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The partial information decomposition is perhaps the leading proposal for resolving shared infor-
mation in a joint random variable into redundant, synergistic, and unique constituents. Unfortu-
nately, the framework has been hindered by a lack of a generally agreed-upon, multivariate method
of quantifying the constituents. Here, we take a step toward rectifying this by developing a decom-
position based on a new method that quantifies unique information. The result is the first measure
which satisfies the core axioms of the framework while also not treating identical but independent
channels as redundant. This marks a key step forward in the practical application of the partial
information decomposition.
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I. INTRODUCTION

Understanding how information is stored, modified, and
transmitted among the components of a complex sys-
tem is fundamental to the sciences. Application do-
mains where this would be particularly enlightening in-
clude gene regulatory networks, neural coding, highly-
correlated electron systems, financial markets, and other
complex systems whose large-scale organization is either
not known a priori or emerges spontaneously.
One particularly promising framework for accomplishing
this is the partial information decomposition [1]. Once a
practitioner partitions a given set of random variables
into sources and a target, the framework decomposes
the information shared between the two sets into inter-
pretable, nonnegative components—in the bivariate case:
redundant, unique, and synergistic informations. This
task relies on two separate aspects of the framework:
first, the overlapping source subsets (algebraic lattice [2])
into which the information should be decomposed and,
second, the method of quantifying those components.
Unfortunately, despite a great deal of effort [3–12], the
current consensus is that the lattice needs to be modi-
fied [9–11, 13, 14] and that extant methods of quantify-
ing components [1, 3–5, 7, 8] are not satisfactory in full
multivariate generality. Thus, the promise of a full infor-
mational analysis of the organization of complex systems
remains unrealized.
The following addresses the second aspect—quantifying
the components. Inspired by early cybernetics—
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specifically, Ref. [15]’s lattice of system models—we de-
velop a general technique for decomposing arbitrary mul-
tivariate information measures according to how they
are influenced by statistical dependencies. We then uti-
lize this decomposition to quantify the information that
one variable uniquely has about another. Reference [5]’s
IBROJA measure also quantifies unique information, but is
susceptible to artificially inflating redundancy [8]. Both
our measure as well as Ref. [8]’s Iccs measure overcome
this issue, but Iccs does so at the expense of positivity.
This makes our proposal the only method of quantify-
ing the partial information decomposition that is both
nonnegative and does not artificially inflate redundancy.
Our development proceeds as follows. Section II reviews
the partial information decomposition and Section III in-
troduces our measure of unique information. Section IV
then compares our measure to others on a variety of ex-
emplar distributions, exploring and contrasting its be-
havior. Section V discusses several open conceptual is-
sues and Section VI concludes. The development requires
a working knowledge of information theory, such as found
in standard texts [16–18].

II. BACKGROUND

Consider a set of sources X0, X1, . . . , Xn−1 = X0:n and a
target Y .1 The amount of information the sources carry
about the target is quantified by their mutual informa-
tion:

I [X0, X1, . . . , Xn−1 : Y ] = I [X0:n : Y ] .

1 We subscript the joint variable with a Python-like array-slice
notation.
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FIG. 1. Lattice of antichains for (a) two (X0 and X1) and (b)
three sources (X0, X1, and X2): An antichain is represented
using a dot to separate sets and sets by concatenated indices;
e.g., {{X0} {X1, X2}} is represented 0 · 12.

The partial information decomposition (PID) [1] then as-
signs shared information to sets of source groupings such
that no (inner) set is subsumed by another. In this way,
the PID quantifies what information about the target
each of those groups has in common.

A. Antichain Lattices

The sets of groupings we consider are antichains:

A(X0:n) =
{
α ∈ P+(P+(X0:n)

)
: ∀s1, s2 ∈ α, s1 6⊂ s2

}
where P+(S) = P(S) \ {∅} denotes the set of nonempty
subsets of set S. Antichains form a algebraic lattice [2],
where one antichain α is less than another β if the infor-
mation shared among the groupings of variables in the
first is included in the shared information of the second:

α � β ⇐⇒ ∀s1 ∈ β,∃s2 ∈ α, s2 ⊆ s1 . (1)

Figure 1 graphically depicts antichain lattices for two and
three variables. There, for brevity’s sake, a dot separates
the sets within an antichain, and the groups of sources are
represented by their indices concatenated. For example,
0 · 12 represents the antichain {{X0} {X1, X2}}.

B. Shared Informations

Given the antichain lattice, one then assigns a quantity
of shared or redundant information to each. This should

quantify the amount of information shared by each set
of sources within an antichain α about the target. This
shared information will be denoted I∩ [α→ Y ] . Ref-
erence [1] put forth several axioms that such a measure
should follow:

(S) I∩ [α→ Y ] is unchanged under permutations of α.
(symmetry)

(SR) I∩ [i→ Y ] = I [Xi : Y ]. (self-redundancy)

(M) For all α � β, I∩ [α→ Y ] ≤ I∩ [β → Y ].
(monotonicity)

With a lattice of shared informations in hand, the par-
tial information I∂ [α→ Y ] is defined as the Möbius
inversion [2] of the shared information:

I∩ [α→ Y ] =
∑
β�α

I∂ [β → Y ] . (2)

We further require that the following axiom hold:

(LP) I∂ [α→ Y ] ≥ 0. (local positivity)

This ensures that the partial information decomposition
forms a partition of the sources-target mutual informa-
tion and contributes to the interpretability of the decom-
position.

C. The Bivariate Case

In the case of bivariate inputs, the partial information
decomposition takes a particularly intuitive form. First,
following the self-redundancy axiom (SR), the sources-
target mutual information decomposes into four compo-
nents:

I [X0X1 : Y ] = I∂ [0 · 1→ Y ] + I∂ [0→ Y ]
+ I∂ [1→ Y ] + I∂ [01→ Y ] , (3)

and, again following (SR), each source-target mutual in-
formation consists of two components:

I [X0 : Y ] = I∂ [0 · 1→ Y ] + I∂ [0→ Y ] (4)
I [X1 : Y ] = I∂ [0 · 1→ Y ] + I∂ [1→ Y ] . (5)

The components have quite natural interpretations.
I∂ [0 · 1→ Y ] is the amount of information that the two
sources X0 and X1 redundantly carry about the target
Y . I∂ [0→ Y ] and I∂ [1→ Y ] quantify the amount of
information that sources X0 and X1, respectively, carry
uniquely about the target Y . Finally, I∂ [01→ Y ] is the
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amount of information that sources X0 and X1 synergis-
tically or collectively carry about the target Y .
Combining the above decompositions, we see that the
operational result of conditioning removes redundancy
but expresses synergistic effects:

I [X0 : Y |X1] = I [X0X1 : Y ]− I [X1 : Y ]
= I∂ [0→ Y ] + I∂ [01→ Y ] . (6)

Furthermore, the co-information [19] can be expressed
as:

I [X0 : X1 : Y ] = I [X0 : Y ]− I [X0 : Y |X1]
= I∂ [0 · 1→ Y ]− I∂ [01→ Y ] . (7)

This illustrates one of the strengths of the partial infor-
mation decomposition. It explains, in a natural fashion,
why the co-information can be negative. It is the differ-
ence between a distribution’s redundancy and synergy.
The bivariate decomposition’s four terms are constrained
by the three self-redundancy constraints Eqs. (3) to (5),
leaving one degree of freedom: I∂ [0 · 1→ Y ] . There-
fore, specifying any component of the partial information
lattice determines the entire decomposition. In the mul-
tivariate case, however, only specifying how to compute
I∩ values completes the decomposition.
Finally, in the bivariate case one further axiom is em-
ployed:

(Id) I∩ [0 · 1→ X0X1] = I [X0 : X1] (identity)

This axiom ensures that simply concatenating indepen-
dent inputs does not result in redundant information.
Unfortunately, it is not clear how to extend this axiom
to the multivariate case or even if it should be extended.

D. Extant Methods

We next describe the four primary existing methods
for quantifying the partial information decomposition.
There exist other methods ( Immi [9], I∧ [7], and I↓
[4, 9]), though they either suffer from inconsistencies or
otherwise have not been adopted.
Imin, the first measure proposed [1], quantifies the aver-
age least information the individual sources have about
each target value. It has been criticized [3, 4] for its
behavior in certain situations. For example, when the
target simply concatenates two independent sources, it
decomposes those two bits into one bit of redundancy
and one of synergy. This is in stark contrast to the more
intuitive view that the target contains two bits of unique
information—one from each source.

Iproj quantifies shared information using information
geometry [3]. Due to its foundation relying on the
Kullback-Leibler divergence, however, it does not have
any obvious extension to measuring the shared informa-
tion in antichains of size three or greater.
As in our approach, IBROJA attempts to quantify unique
information [5]. It does this by finding the minimum
I
[
Xi : Y |X0:n\i

]
over all distributions that preserve

source-target marginal distributions. (The random vari-
able set X0:n\i, excludes variable i.) However, due to
its decision-theoretic underpinnings, there exist distribu-
tions for which its optimization artificially correlates the
sources [8]. This leads the measure to quantify identi-
cal, though independent, source-target channels as fully
redundant. Furthermore, as a measure of unique infor-
mation, it cannot completely quantify the partial infor-
mation lattice when the number of sources exceeds two.
Finally, Iccs quantifies redundant information by aggre-
gating the pointwise coinformation terms whose signs
agree with the signs of all the source-target marginal
pointwise mutual informations [8]. This measure over-
comes the interpretational issues of both Imin and IBROJA
and it can be applied to antichains of any size. Unfor-
tunately, it does so at the expense of negativity, though
one can argue that this is an accurate assessment of the
information architecture.
With these measures, their approaches, and their limita-
tions in mind, we now turn to defining our measure of
unique information.

III. UNIQUE INFORMATION

We now propose a method to quantify partial informa-
tion terms of the form I∂ [i→ Y ] —that is, the unique
information. We begin by discussing the notion of de-
pendencies and how to quantify their influence on infor-
mation measures. We then adapt this to quantify how
source-target dependencies influence the sources-target
mutual information. Our measure quantifies unique in-
formation I∂ [i→ Y ] as the least amount that the XiY

dependency can influence I [X0:n : Y ] .

A. Constraint Lattice

We begin by defining the constraint lattice L(Σ), a lattice
of sets of subsets of variables. In this lattice no subset
of variables implies another and each variable is repre-
sented at least once. Specifically, given a set of variables
Σ = {X0, X1, . . .}, a constraint γ is a nonempty subset of
Σ. And, a constraint set σ is a set of constraints that form
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FIG. 2. Constraint lattice of three random variables X, Y ,
and Z. Blue edges (a, d, g, l) correspond to adding constraint
XY , green (b, e, i, k) to XZ, and red (c, f, h, j) to Y Z.

an antichain on Σ and whose union covers Σ; they are an-
tichain covers [2]. Concretely, σ ∈ P+(P+(Σ)) such that,
for all γ1, γ2 ∈ σ, γ1 * γ2 and

⋃
σ = Σ. The constraint

sets are required to be covers since we are not concerned
with each individual variable’s distribution, rather we are
concerned with how the variables are related. We refer to
these variable sets as constraints since we will work with
families of distributions for which marginal distributions
over the variable sets are held fixed.
There is a natural partial order σ1 � σ2 over constraint
sets: for all γ1 ∈ σ1, there exists γ2 ∈ σ2 such that
γ1 ⊆ γ2. The lattice L(Σ) induced by the partial order
on Σ = {X,Y, Z} is displayed in Fig. 2. The intuition
going forward is that each node (antichain) in the lattice
represents a set of constraints on marginal distributions
and the constraints at one level imply those lower in the
lattice.

B. Quantifying Dependencies

To quantify how each constraint set influences a distri-
bution p, we associate a maximum entropy distribution
with each constraint set σ in the lattice. Specifically, con-
sider the set ∆p(σ) of distributions that match marginals
in σ with p:

∆p(σ) = {q : p(γ) = q(γ), γ ∈ σ} . (8)

To each constraint set σ we associate the distribution in
∆p(σ) with maximal Shannon entropy:

pσ = arg max {H [q] : q ∈ ∆p(σ)} . (9)

This distribution includes no additional biases beyond
those constrained by σ [20]. When an information mea-
sure, such as the mutual information, is computed rela-
tive to this maximum entropy distribution, we will sub-
script it with the constraint: Iσ [XY : Z].
Given this lattice of maximum entropy distributions, we
can then compute any multivariate information measure
on those distributions and analyze how its value changes
moving across the lattice. Moves here correspond to
adding or subtracting dependencies. We call the lattice
of information measures applied to the maximum entropy
distributions the dependency structure of distribution p.
The dependency structure of a distribution is a flexible
and robust method for analyzing how the structure of
a distribution effects its information content. It allows
each dependency to be studied in the context of other
dependencies, leading to a vastly more nuanced view of
the interactions among the variables. We believe it will
form the basis for a wide variety of information-theoretic
dependency analyses in the future.

C. Quantifying Unique Information

To measure the unique information that a source—say,
X0—has about the target Y , we use the dependency
decomposition constructed from the mutual information
between sources and the target. Consider further the lat-
tice edges that correspond to the addition of a particular
constraint:

E(γ) = {(σ1, σ2) : (σ1, σ2) ∈ L, γ ∈ σ1, γ /∈ σ2} . (10)

For example, in Fig. 2’s constraint lattice E(XY ) consists
of the following edges: (XY :Z,X :Y :Z), (XY :XZ,XZ :
Y ), (XY : Y Z, Y Z :X), and (XY :XZ : Y Z,XZ : Y Z).
These edges—labeled a, e, g, and l—are colored blue
there. We denote a change in information measure along
edge (σ1, σ2) by ∆σ1

σ2
. For example, ∆σ1

σ2
I [XY : Z] =

Iσ1 [XY : Z]− Iσ2 [XY : Z].
Our measure Idep [i→ Y ] of unique information from
variable Xi to the target Y is then defined using the
lattice L(Xi, Y,X0:n\i):

Idep [i→ Y ] = min
(σ1,σ2)∈E(XiY )

{
∆σ1
σ2

I [X0:n : Y ]
}
. (11)

That is, the information learned uniquely from Xi is the
least change in sources-target mutual information among
all the edges that involve the addition of the XiY con-
straint. In the case of bivariate inputs, this measure of
unique information results in a decomposition that satis-
fies (S), (SR) (by construction), (M), (LP), and (Id);
see Appendix C for proofs.
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FIG. 3. Dependency structure for three variables X0, X1, and
Y . Edges colored blue correspond to adding constraint X0 X1;
edges colored green to adding constraint X0 Y ; and edges col-
ored red to X1 Y . The unique information Idep [X0 → Y ] is
calculated by considering the least change in Iσ [X0X1 : Y ]
along the green edges. See Appendix B and Fig. 6 for identi-
ties among the edges important for Idep.

Sum
X0 X1 Y Pr
0 0 0 1/4
0 1 1 1/4
1 0 1 1/4
1 1 2 1/4

Boom
X0 X1 Y Pr
0 0 1 1/6
0 0 2 1/6
0 2 0 1/6
1 2 1 1/6
2 0 2 1/6
2 1 2 1/6

Reduced Or(p)
X0 X1 Y Pr
0 0 0 1/2
0 0 1 p/4
0 1 1 (1−p)/4
1 0 1 (1−p)/4
1 1 1 p/4

TABLE I. Three distributions of interest.

With a measure of unique information in hand, we now
need only describe how to fill out the partial information
lattice. In the bivariate sources case, this is straightfor-
ward: self-redundancy (SR), the unique partial informa-
tion values, and the Möbius inversion Eq. (2) complete
the lattice. In the multivariate case, this is not generally
possible, though in many relatively simple cases combin-
ing monotonicity (M), self-redundancy (SR), the unique
values, and a few heuristics allow the lattice to be filled
out. The heuristics include using the Möbius inversion
on a subset of the lattice as a linear constraint. Several
techniques such as this are implemented in the Python
information theory package dit [21].

IV. EXAMPLES & COMPARISONS

We now demonstrate the behavior of our measure on a
variety of source-target examples. In simple cases—Rdn,

Sum Imin Iproj IBROJA Iccs Idep

01 1 1 1 1/2 0.68872
0 0 0 0 1/2 0.31128
1 0 0 0 1/2 0.31128

0 · 1 1/2 1/2 1/2 0 0.18872

TABLE II. Partial information decomposition of the Sum dis-
tribution.

Boom Imin Iproj IBROJA Iccs Idep

01 0.29248 0.29248 0.12581 0.12581 0.08781
0 1/6 1/6 1/3 1/3 0.37133
1 1/6 1/6 1/3 1/3 0.37133

0 · 1 1/2 1/2 1/3 1/3 0.29533

TABLE III. Partial information decomposition of the Boom
distribution.

Syn, Copy [4]— Idep agrees with Iproj , IBROJA , and
Iccs. There are, however, distributions where Idep differs
from the rest.
Consider the Reduced Or(0) and Sum distributions [8]
in Table I. For these Imin , Iproj , and IBROJA all
compute no unique information. Reference [8] provides
an argument based on game theory that the channels
X0 ⇒ Y and X1 ⇒ Y being identical does not imply
that unique information must vanish. (This is a special
case of the Blackwell property (BP) [14].) Specifically,
the argument goes, the optimization performed in com-
puting IBROJA artificially correlates the sources. One
can interpret this as a sign that redundancy is overes-
timated. In these instances, Idep qualitatively agrees
with Iccs , though they differ somewhat quantitatively.
See Table II for the exact values.
Reference [5] proves that Iproj and IBROJA are distinct
measures. The only example produced, though, is the
somewhat opaque Summed Dice distribution. Here, we
offer Boom found in Table I as a more concrete example
of this.2 Interestingly, Imin agrees with Iproj, while Iccs
agrees with IBROJA . Idep , however, is distinct. In all
cases, nonzero values are assigned to all four partial in-
formations. Thus, it is not clear if any particular method
is superior in this case. See Table III for the exact values.
Finally, consider the parametrized Reduced Or(p) dis-
tribution, seen in Table I. Figure 4 graphs this distribu-
tion’s decomposition for all measures. Imin, Iproj, and
IBROJA all produce the same decomposition as a func-
tion of p. Iccs and Idep differ from those three and each

2 Although, it is not hard to find a simpler example: see the dit [21]
documentation for another http://docs.dit.io/en/latest/measures/

pid.html#and-are-distinct.
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FIG. 4. Partial information decomposition of Reduced
Or(p) as a function of p: The Idep decomposition shows
an abrupt change in character at p = 1/2, corresponding to
independent source-target channels switching from underes-
timating the target distribution to overestimating. Under
IBROJA (and Imin and Iproj ), the redundant and unique
components do not vary since the source-target marginals are
invariant with p. The Iccs decomposition exhibits two p val-
ues of nonsmoothness, each corresponds to a change in sign
of a coinformation component.

other. IBROJA ’s evaluation of redundant and unique
information is invariant with p because the source-target
marginals are fixed over p. We next demonstrate that
Idep’s decomposition is the most intuitive.

Generically, the source-target channels “over-
lap” independent of p, so there is some invari-
ant component to the redundancy. Furthermore,
the distribution Pr (Y ) = {0 : 1/2, 1 : 1/2}, while
Pr (Y |X0 = 0) = Pr (Y |X1 = 0) = {0 : 2/3, 1 : 1/3}.
Finally, Pr (Y |X0X1 = 00) = {0 : 2/2+p, 1 : p/2+p}.
If the two channels, X0 ⇒ Y and X1 ⇒ Y , oper-
ated independently, then one would observe instead
Pr (Y ′|X0X1 = 00) = {0 : 4/5, 1 : 1/5}. That is, each
channel “pushes” Pr (Y = 0) 4/3 of the way toward 1.
This occurs exactly at p = 1/2. For p ≥ 1/2, this inde-
pendence assumption overestimates the probability of
Y = 0. That is, there is additional redundancy between
the two channels. For p ≤ 1/2, the “pushes” from the
two channels do not account for the true probability of
Y = 0. That is, synergistic effects occur.

And
X0 X1 Y Pr
0 0 0 1/4
0 1 0 1/4
1 0 0 1/4
1 1 1 1/4

TABLE IV. And distribution exemplifies both mechanistic
redundancy and nonholistic synergy.

V. DISCUSSION

We next describe several strengths of our Idep measure in
interpreting the behavior of the sources-target mapping
channel. There are two aspects of the partial information
decomposition that do not directly reflect properties of
the joint distribution, but rather are resolved due to the
selection of sources and target. The first involves re-
dundancy, where two sources may be independent but
redundantly influence the target. The second involves
synergy, where there may be a lack of information at
the triadic level of three-way interdependency, yet the
sources synergistically influence the target. The depen-
dency decomposition and Idep make these phenomena
explicit.

A. Source versus Mechanistic Redundancy

An important question within the domain of partial infor-
mation decomposition is that of mechanistic redundancy.
This is redundant information that exceeds the mutual
information of the sources. The And distribution seen
in Table IV is a prototype for this phenomenon. Though
the two sources X0 and X1 are independent, all meth-
ods of quantifying partial information ascribe nonzero
redundancy to this distribution. Through the lens of Idep
, this occurs when the edge labeled l in Fig. 3 exceeds
b− i = c−h. This means that the channels X0 ⇒ Y and
X1 ⇒ Y are similar, so that when constraining just these
two marginals the maximum entropy distribution artifi-
cially correlates the two sources. This artificial correla-
tion must then be broken when constraining the sources
marginal X0X1, leading to conditional dependence. (See
Section VB for more on this implication.)
Mechanistic redundancy is closely tied to the concept of
target monotonicity [14]:

(TM) I∩ [X0 ·X1 → Y ] ≥ I∩ [X0 ·X1 → f(Y )] .
(target monotonicity)

Said colloquially, taking a function of the target cannot
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increase redundancy. However, one of the following three
properties must be false:

1. I∩ [X0 ·X1 → (X0X1)] = 0,

2. Mechanistic redundancy, or

3. Target monotonicity .

Idep does not satisfy (TM). Reference [14] demonstrated
a general construction that maps a redundancy measure
not satisfying (TM) to one that does, violating Item 1
in the process.

B. Holistic vs Non-Holistic Synergy

A notion somewhat complementary to mechanistic re-
dundancy is nonholistic synergy. Holistic synergy is
the difference between HX0X1:X0Y:X1Y [X0X1Y ] and
H [X0X1Y ] . It is information in the distribution that
is only constrained by the full triadic probability dis-
tribution, also known as the third-order connected in-
formation [22]. This quantity appears as the edge la-
beled m in Fig. 3. Nonholistic synergy, on the other
hand, is synergy that exists purely from the bivariate
relationships within the distribution. This appears as
k −min{b, i, k} = j −min{c, h, j} in Fig. 3. This quan-
tity has a natural interpretation: how much does the
constraint X0Y influence I [X0X1 : Y ] in the context
of the other dyadic relationships (X0X1, X1Y ), minus
the unique information Idep [0→ Y ] . The total PID
synergy is then Idep [01→ Y ] = m + k − min{b, i, k} =
m+ j −min{c, h, j}.
Here, again the And distribution seen in Table IV exem-
plifies the phenomenon. The And distribution is com-
pletely defined by the constraint X0X1 : X0Y : X1Y .
This implies that the holistic synergy is zero for all infor-
mation measures. In spite of this, all methods of quanti-
fying partial information (correctly) assign nonzero syn-
ergy to this distribution. This is a consequence of coin-
formation being negative. This raises an interesting

question: are there triadic (three-way) dependencies in
the And distribution? Notably, the distribution can
be defined as the maximum entropy distribution satis-
fying certain pairwise marginals, yet it has negative co-
information and therefore nonzero synergy and exhibits
conditional dependence.

VI. CONCLUSION

We developed a promising new method Idep of quan-
tifying the partial information decomposition that cir-
cumvents many problems plaguing previous attempts. It
satisfies axioms (S), (SR), (M), (LP), and (Id); see
Appendix C. It does not, however, satisfy (BP) and so,
like Iccs , it agrees with previous game-theoretic argu-
ments raised in Ref. [8]. Unlike Iccs , though, Idep sat-
isfies (LP). This makes it the only measure satisfying
(Id) and (LP) that does not maintain that redundancy
is fixed by X0Y : X1Y .
The Idep method does not overcome the negativity aris-
ing in the trivariate source explored in Refs. [9, 10, 13].
We agree with Ref. [13] that the likely solution is utiliz-
ing a different lattice. We further believe that the flex-
ibility of our dependency structure could lead to meth-
ods of quantifying this hypothetical new lattice and to
elucidating many other challenges in decomposing joint
information.
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Appendix A: Constrained Three-Variable Maximum
Entropy Distributions

We derive properties of the constrained maximum en-
tropy distributions that exist within the dependency
structure of Section III B. These properties manifest
themselves as restrictions on the variety of lattice edges
that appear there. Consider a joint distribution p(ABC)
and maximum entropy distributions for some constraint
set σ: pσ (ABC).

No pairwise marginal constraints

Consider distributions:

pA:B:C(ABC) = p(A)p(B)p(C) (A1)

With only single-variable marginal distributions con-
strained, the maximum entropy distribution is such that
the variables are independent. Due to the marginal con-
straints, any increase in mutual information must corre-
spond to a decrease in at least two conditional entropies.
This decreases the total entropy and rules out the dis-
tribution as having maximum entropy. The information
quantities follow from the independence of the variables.

One pairwise marginal constraint

Consider:

pAB:C(ABC) = p(AB)p(C) . (A2)

All information diagram atoms in the overlap of AB and
C vanish. Any deviation from the information partition-
ing seen in Fig. 5b, which satisfies the constraint AB : C,
must result in an overall decrease to the entropy. And so,
the maximum entropy distribution is not pAB:C(ABC).

Two pairwise marginal constraints

Consider distributions obeying:

pAB:BC(ABC) = p(A|B)p(B)p(C|B) (A3)

Specifically, this forms a Markov chain A − B − C and
therefore IAB:BC [A :C|B] = 0. With two two-variable
marginal distributions constrained, there is no mutual
information between the variables in only one constraint
each, when conditioned on the variable that is in both

A

B C

H [A]

H [B] H [C]

0 0

0

0

(a)

A

B C

H [A|B]

H [B|A] H [C]

I [A :B] 0

0

0

(b)

A

B C

H [A|B]

a H [C|B]

b 0

d

c

(c)

FIG. 5. Information diagrams corresponding to the maximum
entropy distributions described in Eqs. (A1) to (A3). The
four variables in subfigure (c) satisfy a + b + c + d = H [B],
b + c = I [A :B], and c + d = I [B :C].

constraints. In the expansion:

H [ABC] = H [B] + H [C|AB] + H [A|BC] + I [A :C|B] ,

the first term is constrained and the remaining three
terms have only one degree of freedom due to constraints
on p(C|B) and p(A|B). Conditional mutual information
is nonnegative, so the maximum possible entropy is that
with zero conditional mutual information. Such a distri-
bution is realized by the given Markov chain and it is,
therefore, the maximum entropy distribution.
The information diagrams for each of these three distri-
butions are given in Fig. 5. They are important to the
following simplifications of the sources-target mutual in-
formation dependency structure.

Appendix B: Sources-Target Dependency Structure

Interpreting the set of antichain covers as possible distri-
bution constraints, we defined a dependency lattice that
introduces marginal dependencies into an otherwise in-
dependent, unbiased distribution. In this construction
of a partial information decomposition, Idep is defined
according to the node-node differences of sources-target
mutual informations. These lattice edges are labeled in
Fig. 3. Here, we show relationships arising among the
edges summarized in Fig. 6.
The bottom of the dependency lattice constrains only the
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X0 :X1 :Y

X0X1 :Y X0Y :X1 X1Y :X0

X0X1 :X0Y X0X1 :X1Y X0Y :X1Y

X0X1 :X0Y :X1Y

X0X1Y

0

0 0

l

b

b i

k

c

c h

j

m

FIG. 6. The reduced form of the dependency lattice quantified
by sources-target mutual information, with b = I [X0 :Y ] and
c = I [X1 :Y ]. All edges are guaranteed to be nonnegative
except for l.

independent variables and has the maximum entropy dis-
tribution of Eq. (A1). Given appropriate permutations
of pairs of nodes to be constrained, we use Eq. (A2) to
see that a = 0, b = I [X1 :Y ] and c = I [X1 :Y ].

Similarly, appropriate permutations of Eqs. (A2)
and (A3) give e = g = 0, as well as d = b = I [X0 :Y ] and
f = c = I [X1 :Y ].

Considering nodes below edges h, i, j, and k, Eqs. (A2)
and (A3) show that Iσ

[
Xi : Y |Xi

]
= 0 for an appropriate

choice of i. Shifting across these edges by constraining
p(XiY ), then, any change in sources-target mutual in-
formation comes only from increases in this nonnegative
conditional mutual information. Each of these four dif-
ferences must therefore be nonnegative.

With all three pairwise marginal distributions con-
strained (and implicitly all three single variable marginal
distributions constrained), the information diagram has
only one free variable to be used to maximize entropy.
In fact, maximizing the entropy is in this case is equiv-
alent to minimizing the sources-target mutual informa-
tion. It has been shown that further constraining the
three-variable distribution must decrease the maximum
entropy. This equivalently increases the sources-target
mutual information and so m ≥ 0.

This leaves only edge l unconstrained.

Of course, there are additional relationships between the
edges; they are not otherwise wholly free. Of particular
note, we will use the fact that the sum of edges along any
path between two nodes must be equal. Here, we list all

relationships we use in the next section:

a = e = g = 0 (B1)
d = b = I [X0 :Y ] (B2)
f = c = I [X1 :Y ] (B3)
b+ h = c+ i (B4)

b+ j +m = c+ k +m = I [X0X1 :Y ] (B5)

Appendix C: Bivariate Partial Information Idep

Decomposition

The following sections establish the properties of the bi-
variate partial information decomposition induced by Idep
.

Self-redundancy

Property (SR):

I∩ [0→ Y ] = I [X0 :Y ] .

We take this axiom constructively, but the redundancy
values for unique information are consistent with the
simple one-source lattice. In a sense, this claims that
I∩ [X0 → Y ] is invariant to the addition or removal of
other input variables. This axiom is required for filling
out the two-source redundancy lattice.

Monotonicty

Property (M): For all α, β:

α � β =⇒ I∩ [α→ Y ] ≤ I∩ [β → Y ] .

This follows directly from (SR) and the fact that
Idep [0→ Y ] = min{b, i, k}, where b = I [X0 : Y ]. That
is, the source-target mutual information is one element of
the set of which the unique information is the minimum.

Nonnegativity

Property (LP): For all σ,

I∂ [σ → Y ] ≥ 0 .

Begin by considering I∂ [0→ Y ] = min (b, i, k) ≥ 0. All
arguments of this minimum have been shown to be non-
negative.
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Using the self-redundancy axiom to define I∩ [0→ Y ] ,
we have:

I∂ [0 · 1→ Y ] = I [X0 :Y ]− I∂ [0→ Y ]
= b−min (b, i, k)
≥ 0 .

To determine the remaining two partial information
atoms, we must consider the ordering of {b, i, k}.
We designate three overlapping cases: one for
each of the possible minimum elements. Reduc-
tions are done by using the results of Appendix
B. We repeatedly use the redundancy lattice inver-
sions: I∂ [1→ Y ] = I∩ [1→ Y ] − I∂ [0 · 1→ Y ] and
I∂ [01→ Y ] = I∩ [01→ Y ]− I∂ [0 · 1→ Y ]− I∂ [0→ Y ]−
I∂ [1→ Y ].

CASE 1: b ≤ i, b ≤ k.

I∂ [1→ Y ] = c− 0
≥ 0 ,

I∂ [01→ Y ] = (c+ k +m)− 0− b− c
= m+ k − b
≥ m
≥ 0 .

CASE 2: i ≤ b, i ≤ k.

I∂ [1→ Y ] = c− (b− i) = h

≥ 0 ,
I∂ [01→ Y ] = (c+ k +m)− (c− h)− i− h

= m+ k − i
≥ m
≥ 0 .

CASE 3: k ≤ b, k ≤ i.

I∂ [1→ Y ] = c− (b− k)
= j

≥ 0 ,
I∂ [01→ Y ] = (b+ j +m)− (b− k)− k − j

= m

≥ 0 .

In each case, the second unique information is found to
be equivalent to another nonnegative edge in the depen-
dency lattice. And, the synergy is found to be bounded
from below by the “holistic” synergy m.

Symmetry

Property (S): Under source reorderings, the following is
invariant:

I∂ [0→ Y ] .

The dependency lattice is symmetric by design. Relabel-
ing the random variables is equivalent to an isomorphic
relabeling of the lattice. Therefore, we consider the effect
of completing the partial information decomposition by
either Idep [0→ Y ] or Idep [1→ Y ] .
Computing Idep [0→ Y ] = min (b, i, k) gives I∂ [1→ Y ] =
min (c, h, j), although we never explicitly do the second
minimization. This requires simple algebra from the var-
ious multiple-paths constraints given in Appendix B. In
each of the cases in Appendix C, I∂ [1→ Y ] was found
to be one of {c, h, j}. Straightforward algebra shows that
it is necessarily the minimum of them in each of the par-
ticular cases.

Identity

Property (Id):

I∂ [0 · 1→ X0X1] = I [X0 :X1] .

Consider sources X0, X1 and output Y = X0X1, the
concatenation of inputs. The mutual information of ei-
ther source with the target is simply the entropy of that
source. That is, b = H [X0]. Using appropriate permuta-
tions of Eqs. (A2) and (A3) (A = X0, B = Y, C = X1),
we find that i = H [X0|X1]. Now, starting with Eq. (A3)
(A = X0, B = X1, C = Y ), we see that additionally
constraining p(X0Y ) fully constrains the distribution to
its original form, with a sources-target mutual informa-
tion of H [X0X1]. That is, k = H [X0|X1]. The minimum
of these three quantities gives Idep [0→ Y ] = H [X0|X1]
and therefore verifies the identity axiom.


