroscopic property of 
a macaque society: the distribution of fight sizes (a). To reduce circuit 
complexity we return to the raw time series data and remove as much noise 
as possible by compressing the data. In the case of our macaque dataset, this 
reveals which individuals and subgroups are regular and predictable conflict 
participants. We then search for possible strategies in response to these 
regular and predictable individuals and groups. This approach returns a family 
of circuits (b is an example), each of which has fewer nodes and edges than 
the full circuit (c). These circuits are simpler and more cognitively parsimo-
nious. We then test the reduced circuits against each other in simulation 
to determine how well they recover the target macroscopic properties.

a.

b.

c.
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A macroscopic property can be said to be an output of 
a computation if it can take on values that have functional 
consequences at the group or component level, if it is the result 
of a distributed and coordinated sequence of component inter-
actions under the operation of a strategy set, and if it is a stable 
output of input values 
that converges (termi-
nates) in biologically 
relevant time (Flack 
& Krakauer, 2011). 
Examples studied 
in biolog y include 
aspects of vision such 
as edge detection 
(e.g. Olshausen & 
Field, 2004), phenotypic traits such as the average position 
of cells in the developing endomesoderm of the sea urchin 
(e.g. Davidson, 2010; Peter & Davidson, 2011), switching 
in biomolecular signal-transduction cascades (e.g. Smith, 
Krishnamurthy, Fontana, & Krakauer, 2011), chromatin 
regulation (e.g. Prohaska, Stadler, & Krakauer, 2010), and 
social structures such as the distribution of fight sizes (e.g. 
DeDeo, Krakauer, & Flack, 2010; Flack & Krakauer, 2011; 
Lee, Daniels, Krakauer, & Flack, in prep) and the distribution 

of power in monkey societies (e.g. Flack, 2012; Flack, Erwin, 
Elliot, & Krakauer, 2013).

The input to the computation is the set of elements imple-
menting the rules or strategies. As with the output, we do not 
typically know a priori which of many possible inputs is relevant, 

and so we must make 
an informed guess 
based on the proper-
ties of the output. 
In the case of the sea 
urchin’s endomeso-
derm, we might start 
with a list of genes that 
have been implicated 
in the regulation of 

cell position. In the case of the distribution of fight sizes in a 
monkey group, we might start with a list of individuals partic-
ipating in fights. 

Reconstructing the microscopic behavior
In biological systems the input plus the strategies constitute 
the system’s microscopic behavior. There are many approach-
es to reconstructing the system’s microscopic behavior. The 
most powerful is an experiment in which upstream inputs to a 

Figure 5. A comparison of Markov organisms in two environments: a Markov environment (left) and a non-Markov environment (right). In the top two plots, 
organismal complexity is plotted against time for each organism (organisms are represented by varying colors) and for many different sequences of 500 
environmental observations; the bold red line shows the average organismal complexity, which in the Markov environment tends toward the environmental 
complexity and in the non-Markov environment exceeds it. In the bottom plots, the probability that a random organism has order k is plotted against time.
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In all biological systems there are 
multiple components interacting and 

simultaneously coarse graining to make 
predictions about the future.”
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target component are clamped off and the output of the target 
component is held constant. This allows the experimentalist 
to measure the target component’s specific contribution to 
the behavior of a downstream component (Pearl, 2010). This 
type of approach is used to construct gene regulatory circuits 
mapping gene-gene and gene-protein interactions to pheno-
typic traits (Figure 3).

When such experiments are not possible, causal relation-
ships can be established using time series analysis in which 
clamping is approximated statistically (Ay, 2009; Pearl, 2010). 
My collaborators and I have developed a novel computational 
technique, called Inductive Game Theory (DeDeo, Krakauer, & 
Flack, 2010; Flack & Krakauer, 2011; Lee, Daniels, Krakauer, 
& Flack, in prep), that uses a variant of this statistical clamp-
ing principle to extract strategic decision-making rules, game 
structure, and (potentially) strategy cost from correlations 
observed in the time series data. 

Collective computation through stochastic circuits
In all biological systems, of course, there are multiple compo-
nents interacting and simultaneously coarse graining to make 
predictions about the future. Hence the computation is inher-
ently collective. A consequence of this is that it is not sufficient 
to simply extract from the time series the list of the strategies 

in play. We must also examine how different configurations of 
strategies affect the macroscopic output. One way these config-
urations can be captured is by constructing Boolean circuits 
describing activation rules as illustrated by the gene regulato-
ry circuit shown in Figure 3, which controls cell position (the 
output) at thirty hours from fertilization in the sea urchin (Peter 
& Davidson, 2011). In the case of our work on micro to macro 
mappings in animal societies, we describe the space of micro-
scopic configurations using stochastic “social” circuits (Figure 
4) (DeDeo, Krakauer, & Flack, 2010; Flack & Krakauer, 2011; 
Lee, Daniels, Krakauer, & Flack, in prep).

Nodes in these circuits are the input to the computation. 
As discussed above, the input can be individuals or subgroups, 
or they can be defined in terms of component properties like 
age or neurophysiological state. A directed edge between two 
nodes indicates that the “receiving node” has a strategy for the 
“sending node” – and the edge weight can be interpreted as 
the above-null probability that the sending node plays the 
strategy in response to some behavior by the receiving node in 
a previous time step. Hence, an edge in these circuits quantifies 
the strength of a causal relationship between the behaviors of a 
sending and receiving node. 

Sometimes components have multiple strategies in their 
repertoires. Which strategy is being played at time t may 

Figure 6. The cell can be thought of as a slow variable to the extent it is a function of the summed output of arrays of spatially 
structured proteins and has a long half-life compared to its proteins. Features that serve as slow variables provide better 
predictors of the local future configuration of a system than the states of the fluctuating microscopic components. We propose 
that when detectable by the system or its components, slow variables can reduce environmental uncertainty and, by increasing 
predictability, promote accelerated rates of microscopic adaptation. 
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vary with context. These meta-strategies can be captured 
in the circuit using different types of gates specifying how 
a component’s myriad strategies combine (see also Feret, 
Davis, Krivine, Harmer, & Fontana, 2009). By varying the 
types of gates and/or the strength of causal relationships, 
we end up with multiple alternative circuits – a family of 
circuits – all of which are consistent with the microscopic 
behavior, albeit with different degrees of precision (Lee, 
Daniels, Krakauer, & Flack, in prep).  Each circuit in the 
family is essentially a model of the micro-macro relationship 
and so serves as a hypothesis for how strategies combine 
over nodes (inputs) to produce to the target output (Lee, 
Daniels, Krakauer, & Flack, in prep). We test the circuits 
against each other in simulation to determine which can 
best recover the actual measured macroscopic behavior of 
our system. 

Cognitive effective theories for collective computation
The circuits describing the microscopic behavior can be compli-
cated, with many “small” causes detailed, as illustrated by the gene 
regulatory circuit shown in Figure 3. The challenge – once we 
have rigorous circuits – is to figure out the circuit logic (Flack 
& Krakauer, 2011; 
see also Feret, Davis, 
Krivine, Harmer, & 
Fontana, 2009).

There are many 
ways to approach 
this problem. Our 
approach it is to build 
what’s called in physics 
an effective theory: a 
compact description 
of the causes of a macroscopic property.  Effective theories for 
adaptive systems composed of adaptive components require 
an additional criterion beyond compactness. As discussed 
earlier in this essay, components in these systems are tuning 
their behaviors based on their own effective theories – coarse-
grained rules (see also Feret, Davis, Krivine, Harmer, & Fontana, 
2009) – that capture the regularities (Daniels, Krakauer, & 
Flack, 2012). If we are to build an effective theory that explains 
the origins of functional space and time scales – new levels of 
organization – and ultimately the information hierarchy, the 
effective theory must be consistent with component models of 
macroscopic behavior, as these models, through their effects on 
strategy choice, drive that process. In other words, our effective 
theory should explain how the system itself is computing. 

We begin the search for cognitively principled effective theories 
using what we know about component cognition to inform how 
we coarse-grain and compress the circuits (Flack & Krakauer, 2011; 
Lee, Daniels, Krakauer, & Flack, in prep). This means taking into 
account, given the available data, the kinds of computations compo-
nents can perform and the error associated with these computations 
at the individual and collective levels, given component memory 
capacity and the quality of the “data sets” components use to estimate 

regularities (Krakauer, Flack, DeDeo, & Farmer, 2010; Flack & 
Krakauer, 2011; Daniels, Krakauer, & Flack, 2012; Ellison, Flack, 
& Krakauer, in prep; all building on Gell-Mann, 1996).

As we refine our understanding of the micro-macro mapping 
through construction of cognitive effective theories, we also 
refine our understanding of what time series data constitute the 
“right” input – and hence the building blocks of our system. 
And, by investigating whether our best-performing empiri-
cally justified circuits can also account for other potentially 
important macroscopic properties, we can begin to establish 
which macroscopic properties might be fundamental and 
what their relation is to one another – the thermodynamics 
of biological collectives.

Couplings, information flow, and macroscopic tuning
Throughout this essay I have stressed the importance of slowness 
(effective stationarity) for prediction. Slowness also has costs, 
however. Consider our power example. The power structure 
must change slowly if individuals are to make worthwhile 
investments in strategies that work well given the structure, 
but it cannot change too slowly or it may cease to reflect the 
underlying distribution of fighting abilities on which it is based 

and, hence, cease to be 
a good predictor of 
interaction cost (Flack, 
2012; Flack, Erwin, 
Elliot, & Krakauer, 
2013). The question 
we must answer is, 
what is the optimal 
coupling between 
macroscopic and 
microscopic change, 

and can systems, by manipulating how components are organized 
in space and time, get close to this optimal coupling? 

One approach to this problem is to quantify the degeneracy 
of the target macroscopic property and then perturb the circuits 
by either removing nodes, up- or down-regulating node behav-
ior, or restructuring higher order relationships (subcircuits) to 
determine how many changes at the microscopic level need to 
occur to induce a state change at the macroscopic level. 

Another approach is to ask how close the system is to a 
critical point – that is, how sensitive the target macroscopic 
property is to small changes in parameters describing the micro-
scopic behavior. Many studies suggest that biological systems 
of all types sit near the critical point (Mora & Bialek, 2011). 
A hypothesis we are exploring is that sitting near the critical 
point means that important changes at the microscopic scale 
will be visible at the macroscopic scale (Daniels, Krakauer, & 
Flack, in prep). Of course this also has disadvantages as it means 
small changes can potentially cause big institutional shifts, 
undermining the utility of coarse-graining and slow variables 
for prediction (Flack, Erwin, Elliot, & Krakauer, 2013). 

If balancing trade-offs between robustness and prediction 
on the one hand, and adaptability to changing environments 

A hypothesis we are exploring is that 
sitting near the critical point means that 

important changes at the microscopic scale 
will be visible at the macroscopic scale.”
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on the other, can be achieved by modulating the coupling 
between scales (Flack, Hammerstein, & Krakauer, 2012; Flack, 
Erwin, Elliot, & Krakauer, 2013), we should be able to make 
predictions about whether a system is far from, near, or at the 
critical point based on whether the data suggest that robustness 
or adaptability is more important given the environment and its 
characteristic timescale (Daniels, Krakauer, & Flack, in prep). 
This presupposes that the system can optimize where it sits with 
respect to the critical point, implying active mechanisms for 
modulating the coupling. We are working to identify plausi-
ble mechanisms using a series of toy models to study how the 
type of feedback from the macroscopic or institutional level 
to the microscopic behavior influences the possibility of rapid 
institutional switches (Poon, Flack, & Krakauer, in prep; see 
also Sabloff, in prep for related work on the rise of the state in 
early human societies). 

COMPLEXITY
This essay covers a lot of work, so allow me to summarize. I 
suggested that the origins of the information hierarchy lie in 
the manipulation of space and time to reduce environmental 
uncertainty. I further suggested that uncertainty reduction is 
maximized if the coarse-grained representations of the data the 
components compute are in agreement (because this increases 

the probability that everyone is making the same predictions 
and so tuning the same way). As this happens, the coarse-grained 
representations consolidate into robust, slow variables at the 
aggregate level, creating new levels of organization and giving 
the appearance of downward causation.

I proposed that a central challenge lies in understanding 
what the mapping is between the microscopic behavior and 
these new levels of organization. (How exactly do everyone’s 
coarse grainings converge?) I argued that in biology, a hybrid 
statistical mechanics-computer science-information theoretic 
approach (see also Krakauer et al., 2011) is required to establish 
such mappings. Once we have cognitively principled effective 
theories for mappings, we will have an understanding of how 
biological systems, by discretizing space and time, produce 
information hierarchies. 

Where are we, though, with respect to explaining the origins 
of biological complexity?

The answer we are moving toward lies at the intersection 
of the central concepts in this essay. If evolution is an infer-
ential process with complex life being the result of biological 
systems extracting regularities from their environments to 
reduce uncertainty, a natural recasting of evolutionary dynam-
ics is in Bayesian terms (Ellison, Flack, & Krakauer, in prep). 
Under this view, organism and environment can be interpreted 
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as k-order Markov processes and modeled using finite-state 
hidden Markov models (Figure 5). Organisms update prior 
models of the environment with posterior models of observed 
regularities. We are exploring how the Markov order (a proxy 
for memory) of organisms changes as organisms evolve to 
match their environment, quantifying fit to the environment 
with model selection. We use information-theoretic measures 
to quantify structure. Our approach allows us to evaluate the 
memory requirements of adapting to the environment given its 
Markov order, quantify the complexity of the models organ-
isms build to represent their environments, and quantitatively 
compare organismal and environmental complexity as our 
Markov organisms evolve. We hypothesize that high degrees of 
complexity result when there is regularity in the environment, 
but it takes a long history to perceive it and an elaborate model 
to encode it (Ellison, Flack, & Krakauer, in prep).
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