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Abstract

Polygyny is thought to be more prevalent where male wealth inequality is greater; however, the

decline of polygyny in most of the world occurred with the emergence of capital-intensive farming

with unprecedented wealth disparities. The distinction between rival wealth—divided among ones

offspring—and non-rival wealth—transmitted to all children irrespective of their number (like a

public good)—may resolve this “polygyny puzzle.” Our model’s marital matching Nash equilib-

rium replicates the observed incidence of polygynous marriage among the Kipsigis, an African

agropastoralist population. We then simulate a hypothetical transition to monogamy among the

Kipsigis following an increase in the importance of rival wealth.
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1. Introduction

“I do not have a satisfactory explanation of why polygyny has declined over time in those

parts of the world where it was once more common,” wrote Gary Becker (1974, pp. 240). By

the decline of polygyny we—and we trust Becker, too—mean a reduction in the prevalence of

recognized simultaneous marriages of a man to more than one wife, where the children of each

union have the right to inheritance of the father’s wealth. This once-prevalent form of social union

became a rather uncommon form of marriage in most parts of the world long prior to monogamy

being socially and legally imposed. The candid assessment by Becker more than four decades ago,

echoed a decade later by the evolutionary biologist Richard Alexander (1986), still rings true. This

conundrum is what we term the polygyny puzzle.

It is commonly hypothesized that substantial levels of inequality in the material wealth held

by males is required for polygynous marriage to be prevalent. But as we will show presently, the

extent of polygyny is greater in horticultural (low technology, land abundant) economies than in

more capital intensive farming and industrial economies, systems typically characterized by greater

inequality. Where these latter economic systems became predominant—for example, in Europe

prior to and during the first millennium of the Common Era—polygyny virtually disappeared,

even among elites (Scheidel, 2009).

We provide a possible resolution to this puzzle. In view of the fact that—with the exception

of the Middle East, some remaining small-scale horticultural and pastoral societies, and parts

of Africa where polygyny persists to this day—the decline of polygyny generally took place well

before the demographic transition, and prior to the effective state regulation of marriage (Scheidel,

2009), we propose a model in which both males and females (or their families) autonomously

make voluntary marital choices to maximize their expected reproductive success. Our model links

marital choices to the effects of wealth on reproductive success, and the population-level inequality

with which that wealth is held.

We draw on the literature that establishes links between inheritance patterns and marriage

systems (e.g., Goody, 1973; Hrdy and Judge, 1993; Fortunato and Archetti, 2010). However, our

model aims to disentangle the effects of reproductively rival and non-rival forms of wealth, similar

to the focus of Ingela Alger (2016) on the extent to which shared use of parental resources leads to

depletion. Rival wealth—such as land or livestock—is divided among the offspring of a polygynous

father. Non-rival wealth, in contrast, is analogous to a public good, in that the amount inherited

by one’s offspring is independent of their number. An advantageous family name or lineage, or a

male’s alleles that are expressed in some fitness enhancing phenotypic trait, are examples of non-

rival forms of wealth. The variable relationship between polygyny and different kinds of wealth is

well recognized in the ethnographic record (e.g., White et al., 1988).

The distinction between rival and non-rival wealth is important, because the extent to which
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wealth is rival directly affects the degree to which polygyny reduces the quantity available to

each wife and her offspring in polygynous marriages. The distinction between these two kinds of

wealth is illustrated in a study of English families in the late 18th and early 19th centuries (Clark

and Cummins, 2015); the average (rival) material wealth of sons is significantly less in families

with more sons, but this is not true of the sons’ level of (non-rival) educational attainment, an

advantage typically afforded—in that period—through family connections and status rather than

the expenditure of rival wealth.

Our model shows that as the importance of rival wealth for reproductive success increases, the

fitness returns to taking on multiple wives decreases. This trade-off affects both male demand for

polygynous marriages and the availability of women to men wishing to take on additional wives.

We show that for a given level of rival wealth inequality among males, the Nash equilibrium

extent of polygynous marriages is less in economies in which rival wealth is more important as

a determinant of reproductive success. Thus, an increase in the importance of land and other

rival forms of wealth relative to non-rival forms of wealth—such as hunting ability, social network

position, or genetically transmitted advantages—may have contributed to the decline of polygyny.

To explore the empirical plausibility of our proposed resolution of the polygyny puzzle, we

estimate the effects of rival and non-rival wealth on the reproductive success of males among the

Kipsigis, a polygynous population of African agropastoralists (Borgerhoff Mulder, 1987, 1990).

We then use these estimates and the first order conditions for fitness maximization of both men

and women to simulate the Nash equilibrium distribution of marriages in this population. We

find a substantial correspondence between the real and predicted marital status of Kipsigis men.

We then show that a hypothetical increase in the importance of rival wealth relative to non-rival

wealth, holding constant the level of wealth inequality, would convert this population to one in

which the only Nash equilibrium is near complete monogamy.

2. Interpretations of polygyny and its decline

Economists have attributed the decline in polygyny to a variety of dynamics including a decline

in the relative value of women’s labor (e.g., Boserup, 1970; Becker, 1974, 1991, consistent with

Massell, 1963 and Jacoby, 1995), increasing democracy (e.g., Lagerlof, 2005), an increase in the

value of child ‘quality’ (e.g., Gould et al., 2008), shifting distributions of wealth among men and

women (e.g., De la Croix and Mariani, 2015), changes in male trade-offs between how much to

invest in children and how much to invest in the payments required to secure a new wife (Bergstrom,

1996), and the success of monogomous societies in intergroup competition (Bowles, 2004; following

Alexander, 1979).

As in Becker (1974, 1991), polygyny in our model arises from wealth inequality among men,

similar to the polygyny threshold model used by behavioral ecologists (Verner and Willson, 1966;
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Orians, 1969). However, in our model, individuals maximize their expected reproductive success,

rather than their consumption of household commodities as in Becker’s model. Additionally, we

do not explore the effects of differences among women. In both respects, our model is closer to

Bergstrom (1996). But, unlike Bergstrom, we do not assume well functioning markets for marital

partners, opting instead to explore bilateral Nash equilibrium assignments of partners based on

both male and female choice, given a range of customary bride-prices.

Our interpretation—and the complementary explanation of Boserup and Becker based on de-

clines in the value of female labor—differs from several recent contributions of economists, in that

it explains the de facto decline of polygyny in the setting in which it most likely occurred, namely

a land-abundant horticultural economy in transition to more capital-intensive farming. Other

accounts, by contrast, may be more relevant to its much later de jure elimination.

Nils-Petter Lagerlof (2005) hypothesizes that a trend towards greater equality in the last two

centuries accounts for the demise of polygyny. Laura Betzig (2002, pp. 85), whom he cites, puts

this view simply: “What put an end to... polygyny? Democracy.” Betzig and Lagerlof may

be right about the more recent formal prohibitions of polygyny; however, it seems unlikely that

European democracy played a role in the historical demise of polygyny, given that the practice of

polygyny had been uncommon in Europe long before the rise of democracy. Assessing the extent

of polygyny in the distant past is, of course, challenging, so one cannot offer a very definitive

judgement, but there is no evidence that polygyny was common in the Mediterranean prior to

the Common Era and the same is true for most other parts of Europe with Celts and Germans

as possible exceptions in the very early period (see Scheidel, 2009). Even among the well to do,

polygyny was apparently not widely practiced long before it was legally prohibited.

Gould et al. (2008) explain the demise of polygyny by the increased value of quality relative

to quantity of children as human capital increased in importance (see also Alger, 2016). In a

similar vein, evolutionary social scientists often investigate the idea that parents trade off quality

for quantity (e.g., Lawson et al., 2012), although evidence for this trade-off is generally quite

limited (Borgerhoff Mulder, 1998; Lawson and Borgerhoff Mulder, 2016). More importantly for

the questions considered here, this explanation—like Langerlof’s hypothesis—places the demise of

polygyny as common form of marriage in the post-demographic transition populations of the last

few centuries, long after it appears to have occurred. Moreover, if our model is correct, the rise

of the importance of human capital—a relatively non-rival form of wealth as our above example

from 18th and 19th century Great Britain suggests—should have had the opposite effect, providing

conditions more favorable to polygyny.

De la Croix and Mariani (2015) model the effects of an increasing fraction of rich men in a

population where a democratic electorate legislates legally enforced monogamy, followed by the

emergence of more permissive divorce and de facto serial monogamy. The empirical timing in this
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explanation is more plausible, as the social imposition of monogamy long post-dates its widespread

acceptance. The approach of De la Croix and Mariani (2015) is similar to ours in that they

investigate the effects of different kinds of wealth (with different intergenerational transmission

dynamics) on polygyny, consider both male and female interests, and focus on the fraction of the

wealth held by a class of rich males. However, insofar as they situate their explanation in a political-

economic framework within which men and women vote for favored institutional framework, their

approach has its limitations. First, unless one hypothesizes (implausibly in our judgment) that

most men and women were politically represented long prior to near-universal suffrage—that is

prior to the 20th century, which the authors do—it is difficult to apply this model to empirical

contexts concerning the early demise of polygyny, such as the social imposition of monogamy

in Rome early in the Common Era (Scheidel, 2009). Second, their approach cannot explain the

limited prevalence of polygyny (meaning simultaneous not sequential marriage to multiple women)

among many populations, especially foragers, that lack a class of rich men. Finally, their approach

posits that women hold wealth (independently) in contexts where this is unlikely.

The comparative cross-cultural approach favored by anthropologists has also been of only

limited value in resolving Becker’s puzzle. The fact that practice of polygyny is more common

in horticultural populations than among foragers is thought to be readily explained by two facts.

First, in both theoretical (Bergstrom, 1996; Fortunato and Archetti, 2010; Grossbard, 1976; Orians,

1969; Verner and Willson, 1966; Ptak and Lachmann, 2003) and empirical studies (Borgerhoff Mul-

der, 1987; Flinn and Low, 1986; Sellen and Hruschka, 2004) polygyny is typically associated with

what George P. Murdock (1949, pp. 206–207) termed “movable property or wealth which can be

accumulated in quantity by men.” Second, these forms of material wealth are more unequally

held in horticultural economies than among foragers, which could explain the greater extent of

polygyny in the former.

While this model has been effective in predicting the distribution of polygynous males within

populations (e.g. Borgerhoff Mulder, 1990), and between foragers and horticulturalists, it accounts

poorly for the contrast in the distribution of polygyny between horticultural and agricultural

populations, given the high levels of inequality characterizing agricultural societies. Material

wealth is more unequally held in intensive agricultural economies than it is among horticulturalists

in both the ethnographic (Shenk et al., 2010; Borgerhoff Mulder et al., 2009) and the archaeological

(Fochesato and Bowles, 2017) record, but polygynous marriage is even more rare in intensive

agricultural populations than it is among foragers [see Fig. (1)]. Our proposed explanation of

the decline of polygyny thus runs differently than Murdock’s; we suggest that monogamy might

have become the prevalent form of reproductive pairing when the importance of rival wealth to

reproduction became large enough to offset the effects of wealth inequality in driving polygyny.

Fortunato and Archetti (2010) develop a theoretical framework linking inclusive fitness and pa-
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ternity uncertainty to show that increased importance of material wealth can lead to the emergence

of monogamy. However, increasing marginal returns to material wealth are needed for monogamy

to emerge in their model. Our model, in contrast, shows that monogamy can emerge even with

decreasing marginal returns to material wealth—this is important because our empirical estimates

below and in Ross et al. (2017) cast doubt on the idea that increasing marginal fitness returns to

material wealth occur in human populations.

Figure 1: Average fraction of married women who are married polygynously by production system (± two standard
errors)—using the Standard Cross Cultural Sample. Rates of polygyny are measured with variable ]872 (see notes
in the Supplemental Materials). We note strong differences in the frequency of polygynous marriage between the
horticultural and agricultural production systems.
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A third class of explanations for the rise of monogamy dates to Alexander (1979) and has

recently been formalized by Henrich et al. (2012). In their argument, a social norm favoring

monogamy conferred widely-shared benefits on members of a population adopting the norm,

eventually leading monogamy-practicing populations to be emulated or to prevail in intergroup

contests, thereby diffusing the norm through cultural group selection (Richerson et al., 2015).

Alexander (1979, pp. 72) proposed that monogamy might be “a basis for social unity in the

face of extrinsic threats,” in “large cohesive modern nations that wage wars and conduct defense

with their pools of young men.” Other cultural group selection accounts—in the spirit of Alexan-

der’s initial hypothesis—include the idea that monogamous populations had greater success in

their political projects (including warfare) when elites renounced privileged sexual and reproduc-

tive access to women (Bowles, 2004), that such societies could more successfully avoid endemic

sexually-transmitted infections (Bauch and McElreath, 2016), or that monogamous societies would

support higher levels of investment in either physical or human capital and therfore experience

more rapid growth (Tertilt, 2005; Edlund and Lagerlof, 2012), which if true would allow them

to out-compete polygynous societies either militarily, by emulation, or even—in a Malthusian
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world—demographically.

These cultural group selection models provide plausible accounts of the decline in polygyny,

complementary to our interpretation. Transitions to virtually universal monogamy occurring

within a few populations by the process that we model would then provide the between group dif-

ferences in marriage practices essential to a cultural group selection process in which monogamous

populations could out-compete the more common extant polygynous populations.

3. The polygyny threshold with rival and non-rival wealth

3.1. The male demand for polygynous marriages

In our model, the fitness maximizing choices of both men and women determine the equilibrium

extent of polygyny in a population. We consider a population consisting of N men and N women.

We assume men seek to obtain a given number of wives and confer upon them the fitness-relevant

resources needed for production of offspring. We consider two types of fitness-relevant resources of

the male: non-rival wealth, denoted as g,e.g ”genes” and rival wealth, denoted as m, e.g ”material

wealth”.

We represent the total mating investment devoted to acquiring a wife by a cost equal to c

units of the rival resource per wife—we call this a bride-price for brevity, although it includes all

mating investment in addition to what is ethnographically called a ‘bride-price’ or ‘bridewealth’.

The remaining rival wealth available to each wife is thus m−cn
n

, where n is the number of wives.

We assume that rival wealth is allocated equally among wives who are themselves identical, and

who in turn do not differentiate investment among their offspring. The non rival wealth available

to each wife is g. We assume the bride price, c, is a constant independent of male wealth in this

model.

We assume that the number of offspring that each man raises to reproductive age is a function

of his rival and non-rival wealth, the productive labor and reproductive value provided by his

wives (e.g., in food acquisition and child bearing and rearing respectively), and the number of

wives he has obtained. Because wives are assumed to be identical, their labor input, l, will not

contribute to differential reproductive success among men in our model. Assuming that fitness is

produced according to a Cobb-Douglas function, the male’s fitness, denoted by w, can be described

as follows:

w = nδ︸︷︷︸
Effective number of wives

· lλgγ
(
m− nc
n

)µ
︸ ︷︷ ︸

Fitness
per wife

(1)

The coefficients, λ, γ, µ are the importance of each component.The exponent δ determines the

rate at which the marginal fitness returns to the number of wives declines as a husband takes on
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more wives holding constant rival wealth available to each wife. If δ = 1, then doubling the number

of wives will double male fitness. However, when δ < 1,there are diminishing fitness returns to

additional wives. For simplicity, we normalize l to be the unit, l = 1, which allows the male fitness

function to be rewritten as:

w = nδgγ(
m− nc
n

)µ = nδ−µgγ(m− nc)µ (2)

We refer to µ as the importance of rival wealth and similarly with the other exponents and on

empirical grounds we assume that µ < 1 so that the marginal fitness returns to the husbands rival

weatlh are decreasing.1 We assume that δ > µ to ensure that the elasticity of fitness on wives is

positive.

An implication of this male fitness function is that there are two sources of diminishing marginal

fitness returns to additional wives. One is the fact that the male’s rival wealth is shared among

them, reducing the rival wealth per wife. The rival nature of the male’s own time and attention

can be the another source of diminishing returns unrelated to the need to share a males rival

wealth among wives.(Grossbard, 1980)

The fitness of a male with a single wife in this model is: gγ(m − c)µ. Adding an additional

wife has two effects on the male’s fitness, and they are of opposite sign: 1) it increases the number

of women producing his offspring, and 2) it reduces the expected reproductive success of each

woman, because it reduces her pro-rated share of his rival wealth. Thus, the contribution of an

additional wife to his fitness will be the derivative2 of Eq. (2) with respect to n:

∂w

∂n
=
nδgγ(m−nc

n
)µ

n
(δ − µm

m− nc
) (3)

The first term on the right hand side,
nδgγ(m−nc

n
)µ

n
, is the fitness of a wife with n − 1 cowives.

So the marginal fitness effect of an additional wife is just δ times this quantity minus the negative

effect on the fitness of each wife that comes from the partitioning of the husband’s rival wealth

among a larger number of wives. The size of the negative effect is increasing (in absolute value)

with µ, as can be seen from Eq. (3). So, the greater is the importance of rival wealth as a

determinant of fitness, the more rapidly do the marginal fitness returns to additional wives fall

1For some levels of wealth in some populations, increasing returns to scale: λ + γ + µ > 1, or even increasing
marginal returns to rival wealth: µ > 1, could occur. For example, for very low levels of material wealth, a small
increment might yield very substantial fitness benefits. However, on empirical grounds, increasing marginal returns
are unlikely to hold for most individuals in most populations. In Ross et al. (2017), we find that in 29 populations
estimates of µ average 0.08 (0.05, 0.13).

2Here we allow n to be a real number. We could replace this unrealistic assumption by letting the male choose
a mixed strategy with support defined by the feasible range of wives (as integers), and then allow n to represent
the mean of the distribution of his weights on each number of wives.
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with the number of wives.

The demand for wives, denoted by nd, is the number of wives that maximizes male fitness, and

is given by setting the right-hand side of Eq.(3) equal to 0 and solving for n:

nd =
m(δ − µ)

cδ
(4)

We draw two implications from Eq. (4) about the relationship between the importance of

rival wealth and the male demand for polygynous marriage. First, by rewriting Eq. (4) as

cnd = m(1− µ
δ
), we have the optimal level of mating investment for the male—the total amount

of bride-price he should be willing to pay—which is just a fraction (1− µ
δ
) of his total rival wealth;

this implies that mating investment is less when the importance of rival wealth is greater. Second,

as µ→ 0 it becomes optimal for the male to devote all of his wealth to mating investment, so that

nd = m
c

. The fitness maximizing number of wives is then simply the maximum number that the

male’s rival wealth will ”purchase” given the bride-price.

3.2. Rival wealth inequality and the female supply condition

We now model the conditions under which women would be willing to engage in polygynous

marriage. Specifically, we determine the fraction of women willing to be married polygynously,

conditional on the bride-price and the distribution of male rival and non-rival wealth. Each male

in the population, we have just seen, will seek to marry nd wives. However, it remains to be

determined if there will be women available to meet each male’s demand.

To address this, we need to consider the prospective brides’ choice between being the first wife

of a given man, or the nth wife of some other man. Being the nth wife of a man will only be

attractive to a woman if there are men sufficiently rich that she can achieve higher fitness in a

polygynous marriage to a wealthy man than in a monogamous marriage to a poor man. As a

result, where male rival wealth inequality is limited, even rich men may not be able to find willing

polygynous partners, even though their fitness would be greater in a polygynous marriage.

We do not consider the effects of an age-structured population or differential age at marriage.

We further simplify the model by assuming that there are only two types of males, poor and rich,

the latter constituting a fraction θ of the population of males. We denote the rival and non-rival

wealth of the poor and the rich using subscripts p and r respectively: (mp, gp), (mr, gr). There

are two forms of marriage, monogamy and n-polygyny.

A woman is willing to be the nth wife of a rich man, rather than a singleton wife of a poor

man as long as the following condition holds:

gγp (mp − c)µ︸ ︷︷ ︸
Fitness as a singleton wife

≤
nδgγr (mr−nc

n
)µ

n︸ ︷︷ ︸
Fitness as one of n wives

(5)
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We consider the rival wealth of the rich and the poor such that mr > nc and mp > c. The

inequality in Eq. (5) is the female supply condition for n-polygyny because it indicates whether

a woman is willing to be the nth wife of a man. From this condition, we can determine the level

of rival wealth inequality that—holding constant non-rival wealth inequality—will permit n-wife

polygynous marriage.

We can use the female supply condition to derive what we call (adapting a term from an-

thropology) the n-polygyny threshold. The n-polygyny threshold is the minimum rival wealth

difference between the rich and the poor that will permit n-wife polygynous mating. Fig.2 shows

an n-polygyny threshold when the equality condition in Eq.(5) holds. The figure can be read as

follows. Suppose the income of the poor man is mp as indicated on the X axis; then we ask how

rich must the rich man be in order that his n wives will have the same fitness as the singleton

wife of the poor man. The difference between that number (mr) and the poor man’s wealth (mp)

is the polygyny threshold.

Figure 2: Women’s fitness, men’s rival wealth, and the n-polygyny threshold. The horizontal dotted line denotes
a case where the fitness of a singleton wife of the poor is the same as the fitness of each of the n multiple wives of
the rich—i.e. where gγp (mp − c)µ = nδ−1gγr ((mr − nc)/n)µ

.

Husband’s rival wealth, 𝑚

Wife’s fitness Fitness cureve of
singleton wife:
𝑔#$(𝑚# − 𝑐))

Fitness curve of
one of n wives:

𝑛+𝑔,$(
𝑚, −𝑛𝑐

𝑛 ))

𝑛

Polygyny threshold

𝑚# 𝑚,

To define the supply of women to polygynous marriages, females are assigned to either a rich

or a poor husband in such a way as to maximize their fitness. In our simplified example, the first

θN females would obviously choose to be assigned to one of the rich men. Then, female (θN + 1)

must choose to either be a second wife of one of the rich men, or to marry one of the poor men. If

the fitness of being the second wife of a rich man is higher than the fitness offered by monogamous

marriage to one of the poor men, then all the rich will get the second wife, as long as there are

females available. As long as unmarried females remain, a similar process continues, and so long

as the inequality in Eq. (5) is satisfied, women will choose to be the nth wife of the rich.

Let ns be the maximum value of n satisfying Eq. (5), then ns is the maximum number of women

willing to be married to each rich man. According to the female supply condition for ns-polygyny,

θNns women will seek polygynous marriage to θN rich men and (if male demand is sufficient)

the rest of the women will be monogamously married to the poor men or remain unmarried. This
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condition will hold exactly, so long as the percentage of polygynously married women, θNns
N

= θns,

is strictly less than 1, implying that at least some women marry monogamously.

The assignment is a Nash equilibrium in the unilateral sense that no woman would prefer to

change her assignment given the existing assignment of the N−1 other women. Female availability

alone, however, does not determine the equilibrium assignment, because the Nash assignment by

the women may be inconsistent with the male demand for polygynous marriage. To determine the

bilateral Nash equilibrium assignment, we consider both the male demand and the female supply

conditions.

3.3. Mating equilibrium: determination of n-polygyny

A man whose demand for wives is nd ≥ 1 can acquire his desired number of wives only if there

are women willing to be one of his nd partners. Thus, the marriage equilibrium will be determined

jointly by the male demand and the female supply conditions, given the levels of wealth inequality

and the importance of each wealth component.

To find the n-polygyny level of the society, we solve the equilibrium mating in terms of the rich

man’s fitness maximization problem given the constraint implied by the female supply condition.

Let w(n) = nδ gγr (mr−nc
n

)µ be the function that defines fitness for a rich male, and let φ(n) =

gγp (mp − c)µ − nδ−1gγr (mr−nc
n

)µ be the fitness advantage of being the singleton wife of a poor man

relative to being among the n wives of the rich man.

We then have the following maximization problem:

max
n

w(n) = nδ gγr (
mr − nc

n
)µ (6)

s.t. φ(n) = gγp (mp − c)µ − nδ−1gγr (
mr − nc

n
)µ ≤ 0

where female supply is constrained. Since we have a nonlinear optimization problem with an

inequality constraint, we employ the Kuhn-Tucker conditions to solve the problem. We provide

the solution in Proposition 1.

Proposition 1. By solving the optimization problem in Eq. (6), we find the equilibrium n-
polygyny level, n∗, to be as follows:

(i) male demand is binding: n∗ = nd =
mr(δ − µ)

cδ
(7)

(ii) female supply constraint is binding: n∗ = ns such that φ(ns) = 0 (8)

(iii) market clears: n∗ = n∗∗ such that n∗∗ = nd = ns (9)

Proof. We write the Lagrangian as:

L(n, λ) = nδ gγr (
mr − nc

n
)µ − λ[gγp (mp − c)µ − nδ−1gγr (

mr − nc
n

)µ] (10)
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By applying the Kuhn-Tucker first order conditions, we have the following set of conditions:

(a)
∂L
∂n

=
∂w

∂n
− λ∂φ

∂n
= 0

(b)λφ = 0,

(c)λ ≥ 0;

(d)φ ≤ 0

We consider the situation where the female supply constraint is either binding (λ > 0) or not

(λ = 0). We can find n∗ satisfying the following conditions for each the three cases below: (i) male

demand constraint binding; (ii) female supply constraint binding, and (iii) both binding, namely

market clearing.

(i)
∂w

∂n
= 0; λ = 0

(ii) φ = 0; λ =
∂w

∂n
/
∂φ

∂n

(iii)
∂w

∂n
= 0; φ = 0

For case (i), we find n∗ from ∂w
∂n

= 0, which is simply the male demand that maximizes his

reproductive success. For case (ii), we find n∗ from φ = 0. For case (iii), n∗ satisfies both male

demand and female supply constraints.

Since female supply constraint is binding in case (ii), the rich gets fewer wives than would

maximize their reproductive success. By contrast, in case (i), there are sufficient women willing to

be the wives of the rich. It might be that c in a well functioning market would be negotiated so that

the market clears, but we will assume herein that bride-price is determined by custom, or in some

other exogenous manner. This is consistent with ethnographic evidence; in many cases bridewealth

is fixed (Goody and Tambiah, 1973; Anderson, 2007), but even where bargaining occurs, payments

show quite limited variability within culturally prescribed norms (Borgerhoff Mulder, 1995), or

are clearly related to exogenous economic factors (Goldschmidt, 1974).

It is clear from Proposition 1, that given a constant level of non-rival wealth inequality and

a fixed bride-price, higher rival wealth inequality leads to elevated levels of polygyny (larger

n∗). To see why, assume we change the rival wealth vector to new values, (m′p, m
′
r), to yield a

higher level of wealth inequality, such that m′p ≤ mp, and m′r > mr. The equilibrium n∗ will

be higher at (m′p, m
′
r) for all three cases. For the case (i): nδ−1gγr (m

′
r−nc
n

)µ > nδ−1gγr (mr−nc
n

)µ

and gγp (m′p − c)µ < gγp (mp − c)µ. It is obvious that since the fitness of a singleton wife is lower

while the fitness of the one of n wives is higher, women prefer to marry to a rich male. For the
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case (ii) : m′r(δ−µ)
cδ

> mr(δ−µ)
cδ

, i.e. the rich male’s demand for wives increases as his rival wealth

increases.

4. Rival wealth and the limits to polygyny

The importance of rival wealth (µ) has an impact on the n-polygyny threshold. By rearranging

Eq. (5), and taking the natural logarithms of both sides, we have:

logm∗ ≥ 1− δ + µ

µ
log n− γ

µ
log g∗ (11)

where m∗ = mr−nc
mp−c , and g∗ = gr

gp
. Here we define m∗ as the rival wealth threshold of n-polygyny

under the female supply constraint. Given g∗, the rival wealth threshold increases as µ increases.

Figure 3 illustrates the polygyny threshold and the effect of an increase in the importance of

rival wealth, µ. Notice first, that in contrast to the usual representation of the threshold as simply

a difference in material wealth, here it is two dimensional, giving the combinations of inequality

in both rival and non rival wealth sufficient to allow polygyny to be attractive to females. Thus,

as would be expected, a decrease in the inequality level of one wealth type requires an increase in

the inequality level of the other wealth type if polygynous marriage is to remain fitness-enhancing

for women.

We can see that if there are no differences in non-rival wealth across the male types (gp = gr),

then inequality in rival wealth alone will determine the marriage outcomes in the population, with

the threshold being located at log(n), as is indicated by the intersection of the threshold lines

and the y-axis on Figure 3. If as appears to be the case empirically, the two forms of wealth are

positively correlated so that gp < gr, then the n-polygyny threshold will be less than log(n), as is

evident from the downward sloping nature of the threshold line.

The important result for our interpretation of the decline of polygyny is that as the importance

of rival wealth increases, the rival wealth threshold of n-polygyny (m∗) also increases. This means

that as rival wealth becomes more important to reproduction, higher levels of wealth inequality

are required to make polygyny a fitness enhancing strategy. Additionally, when the importance of

rival wealth is elevated, the threshold declines less as the rich male’s non-rival wealth increases.

This occurs because increases in µ diminish the relative importance of the non-rival forms of the

husband’s wealth for which each wife’s share is undiminished by the number of wives. As a result,

as the importance of rival wealth for fitness increases, the fitness cost to a woman of joining a

polygynous relationship—and having access to only a proportional share of the husband’s rival

wealth—also grows. The effect of the increase in the importance of rival wealth, µ, on marriage

forms is shown in Figure 3. As µ increases holding constant the importance of non-rival wealth γ,

the parameter space favoring monogamous marriage expands.
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Figure 3: The n-polygyny threshold. The origin represents equality in both wealth dimensions. The solid line
indicates the polygyny threshold at some given values of µ and γ. Along the threshold, being a singleton wife of the
poor is indifferent from being the n-th wife of the rich. The y-intercept at log(n) is derived from Eq. (11). When the
importance of rival wealth, µ, increases, holding constant the importance of non-rival wealth, γ, polygyny threshold
tilts upwards, as indicated by the dotted line. The parameter space favoring monogamous marriage expands..
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It is clear from Eq.(4) that as the importance of rival wealth to reproduction increases, the

fitness maximizing number of wives for a given man decreases. With respect to the female supply

condition, we see that an increase in µ raises the n-polygyny threshold, meaning that it takes

greater rival wealth inequality to guarantee female supply for n-polygyny. Thus, both male demand

and female availability for n-polygyny diminish as µ grows. We establish these claims formally in

Proposition 2.

Proposition 2. An increase in the importance of rival wealth, µ, will decrease the extent of
polygyny.

Proof. We differentiate n∗ in Eq.(8) and Eq.(7) with respect to µ.

(i) when the male demand is binding, we have

dn∗

dµ
= −mr

cδ
< 0

(ii) when the female supply constraint is binding, we do not have a closed form solution for

n∗. Let φ(n∗, µ) = 0. By total differentiation we have:

dn∗

dµ
= −

∂φ
∂µ

∂φ
∂n∗

=
nδ−1gγr (mr−n

∗c
n∗

)µ log(mr−n
∗c

n∗
)− gγp (mp − c)µ log(mp − c)

gγrnδ−µ−2(mr − n∗c)µ−1[µn∗c+ (mr − n∗c)(1− δ + µ)]
(12)

The sign of the denominator ∂φ
∂n∗

is positive because we have mr − n∗c > 0 and 1− δ + µ > 0.
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The sign of the numerator will be determined by the size of the two terms, log(mr−n
∗c

n∗
) and

log(mp − c) because we have nδ−1gγr (mr−n
∗c

n∗
)µ = gγp (mp − c)µ from φ(n∗, µ) = 0. On empirical

grounds we assume that men with rival wealth also have more non rival wealth, gr > gp. So,

in equilibrium, the rival wealth of the poor must exceed the per wife rival wealth of the rich,

i.e. mr
n∗

< mp, to provide a singleton wife an offsetting increase in the fitness. If mr
n∗

< mp, then

log(mr−n
∗c

n∗
) < log(mp − c), so we have dn∗

dµ
< 0.

(iii) when the market clears, we also have dn∗

dµ
< 0 from the results of (i) and (ii).

Thus, for any given levels of rival and non-rival wealth (mr > mp and gr > gp), an increase in

µ will decrease n∗, and so too the fraction of polygynously married women in the population.

5. Polygyny in an African agropastoralist population

Now we ask: is our theoretical model capable of predicting the distribution of marriage types

in a natural-fertility human population? Specifically, we focus on modeling marriage outcomes

in a population of Kenyan agropastoralists, and investigate how these outcomes are predicted to

change as a function of hypothetical changes in the importance of rival wealth.

5.1. Wealth and reproductive success among the Kipsigis

The Kipsigis are a farming and cattle herding population living in southwestern Kenya (Keri-

cho, Rift Valley Province), who have a tradition of polygyny (Borgerhoff Mulder, 1987); the extent

of polygyny during the time of ethnographic investigation was high, with some men marrying up

to 12 wives and others remaining wifeless (Borgerhoff Mulder, 1990). At the time of study (1981-

1984), marriages were arranged mostly by parents, whose sons would offer a bride-price to the

parents of their marriage interests. In the Kipsigis, there is a cultural norm that requires husbands

to split their wealth equally among wives (Peristiany, 1939); this behavior is consistent with the

assumptions of our model. Land and livestock are the primary sources of rival wealth for the

Kipsigis’ subsistence (Manners, 1967; Mwanzi, 1977), and height and number of cattle trading

partners are hypothesized to constitute major forms of non-rival wealth.

To estimate the importance of each wealth type to reproductive success in the Kipsigis, we use

a Cobb-Douglas function, which implies that the log of predicted reproductive success in individual

i, ψi, is given by:

log(ψi) = log(w0) + γ log(Gi) + µ log(Mi) + β log(Ni + η) + ε log(Ei) (13)

where each male’s exposure time to risk of reproductive success (i.e., years lived in the age range

between 15 and 60 years) is given by Ei, non-rival wealth is given by Gi, rival wealth is given by
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Mi, and number of wives is given by Ni. Note that the parameter η ∈ (0, 1) is used to adjust the

zero of the wife vector, allowing men with no wives to produce offspring; as such, η represents

the effective exposure to mating chances outside of marriages, and is constrained by fiat to be

less than the mating chances inside of a marriage. Since we do not have bride-price data on the

majority of these men’s marriages, we drop bride-price from the estimation. Eq. (13) is thus an

empirically estimable approximation to the male reproductive success function described in Eq.

(2).

Rival wealth holdings are approximated using land-holding size and the number of cattle owned

by a man. Non-rival wealth holdings are described using height (a heritable indicator of physical

stature and the social benefits it confers)3, as well the number of men in a male’s cattle-sharing

network (a common insurance mechanism among pastoralists, indicative of the social connections

of an individual). To convert wealth proxies into a single kind of rival or non-rival currency, we

integrate endogenously estimated shadow prices, ς, into Eq. (13), using the following identities:

Gi = (Pi + ς1Hi) (14)

Mi = (Ci + ς2Li) (15)

where the variables are cattle trading partners Pi, height Hi, cattle Ci, and land Li. The like-

lihood function for reproductive success, Ri, is then defined using a Negative Binomial outcome

distribution:

Ri ∼ Negative Binomial(ψiB,B) (16)

where the term ψiB defines the shape parameter of a Gamma distribution, and B defines the

inverse scale parameter. The Negative Binomial model thus follows a Gamma-Poisson parame-

terization, as has been proposed specifically for use in modeling fertility outcomes in polygynyous

societies (Spencer, 1980). Our model structure, through its use of shadow prices, implies that

non-rival wealth is measured in units of cattle partner equivalents, and rival wealth is measured

in cattle equivalents. To measure reproductive success, we use the number of children surviving

to age 5. In order to use all cohorts of the adult male population, all relevant measures—wives,

cows, and land—are age-adjusted in a Bayesian framework to represent their predicted values at

the age of 60 years (see Ross et al., 2017).

We use the full posterior estimates of G, age-adjusted M , µ, and γ to ground our simulation

models of Kipsigis marriage dynamics. We run our simulation on each Markov Chain Monte Carlo

sample, and then summarize the resultant predictive distribution. The posterior mean estimates

3The height measure is normalized by subtracting 140 cms so that its zero measure is an estimate of the least
height consistent with successful reproduction.
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Table 1: Descriptive statistics of age-adjusted Kipsigis data. Measures reflect the hypothetical distribution of wife
number and wealth-holdings at age 60 were all individuals to reach that age. Rival wealth is in cattle equivalent
units, and non-rival wealth is in cattle trading partner equivalent units. Values are posterior median and 95%
confidence estimates of the mean quantity of the indicated column label in each of the subsets given by the row
labels.

Marriage Form Number of Males Rival Wealth Non-Rival Wealth

Unmarried 73 (63, 82) 43.4 (23.1, 80.8) 6.1 (2.9, 12.5)
Monogamy 313 (275, 357) 71.0 (34.5, 136.7) 6 (2.8, 12)
Polygyny 463 (413, 503) 137.3 (70.1, 278.3) 6.1 (3.1, 12.4)

n-wives=2 291 (269, 316) 112.8 (56.3, 225.6) 6.1 (3.1, 12.4)
n-wives=3 118 (92, 141) 139.5 (66.2, 279.2) 6.1 (2.8, 12.2)
n-wives=4 39 (28, 52) 217.8 (98.2, 435.5) 6.1 (2.7, 12.1)
n-wives=5 8 (3, 13) 169.3 (77.8, 362.8) 6.0 (2.6, 12.2)
n-wives=6 2 (1, 5) 197.2 (79.8, 429.6) 6.2 (2.2, 12.6)
n-wives=7
n-wives=8 1 (1, 2) 1238.1 (443.2, 2417.2) 7.6 (4.1, 14.6)
n-wives=9
n-wives=10 1 (1, 1) 919.2 (441.7, 1728.9) 8.4 (5.5, 15.3)
n-wives=11
n-wives=12 1 (1, 1) 1278.3 (581.7, 2492.8) 8.4 (4.1, 17.6)

and 95% confidence intervals (in parentheses) of the regression parameters are β = 0.49 (0.41,

0.56), µ = 0.18 (0.14, 0.22) and γ = 0.36 (0.10, 0.64). The substantially greater importance of

non-rival wealth is robust to a number of alternative estimation strategies (including alternate

age-adjustment methods).

Note that the estimate of β is substantially less than one minus the estimate of µ, the value

implied by Equation (2) if the only source of diminishing marginal fitness returns were the necessity

to share the husband’s rival wealth among the wives. This result—which we find more generally

in a cross cultural study of fitness, polygyny, and rival wealth in 29 populations—indicates that

there are diminishing marginal returns to additional wives accounted for by some kind of rival

resource—the husband’s own time and attention for example—that we have not accounted for in

the model. For more detailed information on the Kipsigis data and statistical methodology see

Supplementary Materials and Ross et al. (2017).

In Table (1) we present estimates of the hypothetical extent of polygyny among people at age

60 were all individuals in the population to reach that age. This is not a measure of the extent

of polygyny in the real population with its empirical age distribution, and is not comparable

with unadjusted empirical data. Rather these measure provide a set of values against which our

simulations of the same quantity can be assessed. We report the distribution of men in each marital
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Table 2: Polygyny among the Kipsigis. Measures reflect the hypothetical extent of polygyny at age 60 were all
individuals to reach that age. Values are posterior medians and 95% confidence estimates.

Measure Estimate

Fraction of age-adjusted women in polygyny 0.79 (0.75, 0.83)
Fraction of age-adjusted men in polygyny 0.55 (0.49, 0.59)
Fraction of age-adjusted monogamous households 0.37 (0.32, 0.42)

Gini of age-adjusted wives 0.33 (0.32, 0.34)
Average number of age-adjusted wives per man 1.76 (1.64, 1.88)
Variance in number of age-adjusted wives per man 1.36 (1.21, 1.50)

type and the average rival and non-rival wealth for each.4 There were 463 (413, 503) polygynously-

married men, 313 (275, 357) monogamously-married men, and 73 (63, 82) unmarried men in this

age-adjusted data-set. Among those men with polygynous marriages, we also report the number

of men with n-wives. Most men have 2 or 3 wives, and only few men with extremely large wealth

holdings have more than 4 wives. As we can see from Table (1), men having more wives tend to

have greater rival and non-rival wealth on average. Our age-adjusted data set includes 848 men

who are married to a total of 1492 (1393, 1603) age-adjusted wives. These numbers do not imply

a sex imbalance in the population, but rather reflect the implied empirical circumstances where

polygyny among Kipsigis elders creates a demographic queue of younger unmarried men (Spencer,

1980)—accordingly, many of the wives generated by our age-adjustment methods can be assumed

to come from exogenous, younger cohorts, which in a growing population can be particularly large.

In Table (2) we provide several measures of the extent of Kipsigis polygyny in our hypothetically

age-adjusted data-set. We first present the extent of polygyny as measured by the fraction of males

and females in polygynous marriages. In the mathematical model presented in Section (3), the

fraction of men married polygynously was simply the fraction of rich men in the population, who

each had n wives; in this empirical case, however, wife number and wealth are variable across men.

The total fraction of men with multiple wives (after age-adjustment) is 0.55 (0.49, 0.59), and the

empirical sample statistic for this measure among men age 60 or older is 0.62. The total fraction

of age-adjusted wives in polygynous marriages (i.e. wives with cowives) is 0.79 (0.75, 0.83), and

the empirical sample statistic for this measure among the wives of men age 60 or older is 0.88.

A second—and quite different—indicator of polygyny is how unequally women are distributed

among men. To estimate this quantity, we calculate the Gini coefficient of the distribution of the

number of wives attributed to each male, and we call it the wife Gini. In our age-adjusted data

set, this is a measure of male inequality in the number of wives, not the extent of polygyny per se.

4The correlation of these data vectors across all men is small, ρ = 0.05 (-0.01, 0.11).
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The Gini coefficient, 0.33 (0.32, 0.34), on age-adjusted number of wives for the Kipsigis is

quite low, especially when considering that the extent of polygyny is very high. Even though

polygyny is widely practiced by the Kipsigis, after age-adjustment to control for demographic

effects influencing lifetime acquisition of wives—as recognized ethnographically long ago (Spencer,

1980)—the number of wives achieved by in-sample males is fairly evenly distributed compared to

the distribution of rival wealth for which the Gini coefficient is 0.46 (0.44, 0.49). Using the mean

number of age-adjusted wives and the corresponding Gini coefficient to compute the average mean

difference among all pairs of Kipsigis men, we see that age-adjusted Kipsigis men differ on average

by slightly under a half of a wife.

5.2. Simulating a Nash equilibrium Kipsigis marriage distribution

We use a simulation model to determine the predicted Nash equilibrium assignment of marital

partners in the Kipsigis, conditional on the posterior estimates of the regression parameters (µ and

γ) and wealth vectors (G and M) as calculated from the empirical data. We iterate the estimation

procedure over a range of empirically plausible bride-prices.

We use our model to calculate fitness with Eq. (2), and from this we calculate male demand,

nd = m(1−µ)
c

. Since our simulation must use integral values for number of wives desired, n̂d, we

calculate each man’s fitness at both the floor and ceiling of nd, bndc and dnde, and define n̂d to be

the value which leads to higher fitness.

For female supply, we simulate a voluntary assignment of women over men as explained in

Section (3.2). In the mathematical model, there were only two male wealth types, but in this

empirically-parametrized example, each man has a unique combination of rival and non-rival

wealth. Thus, the marital assignment algorithm is defined so that each woman compares her

expected fitness under marriage to each and every male in the population who has unsupplied

demand, and then selects marriage with the male with whom she will have maximized fitness.

Let ni be the number of wives of the ith man, and ω(i, ni) be the expected fitness of a woman

married to male i as his nth wife. Since every wife shares her husband’s wealth equally, all of the

wives of a given man will have the same fitness. Suppose a yet to be assigned woman is to choose

whom to marry given the distribution of wives already assigned to men. She will want to be wife

(ni + 1) of male i—and male i will accept her proposal—if and only if:

ω(i, ni + 1) = max[I1ω(1, n1 + 1), I2ω(2, n2 + 1), . . . , Inω(N, nN + 1)] (17)

and:
N∑
i=1

Ii > 0 (18)

where the terms (I1, I2, . . . , IN) are binary indicators that take value 0 if a male is already supplied
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with as many wives as he demands, and value 1 if he still demands at least 1 additional wife; this

model works similarly to other marital matching algorithms (e.g. Bergstrom and Real, 2000).

Under the assumptions of our model, men care only about wife number—not identity—so the fact

that assignment in our algorithm is bilaterally voluntary means that no man would prefer to have

fewer wives than in the equilibrium allocation, and no woman would prefer to switch to a new

partner. A male may, however, prefer to have additional wives if the female supply constraint is

binding, and there may be a surplus of unmarried women if male demand is filled before all women

are distributed.

To select a numerical value for the bride-price, we use two methods. In the first, we vary the

bride-price for each c ∈ {10, 20, . . . , 200}, calculating the predicted equilibrium number of wives,

ni, for each man, for each bride-price. Using this method, we find that when the bride-price is:

c ≈ 60, several metrics measuring the divergence between predicted and actual wives reach their

minimum. Accordingly, we present the simulation results at c = 60. Notice from Table (1) that

when c = 60, the poorest men must exhaust their wealth in order to pay the bride-price. In

the second method, we allow bride-price to depend on a male’s rival wealth. This model makes

empirical sense if higher ranking males pay larger bride-prices to secure ‘higher quality’ mates,

which was quite typical among the Kipsigis until the 1980s (Borgerhoff Mulder, 1995). In this case,

we vary the bride-price for each ci ∈ {m0.1
i ,m0.2

i , . . . ,m0.9
i }, calculating the predicted equilibrium

number of wives, ni, for each man, for each bride-price. Using this method, we find that when the

bride-price is: ci ≈ m0.7
i , the divergence between predicted and actual wives reaches its minimum.

Accordingly, we present the simulation results at ci = m0.7
i .

The marital status of both observed (age-adjusted) Kipsigis individuals, and the predicted

marital status of these same individuals based on our simulation models are presented in Fig.

(4). We show the marital status of all men using the same log(non-rival) and log(rival) wealth

plane on which we earlier illustrated the polygyny threshold. We note, in Fig. (4), the existence

of approximate n-polygyny thresholds for the empirical age-adjusted Kipsigis data and explicit

n-polygyny thresholds for the simulation results, as can be seen by noting the spatial patterning

of points on the wealth plane. The empirical data in Fig. (4a) have a more scattered distribution

of marriage forms than the simulation results, but nevertheless suggest the presence of thresholds

which correspond to those from our model.

In the simulation with a fixed bride-price (Fig. 4c), we over-predict the number of wives

of wealthy men, and predict many more unmarried men than we observe empirically. These

excess unmarried men are seen in the simulation under both high and low fixed bride-prices,

because either: 1) the ultra-wealthy simulated Kipsigis men take many more wives than they do

empirically, leaving no supply for the poorer males (low bride-price), or 2) because the poorer men

simply cannot pay a bride-price of a level that is sufficient to prevent the ulta-wealthy men from
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Figure 4: Posterior medians of the real and predicted marriage distributions of Kipsigis men on the log(non-rival) by
log(rival) wealth plane. For the simulation in Frame (4b), bride-price was set to ci = m0.7

i , and for the simulation in
Frame (4c) it was set to c = 60. The full posterior estimates of G, M , µ and γ were used, with µ = 0.18 (0.14, 0.22)
and γ = 0.36 (0.10, 0.64). Each dot denotes a man and each shaded region denotes the minimal convex polygon
that encloses 60% of the data points for each marriage-type category. Brown points denote unmarried men, orange
points denote monogamously married men, purple points denote polygynously married men (with 2-3 wives), green
points denote highly polygynous men (with 4-6 wives), blue points denote ultra-polygynous men (with 7-12 wives),
and red points denote men with 13 or more predicted wives. There is a strong correspondence between the data
in Frame (4a) and the predictions in Frame (4b), and a weaker correspondence with the predictions in Frame (4c).
We note that there is more overlap between marriage-type categories in the age-adjusted data than in the model
predictions.
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(a) Real (age-adjusted) marriage distribu-
tion.
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dominating the marriage market (high bride-price). Although predictive error is much better than

random—average error of 1.02 wives, versus the error of 1.31 (1.26, 1.37) expected under random

allocation of the same number of wives across the same number of men—and the correlation

between real and predicted wives substantial—ρ = 0.52—the model over-predicts the wives of

the wealthiest 5% of men by a large margin (4.16 wives on average). In the simulation with a

variable bride-price (Fig. 4b), we make much more accurate predictions—an average predictive

error of 0.70 wives per man, and a correlation of ρ = 0.47 between real and predicted. Under this

simulation, we also reduce the over-prediction of wife number among the wives of the wealthiest

5% of men to only 1.58 wives. Empirically, however, although Kipsigis bridewealth payments

and overall investments in marriage vary in size (Borgerhoff Mulder, 1995), such investments are

constrained by custom to such an extent that the original ethnographer claimed bridewealth to be

a fixed payment (Peristiany, 1939). This suggests that some other factor, exogenous to the model,

is limiting polygyny among very wealthy males, an implication we return to in the conclusion.

6. A simulated decline in polygyny

Now, we investigate how the importance of rival wealth affects the distribution of marriages in

a simulated population. We use the empirical levels of rival and non-rival wealth in the Kipsigis

for this hypothetical population, but because we want to study the extent of polygyny in some

observable (not hypothetically age-adjusted) population, we assign an equal number of women as

men (i.e. 848 men and 848 women).

We vary the importance of rival wealth keeping the sum of two exponents constant such that:

µ+γ = 1 (i.e. we investigate the effect of changing µ while maintaining constant returns to scale).

Figs. (5a), (5b), (5c), and (5d) show the predicted marital status of all men when: µ = 0.2,

µ = 0.4, µ = 0.6, and µ = 0.8, respectively. We have two important observations. First, we

note that as the importance of rival wealth increases, there is more monogamy and less polygyny;

the highly-polygynous men disappear as µ increases toward 1. Second, we note that the slope of

the boundaries between marriage forms become steeper as µ increases. In our model, the slope

of the polygyny threshold is equal to the rate of substitution between non-rival wealth and rival

wealth in enabling a man to be polygynously married, and will thus be steeper as µ increases.

At higher levels of µ, men require a smaller increase in rival wealth as substitution for a decrease

in non-rival wealth in order to keep the same number of wives. When µ = 0.8, the polygyny

thresholds are approximately vertical, implying that the number of wives of a given male is almost

fully determined by his rival wealth.

Finally, we present various polygyny measures, as discussed in Section (5.1), with respect to µ in

Fig. (6). As the model predicts, the fractions of men and women that are polygynously married,

as well as the wife Gini, are decreasing in µ. We also show that the fraction of monogamous
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Figure 5: The effect of the µ
γ ratio on the predicted marriage distributions of Kipsigis men. The parameter values for

each simulation are described in the frame descriptions. Each dot denotes a man and the shaded regions denote the
minimal convex polygons that enclose 60% of the data points for each marriage-type category. Brown points denote
unmarried men, orange points denote monogamously married men, purple points denote polygynously married men
(with 2-3 wives), green points denote highly polygynous men (with 4-6 wives), blue points denote ultra-polygynous
men (with 7-12 wives), and red points denote men with 13 or more predicted wives. As µ increases, the polygyny
threshold becomes increasingly determined by rival wealth, and the frequency of polygyny declines.
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households increases in µ. Note from Fig. (6a) that a variable bride-price allows all men to

obtain at least a single wife, and as such, increasing µ can drive monogamy to fixation. In Fig.

(6b), under a fixed bride-price, polygyny is also eliminated by increasing µ, but the fraction of

unmarried men remains high, since a large fraction of the population cannot pay the brideprice.

7. Conclusion

Figs. (5) and (6) illustrate how our proposed model might resolve Becker’s polygyny puzzle.

We present a model for a pre-demographic-transition marriage system that may be representative

of those societies in which a decentralized shift from extensive polygyny to extensive monogamy

took place. Our econometric estimates and our ability to simulate an empirically realistic Nash

equilibrium assignment of marital partners in a real population suggest that the causal mechanisms

postulated by our model are plausible; by increasing µ, our model can produce a hypothetical

transition from polygyny to monogamy, suggesting that a changing level of rival wealth importance

in early agricultural populations might account for the change in marital norms in those societies.

We observe a tight correspondence between the empirical data and our predictions under a

variable brideprice, but in the more ethnographically realistic model with a fixed brideprice, we

substantially over-predict the number of wives of the very wealthy. The fact that exceptionally

wealthy Kipsigis males take fewer wives than expected, given their wealth, reflects the fact (implied

by our estimated fitness function, as already noted) that there are diminishing marginal fitness

returns to polygyny due to reasons above and beyond the necessary reduction in each wife’s share

of the male’s rival wealth that is entailed by taking on additional wives.

These unaccounted for diminishing marginal returns to polygyny could be explained by unmea-

sured and unmodeled variables that are suppressing the polygyny level of the ultra-rich Kipsigis.

These variables could include unmeasured sources of rival wealth held by men—including the fact

that men’s time and attention is rival—or negative externalities resulting from competition among

cowives, as well as other costs associated with polygyny—such as higher risks of socially transmit-

ted infections, or social norms penalizing highly polygynous men or a preference among wealthy

men for aspects of child quality independent of reproductive success.

These elements missing from our model could be the basis of a complementary explanation of

the decline of polygyny, explored cross-culturally in Ross et al. (2017). This further contribution

to resolving the ”polygyny puzzle” is that the highly concentrated form of wealth inequality

associated with capital intensive farming (by contrast to horticulture) is unfavorable to polygyny

because a very small number of exceptionally rich individuals will have fewer wives in total than

would be the case if the wealthy class were larger, and individually less wealthy.

Our work could be fruitfully extended in a number of other ways. A more adequate historical

test of our interpretation would be based not on a hypothetical population simulated using param-
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eters estimated from an age-adjusted population cross-section, but instead from observations over

time on population dynamics. This being said, our static approach is the best that can be done

given existing sources of data. Anthropologists conducting longitudinal studies may eventually

produce the data needed to test our ideas with dynamic measures (McElreath, 2016), but the fact

that few if any of the relevant populations are unaffected by the demographic transition (especially

among the wealthy) will present a challenge to this solving this puzzle.

Construction of a more inclusive model of polygyny and its decline would require consideration

and estimation of two important relationships that are likely to affect empirical marriage market

outcomes. First, one would need to consider how variation in the reproductive importance of

rival wealth is associated with corresponding variation in the degree of inequality in this wealth

type. Modeling efforts suggest that the importance of rival wealth may strongly covary with its

inequality, in part because the degree of investment by parents will be affected by the importance

of each wealth type to their offspring (Hartung et al., 1982; Solon, 2000). Data from small scale

societies is consistent with this expectation (Borgerhoff Mulder et al., 2009).

Finally, a more general equilibrium approach would take account of the impact of polygyny

itself on the long-term levels of material wealth inequality in a given society. It is easily shown using

the model of Becker and Tomes (1979) that if wealthier men have more offspring, this will, ceteris

paribus, enhance regression to mean wealth, and hence reduce the intergenerational transmission

elasticity, as pointed out in Lagerlof (2005). The effect of this will be to reduce inequality in the

ergodic distribution of material wealth. Thus, any dynamical model of marriage types must treat

the prevalence of polygyny and the degree of rival wealth inequality as endogenous, each affected

by the level of the other. Modeling this process is entirely feasible, but would take us well beyond

the scope of the current paper. Calibrating or testing such a model may be feasible in light of the

growing body of individual-level data on relevant measures of wealth and reproductive success.
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Figure 6: Posterior mean estimates of various measures of polygyny as the importance of rival wealth, µ, shifts
0.01 → 0.99, under the constraint that: µ + γ = 1. As µ increases, we see the frequency of monogamy increases
substantially, especially for very high µ.
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