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While agent-based models (ABMs) are becoming a dominant tool for studying emergence of
social phenomena, they still seem inaccessible far from capturing the immense complexity of social
realities. Thus, ever more complicated ABMs are developed, hoping to bridge this gap by better
accounting for complexity of individuals. In this work, we illustrate an opposing view, suggesting
that complexity can arise from the appropriate choice of collective variables to study, even in the
simplest ABMs — shifting the focus from generating the data to interpreting the data. In particular,
we simulate a very simple ABM — similar to Axelrod model, but with no homophily — and rather
than analyzing the data directly, focus on the semantic network emergent in the culture. We play
with how social network topology affects emergence of ideological structures, and entertain questions
regarding complex concept formation, “memetic” evolution, and influence of globalization. This way
we try to illustrate that a variety of rich sociological questions can be addressed even in a simple

model by taking the appropriate perspective.

I. INTRODUCTION

One of the central concepts in complex systems
research is emergence: where simple microscopic
rules give rise to rich and diverse macroscopic phe-
nomenology [Il [2]. This raises the enticing challenge
to try explaining the vast richness of social behavior
as an emergent phenomenon. While such ideas have
tickled people’s imagination for nearly a century [3-
5], most of the results in social sciences have largely
assumed that the intricacies of society arise from
the complexity of individuals. Indeed, it is difficult
to imagine that culture, religion, language, science,
economics and war could all arise as complex collec-
tive phenomena from some simple individual rules.
Nonetheless, as social sciences get better at isolat-
ing the key factors driving social causation on all
scales, we can hope to eventually develop sensible
quantitative models of the same.

The main attempts at quantitative understanding
of cultural emergence have come from constructing
various agent-based models (ABMs) [6]. Perhaps the
best-known of these is the Axelrod model [5], which
gave rise to a vast number of extensions and modi-
fications, studied both numerically and analytically
in the last decades [6]. ABMs as an approach have
the mixed blessing of flexibility — it is excessively
easy to construct and modify the interaction rules of
the agents, which often allows to achieve nearly any
collective phenomenon, thus providing little predic-
tive power. This is essentially a generalized problem
of over-fitting, which makes the whole approach of
using ABMs a bit of an art, with somewhat fuzzy
interpretations [7]. Nonetheless, the alternatives are
limited, and many of them can be re-stated as cer-
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tain restricted ABMs, due to the generality of that
framework [8].

At the same time, ABMs often seem too simple
to faithfully capture social phenomena. The Axel-
rod model for cultural dynamics, for example, repre-
sents each agent as a list of several numbers, which
are supposed to stand for ”beliefs, attitudes, and be-
haviors” of individuals, and can then be exchanged
among neighbors according to some rules [5]. How-
ever, if we hope to really capture the richness of
human behaviors, we must admit that representing
a culture by just a vector is insufficient. While it is
true that an individual may be faithfully represented
by some (large) bit-string, it is not purely that in-
formation that makes people interesting, but rather
how that information shapes their dynamic behav-
ioral patterns in their environment [2]. We must thus
look much deeper into the possible perspectives on
this information and its consequences for the agents
(e.g., [9)).

The goal of this work is to develop an approach
to social modeling that addressed these two issues
by, on the one hand, keeping the ABMs we use very
simple, so as not to drown any insights in a plethora
of tuning parameters, while on the other hand, rep-
resenting the resulting dynamics in ways that have
more realistic social interpretation. In particular, we
set up a simplified version of the Axelrod model, and
look at the resulting data in terms of the semantic
networks present in the emergent culture. This way,
our algorithm runs on a social network of agents with
fixed topology, where dynamical variables (”mental
states”) live on the nodes. The data we produce,
on the other hand, is a semantic network of ”ideas”,
with fixed node identity, but dynamic edge weights
and topology, representing how related the two ideas
are in the culture. Such semantic networks, while of
interest in sociology [I0] and computer science [11],
have not been explored in ABMs before.
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The paper is structured as follows. Section [[T] ex-
plains our algorithm and modeling choices. In sec-
tion [[IT] we illustrate the typical dynamics of our
model, and show results for some sample questions
we could ask in this context. Section [[V] expounds
on the broader takeaways from our setup, showing
how it naturally raises new questions not only for
numerical models, but for real-world social dynam-
ics themselves.

II. SIMULATION

We designed an agent-based model (ABM) to look
at how interactions among individuals give rise to
emergence and evolution of ideologies. We construct
a social network, whose IV vertices represent individ-
ual agents, each of whom is described by a length-
n binary string (fig]la] and fig[2] left). This string
encodes whether or not the given individual knows
each of n possible “ideas” that exist in our “soci-
ety.” We further constrain each agent’s memory to
allow for at-most m < n distinct ideas. The dy-
namics then proceed asynchronously among random
neighbor-pairs, where each time an agent learns one
new idea from their neighbor, thus forgetting one old
idea of their own due to memory constraint (ﬁg.
The semantic network is then constructed out of this
simulation data (and thereby does not affect the dy-
namics) by taking the ideas known by anyone in
the social network as nodes, and connecting them
by edges with weights proportional to the frequency
with which the two ideas occur together (ﬁg right).
This way it captures the structure and relationships
of ideologies present in the culture. Following are
the details of the algorithm construction.

A set of interacting individuals can be represented
by an undirected unweighted graph, G = (V, E) (left
side of ﬁg. Individuals are the set of nodes in
the graph, where each individual is parametrized
by a binary vector of length n, and each individ-
ual is further constrained so that the (1 magni-
tude of its representative vector, v;, is m < n:
V =A{v; € {0,1}" sit. v = m | 0 < i < N}
Intuitively, an individual v; can be thought of as an
ordered list of “ideas,” where v;, = 1 represents idea
o as present. As there are only so many ideas an
individual can have — there are only so many opin-
ions a person can reasonably sustain in their mind —
the number of allowable present ideas is limited to
m < n for any individual, where n is the total num-
ber of ideas in existence. The edges of the graph
are the set of allowable interactions of the individ-
ual e : VxV — {0, 1}, where individual v; is capable
of interacting with individual v; iff e(é,j) = 1. For
the implementation of the simulation, F is an N x N

binary symmetric matrix and V' is an N X n binary
matrix.

Ideas are updated by choosing an individual, A,
uniformly at random, and then selecting a second
‘neighbouring’ individual, B, uniformly at random
from the set of neighbours n(A4) = {i | e(A,i) =
1,A # i} (see figll). A ‘adopts’ a new idea from
B by choosing an index o such that v, = 1 and
v40 = 0, and then assigning this idea to v4, mak-
ing v4, = 1. Due to the restriction of finite-memory
|[val = m, A must now forget one of their old ideas,
and so another index p is chosen such that v4, =1
and vp, = 0, and is turned to zero. This dynamic
represents the diffusion of an idea between two indi-
viduals; as two individuals interact more over time,
they will adopt ideas from each other becoming more
similar. In contrast to Axelrod’s cultural model, the
probability of individual interaction is independent
of their idea-vectors v; — as such dependence intro-
duces additional complexity and parameters into our
ABM, effectively allowing social network topology to
change.

The initial topology of the individuals graph has
an important effect on the idea dynamics. The con-
nectivity of the individual graph is static over the
simulation time, and is defined by the edge matrix.
In the next section, we discuss our results for several
qualitatively distinct social network topologies.

The semantic network is a reduced graph for un-
derstanding the global behaviours of ideas irrespec-
tive of the individuals having those ideas (right
side of ﬁg. It is an undirected weighted graph
H = (D,R) where D = {d, | 0 < 0 < n, Ju; €
V vj, = 1} and edges r : D x D — [0,1]. Simply,
the semantic network is a graph where a node exists
for each idea that is present in some individual in
G. The weights between the vertices in H are cal-
culated by using the normalised correlation between
two ideas in G:

N
1
r(o,p) = N § VioVip (1)
i=1

This gives the probability that if you talked to
a random individual in the population, they would
know both ideas o and p, giving a measure of how
closely related those two ideas are.

IIT. RESULTS

In this section, we look at how the topology of the
social network influences the dynamics of the seman-
tic network emergent in the culture. Figure 2] shows
snapshots of the two dual networks at some interme-
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FIG. 1: (a). The social network consisting of
individuals. Here we focus on node A colored in
red and its neighbors colored in blue. (b). Table
showing the pairwise interaction between the agent
(node A) and one of its randomly chosen neighbor
(node B). Binary bits represent their vector of ideas
at a certain time. At time t = n, both shaded and
dashed squares show the ideas agent A does not
possess while its neighbor B does, and the dashed
squares show the randomly chosen bit that agent A
will learn from its neighbor B through interaction
based on the difference in their idea set. And the
shaded circle shows the randomly chosen bit which
A will lose by obtaining one more idea from B given
the limited number of ideas one can possess. At
time t = n + 1, the first idea in the vector of A has
flipped to 1 as a result of the pairwise interaction.

diate times in the evolution, for two different social
network topologies. The simulation described above
always leads to convergence to mono-culture after
sufficiently long times, as differences among neigh-
bors get smoothed out by the dynamics. As this hap-
pens, and one by one ideas get entirely ”forgotten”
in the society, the corresponding nodes get discon-
nected from the semantic network. Figure [3al shows
how the size of the semantic network thus drops off
over time until reaching its smallest configuration at
mono-culture. At this point every agent knows the
same m = 7 ideas, the semantic network is fully and
homogeneously connected, and dynamics stop.

We thus expect all the interesting properties of our
semantic network to arise during the transient pro-
cess at intermediate times: fig. [3a] shows that social-
network topology has a systematic effect on conver-
gence time-scale. Moreover, the right side of fig2]
shows a qualitative difference between the emergent
semantic networks for different social graphs: the
scale-free social network gives rise to separated ide-
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(b) Barabasi-Albert scale-free social network

FIG. 2: Snapshots of the simulation for two
different social network topologies at some
intermediate times. On the left we show the social
network of N = 900 agents, with each agent
colored according to its individual culture (showing
emergence of local communities). On the right we
have the emergent semantic network, where nodes
are distinct ideas (always more than m =7 —
memory capacity, and fewer than n = 40 — total
existing ideas), and edge weights representing the
number of agents who know both of the connected
ideas.

ological communities, whereas the more intertwined
lattice network produces a single interconnected cul-
ture. To quantify this distinction, we thought to
look at efficiency of the semantic network. However,
as the edge weights are crucial here, and efficiency
ignores these, we devised a different measure:
Imagine that you walked into this society with
idea o in mind. You talk to the first person you see,
and ask if they know about o. If they do, you have
a conversation, and in the course of which they tell
you about idea p. You then go on to talk to another
stranger, asking now about p, and if they know it,
they will tell you a new idea. We can thus calculate
the probability of thus getting from o to o’ in any
number of steps. Averaging this over all pairs o, 0,
we get a scalar quantity, which here we call efficiency
because it is conceptually related. Numerically, if R
is our semantic adjacency matrix, then this number

is just &€ = (3002, R*) = (R(1—R)™!'), averaged
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FIG. 3: Simulation results (N =900, m =7,

n = 40) for several random realizations of three
distinct social-network topologies: Barabasi-Albert
scale-free network in red (ﬁg, Watts-Strogatz
small-world network in green, and square lattice in
blue (ﬁg. To get a fair comparison of network
efficiencies in panel (b), we restrict the semantic
network size to be fixed at 30 ideas (see text). Bar
graph on the right shows histograms of the
steady-state efficiencies for the three networks.

over all the matrix elements — thus is what we plot
in fig[30] Furthermore, to allow for a fair comparison
of semantic network topologies, we must restrict to
comparing networks of same size — as otherwise the
size will dominate any effect we see. Since semantic
network size decays over time, we modified our algo-
rithm to fix a lower bound on the number of ideas — if
too many ideas are forgotten, we introduce a random
idea into the system, thus keeping semantic network
at a constant size, while allowing the social dynamics
to run their course. This finally gives fig[3b] showing
that the small-world social network produces most
tightly connected ideological communities, while the
BA scale-free networks produce more disconnected
ideologies — in line with the qualitative observation
from fig2]

IV. DISCUSSION

The main contribution of this work is to show that
even for very simple dynamical rules, rich structures
can arise collectively when we interpret the resulting
dynamics from a new perspectives. It seems plausi-
ble that at least some of the complexity and struc-
ture found in real society is due to the way we in-
terpret our dynamical variables, rather than to the
complexity of the interactions themselves. The im-
mediate question this insight raises is how to choose
which are the “true” dynamical variables and which
are “interpreted” ones? It is exciting to note that
this abstract question can be concretely addressed
in our model: here it boils down to whether the se-
mantic network dynamics are self-contained. I.e., is
the state of the semantic network at time ¢t = n suffi-
cient to determine its state at time ¢t = n+17 While
it is easy to see that the answer to this question is
no, weaker claims could still be exciting: perhaps the
history of semantic net over time-period t € (n—mn,n)
is sufficient to determine the probability over possi-
ble configurations at time ¢t = n+1. If there is a way
to write down the semantic network dynamics in a
way without referring to the social network, then we
could view the ideas, rather than individuals, as fun-
damental building blocks of society — agents being
merely a carrying medium. Such changes of perspec-
tive are integral to many theories in physics, and
so may come in handy in studying society as well.
This would also put the idea of ”memetics” on a firm
quantitative foundation — now truly allowing us to
apply tools from ecology to evolution of cultures.

Further development of our model thus has two
natural paths: modifying the dynamical algorithm,
and finding new perspectives to look at the data.
One modification to the algorithm that has been
explored is the addition of a decay time for every
agent’s ideas. The implementation of decay time
has yielded only preliminary results showing a con-
vergence to mono-culture, without any obvious dif-
ference to the baseline model. Despite this, further
work is required in order to establish the impact of
such additional feature, motivated by a more realis-
tic and human-like interaction, where an idea is re-
placed by another after enough exposure to it, rather
than immediately after coming in contact with it.

Another natural modification comes from the ob-
servation that membership in modern social net-
works is an increasingly nebulous topic as virtual
interactions increasingly compliment and possibly
replace physical social interactions. With the del-
uge of digital information people now encounter, it
is likely that we slowly and subconsciously change
our opinions on certain matters that we receive con-
stant exposure to without some watershed event or



interaction occurring. This effect could be accounted
for via a feedback of information from the semantic
network upon the social network. For instance, at
each timestep, an action for the chosen agent could
be added where an idea not currently held is uni-
formly selected and then adopted with some proba-
bility proportional to the distance on the semantic
network between the selected idea and the currently
held ideas of the agent. In this way, the agents feel
the structure of the semantic network and the forces
of persistent, yet subliminal, interactions with com-
mon idea and correlated ideas.

Another area of possible investigation is how net-
works with coevolving agent states and topology,

such as the Axelrod model, effect the dual semantic
network. This could be applied to current polarizing
political environments to explore how echo-chamber
dynamics can be disincentivised.

Finally, the other natural direction to take this is
comparison to real-world data. Due to the general-
ity and fluidity of our setup, this can be attempted
in many different contexts: twitter data, survey re-
sults, citation graphs, etc. Something along the lines
of the results presented here — a systematic effect of
social-net topology on semantic-net efficiency — may
be directly tested in such contexts. This may be the
next necessary step to develop this work to publica-
tion.
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