Spatiotemporal Dynamics of Food Exchange Networks in Honeybees Golnar Gharooni Fard¹, Morgan Byers¹, Varad Deshmukh¹, Chad Topaz², Elizabeth Bradley^{1,3}, and Orit Peleg^{1,3} ¹ Department of Computer Science, University of Colorado, Boulder, CO, USA ² Williams College Williamstown, MA, USA ³ Santa Fe Institute, Santa Fe, NM, USA #### Introduction - Trophallaxis, the direct transfer of food among nestmates serves not only as a feeding mechanism but also as a medium for information exchange among workers, helping them coordinate their activities within the hive [1]. - Using an integrated experimental-modeling approach, we aim to study the dynamics of food distribution among honeybees. #### **Research Questions** - 1. What spatiotemporal patterns arise during food exchange interactions? - 2. Can we characterize phase changes in the collective behavior? - 3. What is the effect of aggregation for food exchange? - 4. What communication mechanism among bees leads to aggregation formation? ### **Behavioral Experiments** - Six different colonies of honeybees *Apis* mellifera L. were divided into two groups. - One group was deprived of food for 24 hours before each experiment, while others had constant access to food. - These fed bees, which comprised ~10% of the whole population in each experiment, were carefully marked with a pink circle on their thorax. ### **Topological Data Analysis** Our experimental analysis described in [2] suggests that bees aggregate to share food. - We use TDA, a framework from applied mathematics, to analyze the complex morphology of our data. - The goal is to characterize the group's dynamics via the time evolution of topological invariants called Betti(β) numbers, accounting for persistence of topological features across multiple scales. Our focus is on tracking the value of β_0 (*i.e.*, number of connected components). - We use the CROCKER plot [3] representation of our results and then perform clustering on the norms of the CROCKER slices to detect any possible regime shift. # Data-Driven Agent-Based Model 1. Check immediate r —neighborhood, If $d \le 2r$, then agents will move one step toward each other at the next timestep (attraction parameter r) - 2. Modify heading by $\Delta\theta$ drawn from a uniform distribution and take a random walk step (angle parameter θ^*) - 3. Check for encounter (distance parameter d) - 4. Exchange food: $f_i(t+1) = f_i(t) \pm \frac{\Delta f(t)}{2}$ - 5. Loop until the food distribution is uniform (variance threshold) - $\text{O Convergence: } \sigma^2(t) \leq \sigma_{threshold}^2$ $\sigma^2(t+1) \sigma^2(t) \leq \Delta \sigma_{threshold}^2$ ## Insights from the Model - Short range attractions increase the efficiency of food distribution. - Comparing the cluster sizes across real and simulated bees show that model with attraction is a better match to the natural behavior of the bees compared to a homogenous random walk [3]. # Communication for Aggregation - We train a machine learning algorithm developed in [4] to identify the positions and directions of the scenting events in our experiments. - We then correlate the scenting events with the spatiotemporal density of bees by treating the positions $(S_{i,t}^p)$ and directions $(S_{i,t}^d)$ vectors as a set of gradients that define a minimal surface of height f(x, y, t). - We compute the value of normalized mutual information $MI\langle f \rangle_t$ between the attractive surface averaged over 10 minutes after the fed bees are in and the density of the bees $\rho(x, y, t)$. - Our results confirm that there is strong correlation, $MI\langle f \rangle_t = 0.44$, between scenting events and the location of the food exchange aggregations. $$MI(f(x, y, t); \rho(x, y, t)) = \sum_{f_i \in f} \sum_{\rho_i \in \rho} P_{(f, \rho)}(f_i, \rho_i) \log \frac{P_{(f, \rho)}(f_i, \rho_i)}{P_{(f)}(f_i)P_{(\rho)}(\rho_i)}$$ ### References - [1] Greenwald et al. Scientific Reports, 2015. - [2] Gharooni Fard et al. MIT Press, 2020. - [3] Ulmer et al. PLOS ONE, 2019. - [4] Nguyen et al. PNAS, 2020.