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Ever since Paget’s seed-and-soil and Ewing’s connectivity hypotheses to ex-3

plain tumor metastasis (1, 2), it has become clear that cancer progression can4

be envisaged as an ecological phenomenon. This connection has flourished5

during the past two decades (3–7), giving rise to important insights into the6

ecology and evolution of cancer progression, with therapeutic implications7

(8–10). Here, we take a metapopulation view of metastasis (i.e. the migra-8

tion to and colonization of, habitat patches) and represent it as a bipartite9

network, distinguishing source patches, or organs that host a primary tumor,10
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and acceptor patches, or organs colonized ultimately from the source through11

metastasis. Using 20,326, biomedical records obtained from literature, we12

show that: (i) the network structure of cancer ecosystems is non-random, ex-13

hibiting a nested subset pattern as has been found both in the distribution of14

species across islands and island-like habitats (11–13), and in the distribution15

of among species interactions across different ecological networks (14–16);16

(ii) similar to ecological networks, there is a heterogeneous distribution of17

degree (i.e., number of connections associated with a source or acceptor or-18

gan); (iii) there is a significant correlation between metastatic incidence (or19

the frequency with which tumor cells from a source organ colonize an accep-20

tor one) and arterial blood supply, suggesting that more irrigated organs have21

a higher probability of developing metastasis or being invaded; (iv) there is a22

positive correlation between metastatic incidence and acceptor organ degree23

(or number of different tumor-bearing source organs that generate metastasis24

in a given acceptor organ), and a negative one between acceptor organ degree25

and number of stem cell divisions, implying that there are preferred sink or-26

gans for metastasis and that this could be related to average acceptor organ27

cell longevity; (v) there is a negative association between organ cell turnover28

and source organ degree, implying that organs with rapid cell turnovers tend29

to generate more metastasis, a process akin to the phenomenon of propagule30

pressure in ecology (17); and (vi) the cancer ecosystem network exhibits a mod-31

ular structure in both source and acceptor patches, suggesting that some of32

them share more connections among themselves than with the rest of the net-33

work. We show that both niche-related processes occurring at the organ level34

as well as spatial connectivity and propagule pressure contribute to metastatic35
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spread and result in a non-random cancer network, which exhibits a truncated36

power law degree distribution, clustering and a nested subset structure. The37

similarity between the cancer network and ecological networks highlights the38

importance of ecological approaches in increasing our understanding of pat-39

terns in cancer incidence and dynamics, which may lead to new strategies to40

control tumor spread within the human ecosystem.41

In 1829, Joseph Recamier coined the term ’metastasis’ for the spread of cancer cells away42

from organs where a primary tumor had emerged. Despite many intervening decades of obser-43

vation and investigation, our understanding of metastasis is largely centered on a small number44

of organs and tissues (18, 19). These studies indicate that a series of often complex processes45

occur in metastasis, beginning with the migration of cancer cells from a source tumor, through46

numerous intermediate states, habitats and microenvironmental conditions, and culminating ei-47

ther in spatially distinct tumors in local tissue or in distant organs (20, 21). Although the basic48

sequence is very similar among those cancers that have been studied in detail, it is not well49

understood why certain organs and tissues (hereafter ’organs’) are more commonly the sites of50

metastasis, nor why some specific primary tumor sites tend to be associated with one or a few51

specific metastatic organ sites (20), while others are more generalists and tend to metastasize in52

many different organs (22).53

Two main hypotheses have been offered to explain why some organs are the target for54

metastasis (23). Under the first hypothesis (also known as the ’seed-and-soil’ hypothesis)55

proposed by Stephen Paget (1), tumor cells migrate from established tumors and only create56

self-sustaining metastatic growth in distant organs if the latter’s microenvironmental conditions57

are adequate (24). This set of conditions is analogous to the Grinellian niche in ecology (25),58

and in cancer is the set of conditions under which cancer cells survive migration, settle and59

grow (18, 26, 27). The second hypothesis is associated with the proposal by James Ewing’s60
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work (2), and suggests that metastatic spread occurs by purely mechanical factors associated61

with the anatomical structure of the vascular system. Here, the probability of an organ harbor-62

ing a metastasis depends in part on the number of cancer cells delivered to it, which in turn is a63

function of blood flow and distance to the source organ (28, 29). Whereas there is little support64

for the sole action of the mechanical hypothesis in explaining observed patterns in metastasis,65

measures integrating microenvironments and mechanical variables could be more representa-66

tive (30).67

Competing hypotheses to explain the mechanisms contributing to metastatic patterns have68

been evaluated with reference to the primary tumor (e.g., the lung tumor and its metastasis69

(31)), but how findings generalize across both primary and metastatic tumor sites is unknown.70

In this contribution, we carry out a large scale statistical analysis of metastatic pattern (using71

20,326, biomedical records, see Supplementary Material) by taking a network approach of the72

association between an organ with a primary tumor and its metastatic sites. To do this we73

employ methods from metapopulation theory (7) and classify ’source patches’ (or S) as those74

organs where the primary tumor emerged and from where metastatic propagules migrate, and as75

’acceptor patches’ (or K) as those organs that receive these propagules and become colonized.76

In this context, source organs can be associated to acceptor organs using a bipartite network or77

graph defined as G = (S,K,E) (Figure 1A), where source patches and acceptor patches are78

connected by links or ’edges’ (E).79

We found that source and acceptor organs vary in terms of the number of connections they80

have (i.e. their degree). This may be associated with a monotonic gradient in migrating cell81

invasiveness across source organs (i.e., some source organs are connected to more acceptor82

organs, and/or generate more migrating cells, and/or migrating cells that are more adapted to83

migration) and a monotonic gradient in invasibility across acceptor organs (i.e., some acceptor84

organs are more prone to be invaded than others, and/or to receive metastases from more source85
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organs) (Figure 1C). This diversity may be associated with tissue-specific risk factors (32, 33),86

different life history trade-offs in tumors (34), and variation in the degree of matching between87

the quality of the recipient organ and the niche requirements of migrating metastatic cells, all88

of which drives colonization success (5, 24, 35), analogous to what is often observed in models89

of metapopulation dynamics (7, 36, 37).90

More interestingly, we found that the metastatic network is highly structured with a scale-91

free, truncated power-law, degree distribution that applies to both source or acceptor organs,92

and which is significantly different from the exponential model expected for a random network93

(Fig. 2, Table S1). A scale-free degree distribution is a property shared by different complex94

networks, from protein interactions to networks of scientific collaboration (38–40). Similarly,95

the metastatic network is highly nested (nestedness tests: NODF = 83.12 and BINMAT = 5.95)96

and asymmetric, such that there is a network core of highly interacting source and acceptor97

organs and a periphery where specialized source (acceptor) organs interact with generalist ac-98

ceptor (source) organs (Figure 1B,C). We also found that the cancer network shows clusters99

of interacting organs (Figure S1), which is reflected by a modular structure. This implies that100

there are groups of source and acceptor organs that are more similar among themselves than to101

the rest of the network in which they are embedded (41, 42) as shown by (32) for cancer risk.102

Modular networks in ecology have been associated with the presence of species with similar103

functional traits (43, 44) or subsets of locations with more frequent dispersal (45, 46). These104

two mechanisms are plausible in cancer networks. Modularity may reflect a combination of105

similar traits among groups of organs (due either to similar organ environments or shared con-106

nectivity characteristics), and different traits between groups that restrict metastasis from certain107

source organ groups but not others.108

Scale-free degree distributions, modularity and nestedness patterns in networks have been109

suggested to promote diversity, stability and network robustness to disturbances (14, 47). In an110
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oncological context, these network attributes are not related to stability and robustness, since111

organs are not species that can go extinct, instead our findings suggest the action of one or a112

few simple mechanisms (16, 39).113

Explaining the observed patterns114

The simplest way to generate a scale free network is based on the action of two simple115

generic mechanisms (39): 1) one that provides for the continuous increase in the number of116

links resulting in the expansion of the network, and 2) one that accounts for an increase in the117

probability of a site being connected as function of the number of connections it already has118

or ’preferential attachment’. For the metastatic network presented here it is important to keep119

in mind that it corresponds to a network reconstructed from an ensemble of cases, where each120

link implies that the interaction has been recorded in at least one case (i.e. an individual with121

a primary tumor and its corresponding metastasis). In what follows we propose that these two122

mechanisms can account for the network patterns in metastasis.123

The first mechanism implies that the network structure has changed through time, because124

of carcinogenesis and cancer cell migration from novel primary sites, and/or metastasis to novel125

acceptor sites. Changes in tissue-level cancer risk may have an evolutionary basis (32, 48,126

49) and/or be associated with novel environmental conditions (50). The second mechanism is127

associated with preferential attachment, which in this context implies that a new primary tumor128

will likely metastasize in an acceptor organ with a high degree, and that a new metastasis is129

more likely to arise in a primary tumor that already metastasize to many different organs. This130

mechanism by definition will generate nestedness, whereby specialized (low degree) acceptor131

organs are more likely to interact with generalized (high degree) source organs and vice versa.132

The mechanism behind preferential attachment in cancer networks is likely the result of some133

organs being more likely to express a primary tumor as well as to receive metastases (22).134

As shown in Figure 3, the number of connections (i.e. its degree) that a given acceptor135
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organ has (i.e. the number of different primary tumors that can metastasize to it), increases136

as the narrow sense and broad sense incidence (NSI and BSI respectively, see Supplementary137

Materials) of metastasis in that organ increases. Thus there are some organs that are ’preferred’138

targets for metastases (hence there are many cases of these combinations in the population) from139

a given primary tumor (NSI) or for different primary tumors (BSI). Also, our analysis identifies140

a negative correlation between acceptor organ degree and the number of stem cell divisions,141

implying that organs which on average have fewer or older cells are targets for metastasis from a142

larger number of different primary tumors, in accordance with Paget’s seed and soil hypothesis.143

In this case, they receive more links because they are inherently more suitable to be colonized,144

and this is likely one of the mechanisms behind preferential attachment, and hence nestedness.145

Finally, the truncation phenomenon observed in the degree distribution of our networks is likely146

the result of the small and finite number of nodes (organs) that can potentially be part of the147

network (51), and which limits the spread and filling of the distribution.148

Nestedness in ecological systems can arise because habitat patches display a gradient in ei-149

ther colonization or extinction probabilities (11,52). In the case of the cancer network presented150

herein, both extinction and colonization appear to influence observed patterns. Extinction in the151

context of metastasis corresponds to failed colonization (to the point of producing a detectable152

tumor), resulting from either intrinsic inhospitability of certain organs to cancer cell growth, or153

from characteristic non-compatibility between certain primary tumor metastatic cells and spe-154

cific organ microenvironments. As per colonization, we found positive correlations between155

blood flow through an organ and the incidence of metastasis and this is valid for both BSI and156

NSI (Figure 3). Blood flow is correlated with the number of propagules that could potentially157

arrive in a patch, or ’propagule pressure’ (17). Similarly, the degree, of a source organ is neg-158

atively correlated with cell turnover in that organ (Figure 3). This implies that source organs159

with more frequent cell division (i.e. shorter turnover time) generate more metastasis to differ-160
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ent acceptor organs. Taken together, these results suggest both a role for propagule pressure,161

hence colonization, in the observed nested pattern of the cancer network, and the importance of162

stem cells’ life history and organ turnover (53–55) in understanding the emergence of primary163

tumors and metastasis. Finally, as suggested by Ewing’s hypothesis, we have found that spatial164

closeness related to arterial blood supply, as a proxy for spatial proximity, is correlated with165

metastatic incidence (Kendall-τ = 0.096, p-value = 0.003), suggesting that the probability of166

metastasis in an acceptor organ increases if it shares an artery with the source organ organ (Fig.167

S2) (see methods in Supporting Material).168

It is clear that further research beyond a static view of network structure is needed to169

understand the observed variation in susceptibility of organs to metastasis. Network dynam-170

ics can be of great importance, particularly in understanding the phenomenon of tumor self-171

seeding (56, 57) or the possibility of stepping stone migration from a primary source to an172

acceptor organ via intermediate organs (23, 31). The ecological network approach presented173

here has the power to generate insights to direct both fundamental and applied research of ther-174

apeutic relevance. In particular, and considering the asymmetric nature of the cancer network175

reflected in its nested subset structure, it is important to resolve the mechanisms behind the176

gradient in specificity/generality observed in source and acceptor organs.177

Conclusions We show that both niche-related processes occurring at the organ level as well178

as spatial connectivity and propagule pressure are consistent with patterns in metastatic spread179

as evidenced by a non-random cancer network, which exhibits a truncated power law behavior,180

clustering and nested subset structure.181
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257

Fig. 1. The cancer network. (A) Schematic view of the bipartite network connecting source258

S = (S1, ..., S5) and acceptor K = (K1, ..., K5) organs through metastatic propagules fS :259

S → K (B) This network can be represented as a matrix with rows and columns arranged260

according to their degree, in this case the matrix is perfectly nested. (C) The observed cancer261

matrix connecting source (rows) with acceptor (columns) organs. Histograms show the degree262

corresponding to each organ. Dashed lines identify the median of the degree distribution. They263

define a core of highly interacting organs and a periphery where low-degree organs interact with264

high-degree ones.265
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266

Fig. 2. A scale-free cancer network. (A) Shows links from a source organ (blue nodes) to267

acceptor organs (red nodes). Links width is proportional to NSI. (B) Three different models268

were fitted to the probability that the degree of a randomly chosen organ is larger than k or269

P [x ≥ k] where k is the number of links or degree of the organ: exponential (blue), power law270

(cyan) and truncated-power law (magenta). The best fit model was truncated power law (for271

summary statistics see Table S1).272
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273

Fig. 3. Correlation matrix testing the linear association between our network measures for each274

organ (rows) and data from literature (see methods for details and references). Asterisks(*)275

indicate that the correlation coefficient differs significantly from 0. (BSI: broad sense incidence.276

NSI: Narrow sense incidence).277
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Supplementary Materials278

Materials and Methods279

We studied the metastatic network between organs by constructing a bipartite network based280

on a matrix representing the number of occurrences that a primary neoplasm in a source organ281

generated a metastasis in an acceptor organ. The data was obtained from the literature (1–12).282

Following diSibio and French (1), 33 anatomical zones (referred here as ’organs’) were iden-283

tified (Fig. 1). We categorized a source as the organ where the primary carcinoma was found,284

and as acceptor organs those organs with secondary growth of a neoplasm, according to the285

reported metastatic sites. A total of 20,326 occurrences were included in the analysis, based286

on autopsies and tomographies in the case of muscular cancers. Medical records are from the287

USA, Switzerland, Germany and Slovenia. In analytical terms, we define the metastatic pro-288

cess as a graph G = (S,K,E) where S and K denote the set of source and acceptor organs,289

respectively and E identifies the links or edges connecting them. We focus our analysis in the290

weighted network (W = G = (S,K,E)) of source-acceptor organ interactions Si × Kj with291

Si ∈ S, Kj ∈ K and S = K = (1, ..., N), where N corresponds to 33 anatomical sites. Let us292

define fS as the metastatic process fS : S → K. The values of the source to acceptor weight293

(narrow sense metastatic incidence or NSI) fS ∈ [0, 1] corresponds to the number of metastases294

found at an acceptor organ that derived from a given source organ out of the total number of295

metastases recorded for that source organ in the population of cases. Thus, fS represents the296

relative importance of acceptor organs for the propagules generated by the primary tumor in297

the source patch. Similarly, the number of times that a primary tumor was recorded in a source298

organ or that a metastasis was recorded in an acceptor one, out of the total number of cases in299

the population, corresponds to the Broad Sense Incidence or BSI of source or acceptor organs.300

301
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Vascular incidence matrices were estimated based on the main artery or vein conducting302

blood flow between organs. We identified the main arteries associated with an organ’s blood303

supply: thoracic aorta, abdominal aorta, left gastric coeliac trunk, splenic artery, common hep-304

atic artery, superior mesenteric artery, and internal iliac artery; and those involved in blood305

drainage: renal veins, inferior phrenic vein, hepatic vein, gastric veins, splenic vein, mesen-306

teric vein, internal iliac vein, and internal jugular vein. To characterize the spatial association307

emerging from the vascular arrangement, we constructed a vascular squared matrix ni × nj308

with n = (n1, n2, ni/j, ..., N) being the number of organs (number of rows/columns). When309

two organs shared an artery or a vein, we recorded this co-occurrence as a 1. In contrast when a310

couple (ni, nj) did not share a vessel we assigned a 0. For example, because pancreas and liver311

share blood supply through the abdominal aorta, the supply matrix has a value of 1 associated312

to the pair ’pancreas, liver’. Our first approach was to correlate the weighted metastatic matrix313

with both vascular matrices independently, expecting that if organ connectivity plays a role in314

cancer spread, it will manifest in a significant statistical association. Our results show that,315

the drainage network is not statistically associated with metastatic incidence in source organs316

(Kendall-τ = 0.042, p-value = 0.204 ), although there are some cases where acceptor organs317

that share a proximal vein with the source have higher metastatic incidences (Fig. S3). On the318

other hand, the supply network, based on common arteries shared by organs, was significantly319

correlated with the metastatic incidence network (Kendall-τ = 0.096, p-value = 0.003), suggest-320

ing that organs which share an artery, on average, have higher metastatic incidences (Fig. S2).321

These results follows the intuitive idea that metastatic propagules leaving their source organ322

follow blood flow, increasing their chances of colonizing new patches.323

324

All data analyses were performed in R (13). Nestedness measures were contrasted against a325

random null model (function nestedchecker, package vegan) under a non-sequential al-326
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gorithm for binary matrices that only preserves the number of occurrences within the matrix. In327

this case the statistical significance of the estimated C-score was analyzed. We tested linear cor-328

relations (null hypothesis: ρ = 0) of our network metrics (source organ degree, acceptor organ329

degree and metastatic incidence) against the following estimates extracted from the literature:330

From Weiss et al (14): organ weight, blood volume (ml), blood flow (ml/min), mass-specific331

blood flow (ml/(min*gr)). From Sidhu et al 2011 (15): cardiac output (%). From Tomasetti and332

Volgestein (16): normal cell population number, number of stem cells, number of division of333

each stem cell per year, number of divisions of each stem cell per lifetime, cumulative divisions334

of each stem cell per human lifetime. From Richardson, Allan and Le (17): organ turnover.335

Modularity analysis336

Modularity was obtained with the package bipartite implementing the QuanBiMo al-337

gorithm (18) for bipartite networks’ module detection. This algorithm allows the detection of338

modules based on metastatic incidence patterns.339
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340

Fig. S1. The identification of modules based on BSI for the metastatic spread from source341

organs (rows) to acceptor organs (columns). Red boxes delineate the modules detected by342

QuanBiMo algorithm (18).343
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344

Fig. S2. Each plot represents a primary tumor showing the relationship between broad sense345

incidence (BSI) and common blood supply (0=no, 1=yes) of acceptor organs with the corre-346

sponding source. Only statistical differences are shown (p<0.05). For each primary tumor, we347

20



tested (using the Student t-test) if organs sharing a vessel has an effect on the average metastatic348

incidence value. All statistical tests were evaluated under the same criteria (Type I error rate349

α = 0.05).350
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351

Fig. S2(cont.).352
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353

Fig. S3. Each plot represents a primary tumor showing the relationship between broad sense354

incidence (BSI) and common blood drainage (0=no, 1=yes) of acceptor organs with the corre-355

sponding source. For each primary tumor, we tested (using the Student t-test) if organs sharing356

a vessel (arteries or veins) has an effect on the average metastatic incidence value. All statis-357
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tical tests were evaluated under the same criteria (Type I error rate α = 0.05). Only statistical358

differences are shown (p<0.05).359
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360

Fig. S3 (cont.).361
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Table S1: Summary of the different statistical fits applied to the probability distribution362

P [k] for the degrees k for source and sink organs. The truncated power law fits two coeffi-363

cients: slope and cut-off; in this table only the slope estimation is shown.364

Source organs
Fit Estimate Std. error Pr(> |t|) R2 AIC
Exponential 0.047 0.006 2.47×10−6 0.898 -17.585
Power law 0.257 0.072 2.9×10−3 0.643 0.827
Truncated power law -0.357 0.055 1.48 ×10−5 0.978 -41.159

Acceptor organs
Fit Estimate Std. error Pr(> |t|) R2 AIC
Exponential 0.053 0.006 3.36×10−8 0.923 -26.932
Power law 0.308 0.061 7.71×10−5 0.757 -5.112
Truncated power law -0.263 0.081 4.6×10−3 0.958 -35.561

365
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