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Abstract

We examine, experimentally and theoretically in a very simple multi-armed bandit frame-
work, how individuals learn about an undisclosed inter-temporal payoff structure. We propose a
baseline reinforcement learning model that allows for pattern-recognitions and associated change
in the strategy space, as well as its three augmented versions that accommodate observational
learning from the actions and/or payoffs of another player with whom they are matched. The
models reproduce the distributional properties of observed discovery times well. Our study fur-
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1 Introduction

When individuals have to learn which of the many courses of action open to them yield the best

results, they typically start exploring the various possibilities that they perceive. They start with a

set of possible actions and try to choose amongst them but may learn, for example, that the payoff

from an action taken today may depend on actions taken previously. They may also learn that

there are other options available to them as they proceed.

Learning is necessary when the payoffs from taking actions are unknown. Most of the emphasis

in the learning literature has been on reinforcing the probability of taking actions which have

produced positive results (Bush and Mosteller, 1951) whether the reinforcement is based on the

realized payoffs (Erev and Roth, 1998), the foregone payoffs (Camerer and Ho, 1999), or their

regrets (Marchiori and Warglien, 2008). In this context, taking an action which produces a higher

payoff than its average in the past should lead to taking that action with a higher probability in the

future. However, there is an extensive literature which argues that individuals should also explore

alternatives other than those which they have tried in the past even if some of the latter have

given positive results. This is what is referred to as the “exploration-exploitation trade-off” (see,

for example, Hills et al., 2015, for a review). The idea is that the individual weighs up the gain

that he might get from trying different options against the value of pursuing previously successful

actions. In this literature, it is generally assumed that the success obtained from taking an action

is independent of the choices of other actions in the past.

Here we will consider the case in which the success of an endeavour depends on shifting from

a currently successful action to another. In terms of the previous discussion this might seem

counterintuitive but some simple examples may illustrate the point. The simplest case is that of

fisheries. Having fished at one period in a certain area, fishermen move on to other areas knowing

that otherwise their catch will diminish and that the remaining fish will not be sufficient to replace

the current population. A more subtle problem, but still a classic example, is crop rotation where

sustainable success depends on changing the crop cultivated each year. The yield from a crop grown

on a given plot of land this year depends on what was grown there in the past. To benefit from this
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and to develop inter-temporal strategies to do so, the farmer has to become aware of the existence

of these inter-temporal dependencies in the payoffs across various options. Once this happens he

will then have to explore among the many possible inter-temporal choice strategies to discover the

ones that result in higher payoffs. This problem is particularly difficult because farmers may well

learn quite quickly that leaving the land fallow will improve the yield of the crop which was planted

previously, but it is more complicated to understand that growing other crops on the same land

may actually improve the yield compared to what it would have been if it had been left fallow.

The process by which people become aware of such features of the environment that they have not

known before, and learn to adopt potentially more complex, but better, behavioural strategies is

not yet very well understood.

In this paper we use laboratory experiments to investigate whether and how individuals gain

a better understanding of their environment and, as a result, obtain better outcomes. We are

concerned with a situation in which individuals take actions and try to improve their performance

but do not know whether there is necessarily a “solution”, that is an optimal choice. What interests

us, in particular, is how agents come to decide to try alternative actions to those which they have

already used.

Two approaches can be adopted. One is to take the “impartial observer” who knows and

understands the structure of the problem and then to find out how he would optimally find the

solution to that problem if one exists. Then one would see if, in experiments, subjects’ behaviour

reflect that optimal behaviour. The second approach, which we will adopt here, is to observe what

subjects do and then to develop a model which captures their learning behaviour without asking

whether they achieve, or even try to achieve, an optimum.

We study a case in which participants are faced with a multi-armed bandit, the payoffs of which

are correlated, and have an undisclosed temporal structure. Our experiment is thus different from

other investigations of “standard” stationary multi-armed bandit problems in which all the arms

generate stochastic payoffs from predetermined distributions, and the task for a subject is to find

which one to choose (see, for example, Banks et al., 1997; Brown et al., 2009; Efferson et al., 2007;

Hu et al., 2013; McElreath et al., 2005; Steyvers et al., 2009). In many cases in that framework,
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agents will optimally try arms to form an idea as to their expected payoffs from each arm and will

have a stopping rule which tells them when to stop experimenting and stick to that arm which has

proved most successful up to that point (see, e.g., Garivier and Kaufmann, 2016).1

As this approach does not suit a framework like ours (i.e., where payoffs have an undisclosed

temporal structure), we develop and assess a reinforcement learning model that accounts for payoff

patterns and that (i) allows a change in one’s perception of the environment and (ii) accounts for

the observation of another participant’s actions and/or payoffs. We find that such a model organises

the observed behaviour remarkably well. First, in the absence of information about others’ choices

or payoffs, this model clearly outperforms the standard reinforcement learning model in reproducing

the observed distributions of discovery times and total payoffs. Second, variants of this model that

incorporate information on another participant’s last action or payoff suggest a reduced discovery

time (or equivalently, a larger total payoff) that is qualitatively supported by the observations.

However, the effect of this information is salient only for participants who discovered the pattern

late (i.e., after the participant to whom they were matched). Third, the model’s prediction that

learning accelerates mostly when participants are provided information on both another’s actions

and payoffs is borne out by the data.

We briefly review the literature that is most relevant to our investigation in Section 2. Section 3

outlines the experimental design and procedures used. We present our baseline learning model that

incorporates a basic pattern recognition feature and assumes no information about others’ actions

and/or payoffs in Section 4 and we report on its fit to the experimental data. In Section 5, we

extend this baseline model to accommodate observational learning and check its out-of-sample

performance in fitting the experimental data when observations are possible. Section 6 concludes.

2 Related literature

The type of situation we investigate relates to different streams of the literature on learning in

complex environments. How individuals learn which action to take and how to condition that

1There is considerable work showing that the Gittens rule or others such as the Chernoff stopping rule are optimal
for a large class of bandit problems. For a general discussion of the optimality of stopping rules even when there is
dependence between the payoffs from successive use of the same arm, see Fryer and Harms (2017).
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choice on previous experience has been a subject of considerable interest in the field of machine

learning. There, a problem which corresponds to our simplest (baseline) case, is what is referred

to as the “contextual bandit problem.” As Agarwal et al. (2014) point out, contextual bandit

problems are found in many important applications such as online recommendation and clinical

trials. In this, as in our experiments, an agent collects rewards for actions taken over a sequence

of rounds. At each point in time, the agent chooses an action to take on the basis of two things:

the context for the current round, and the feedback, in the form of rewards, obtained in previous

rounds. That literature has focused on the optimal choice of the probabilities with which to explore

different actions (see, e.g., Auer, 2002; McMahan and Streeter, 2009; Beygelzimer et al., 2011).

Two important features of our investigation are the sequential nature of the payoffs and their

undisclosed structure. The important change that is necessary for one to learn how to improve

one’s gain, is to recognise that there is a sequential pattern in the payoffs and then reinforce on

sequences of actions and not on single actions. Thus one has to change the space of possible actions

to one of actions conditioned on what has happened in the past, and this, in our framework, is the

“context” in the machine learning literature to which we have just alluded.2

In our particular case, the recognition that sequences matter amounts to detecting patterns in

the payoff sequence. This has recently been dealt with in a game theoretic context by Spiliopoulos

(2012, 2013) who shows that introducing an ability to recognize patterns in the opponent’s choices

in belief-based learning model greatly improves the fit of the model to experimental data.3 Recall,

however, that the structure of payoffs in games is usually perfectly known to agents and conditions

the search for patterns in the opponent’s behaviour.4 In our case, participants can be thought of

2The machine learning literature has also long dealt with analysing problems in “sequence extrapolation” (see,
e.g Laird and Saul, 1994). That literature typically tries to develop deterministic algorithms that may be used for
successful sequence predictions in general.

3 See also the earlier work of Sonsino (1997) who motivates his idea of “learning to learn” with the following
simple example. “Consider the case where three strategy profiles, say C, A, B, have been played repeatedly, for a
long time, in that specific order, so that the history of play at some stage is . . . C, A, B, C, A, B, C, A, B, C, A, B,
C, A. We claim that the players must “recognize” the repeated pattern if it has been repeated successively with no
interruptions a large enough number of times.”

4Such knowledge also makes it impossible to study if and how individuals end up learning the “correct model.”
There have been a number of accounts showing that individuals can have a wrong model in mind, but, as they
learn what to do within that framework, their actions lead them to believe that the model is correct. Furthermore,
their actions lead to the results that they expect and payoffs are, themselves, modified by the actions taken by the
protagonists (see, e.g., Arrow and Green, 1973; Kirman, 1975, 1983; Bray, 1982; Woodford, 1990).
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as playing “a game against nature” where nature is playing a deterministic sequence so that the

problem boils down to one of identifying a structure in the payoffs without considering that they

are generated by an “opponent.”

Another important stream of related research is the one on “observational learning” which came

to the forefront with Bandura and McDonald (1963) and Bandura et al. (1963) who argued that the

process of learning is greatly influenced by observing the behaviour of other individuals. Fryling

et al. (2011) provide a general review of observational learning in the behavioural science literature

whereas Smith and Sørensen (2011) focus theirs on observational learning in games with private

information that entail herding.5 As Bossan et al. (2015) show, and which is intuitive, imitation

of good performance may do better than individual learning. This is simply because imitating

successful individuals accelerates the learning process for the less successful.6

Our study relates most closely to that of Nedic et al. (2012) who faced subjects with a two-

armed bandit whose arms, unknown to the subjects, paid off depending on the number of times

that the arms had been chosen (the authors considered four payoff structures/treatments to inves-

tigate behaviour in varying environments). In these experiments, like ours, the payoff pattern of

the bandit’s arms is unknown and subjects receive feedback on others’ choices, rewards or both.7

They find that in some cases, observing the others’ payoffs (choices) may impede (accelerate) learn-

ing whereas observing both others’ payoffs and choices significantly accelerates it. An important

difference with our setting is that, in some treatments, subjects did not need to discover the arms’

payoff structure to achieve the optimal payoff. In fact, once subjects realised that what was chosen

previously had an impact, without knowing the precise form of that influence on their current

payoff, they often tended to try to equalise the payoffs from the two arms and to switch when they

achieved this. This is a rather natural heuristic but was optimal in only some of the treatments.

As can be seen in our result section of our baseline treatment, we observed a similar phenomena in

our experiments, such as, learned to use a heuristic which gave systematically good but not optimal

5See also Armantier (2004) who studies observational learning in a common value auction and shows that it speeds
up convergence to Nash equilibrium bidding.

6They add, however, an important caveat: in a non-stationary environment, imitation may produce sub-optimal
inertia in behaviour as imitation induces herd behaviour and discourages individual exploration.

7See also Burke et al. (2010) for a functional MRI study aimed at disentangling choice- from reward-based obser-
vational learning in an individual decision-making task.
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results. We are particularly interested in studying how observational learning affects the discovery

of an undisclosed payoff structure. We therefore consider a multi-armed bandit setting with the

same information feedback configurations as Nedic et al. (2012). We now proceed to describe our

experimental design.

3 Experimental design

One hundred and twenty-six students from the University of New South Wales participated in the

experiment which consisted of four treatments, each consisting of 200 rounds of play followed by an

incentivized questionnaire assessing the participants’ risk preferences.8 In each round, participants

were individually asked to choose one of four options without being given any information about

the possible payoffs they could generate. The underlying payoff generating process was such that

the first three options generate a payoff of either 0 or 1 following a deterministic cycle whereas the

fourth generates a constant payoff of 0.3. The payoff cycle of the first three options was such that

in round t, option a ∈ {1, 2, 3} generates a payoff of 1 if the remainder of (t − 1)/3 equals 3 − a,

otherwise the payoff is 0. That is, a payoff of 1 can be achieved in every round if the participant

selects the right option a at the right time t, i.e., the optimal choice cycles in the order of 3, 2, 1,

3, 2, 1, 3,... from round 1, ..., 200. Recall again that the subjects did not know that the highest

payoff was 1 nor that the payoffs followed a deterministic pattern.

Participants were randomly assigned to one of the four treatments which differed only in the

amount of information feedback disclosed at the end of each round. In a baseline ‘No Information’

(NI) treatment, participants received no other information than the payoff outcome of their own

choice. For the three other treatments, we used a partner matching protocol, i.e., participants were

each randomly matched with one other participant and kept that partner for the 200 rounds of

play, and we provided participants with some information about the choices and/or payoffs of the

partner with whom they were matched. In a ‘Choice Information’ (CI) treatment, participants

were informed about the other participant’s last choice, but not the payoff outcome of that choice.

8The experiment was computerized and programmed in z-Tree (Fischbacher, 2007) The students were enrolled
in Business Administration, Law, Marketing or International studies and were recruited by public advertisement on
campus using ORSEE (Greiner, 2015).
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Table 1: Summary of experimental sessions

Treatment No. of subjects Description

NI 30 Subjects play the game in isolation
CI 32 (16 pairs) Subjects observe the last choice made by the other subject
PI 32 (16 pairs) Subjects observe the last payoff outcome of the other sub-

ject
CPI 32 (16 pairs) Subjects observe both the last choice and payoff of the

other subject

Note: CI, PI and CPI used a ’partner’ matching protocol.

In a ‘Payoff Information’ (PI) treatment, they were informed about the other participant’s last

payoff outcome, but not the corresponding choice. And in a ‘Choice & Payoff Information’ (CPI)

treatment, they were informed about the other participant’s last choice and payoff outcome. Table 1

summarizes the experimental sessions.

Participants were not allowed to record any information in any form and had to rely on their

memory of past play and outcomes to make their decisions. In addition, to reduce the inferences they

could make from observing the other’s last choice and/or payoff outcome, they were not informed

that they would receive the same payoff if they chose the same option as the other participant with

whom they were matched. To incentivize decisions, individual payoffs (expressed in ECUs) were

cumulated over the 200 rounds and converted into cash at the end of the experiment at the rate of

20 Cents per ECU.

Once the 200 rounds of play were over, and before cashing their rewards, all participants received

a new set of instructions outlining the Holt and Laury (2002) lottery choice questionnaire which

aims at measuring their risk preferences. Again, to incentivize decisions, one of the lottery choice

tasks was randomly chosen once the questionnaire was completed and individual rewards for this

second part of the experiment were determined by the lottery chosen in that particular task. The

lottery payoffs were expressed in Australian Dollars.9 We chose to elicit the participants’ risk averse

preferences after they completed the experiment to avoid a possible framing effect that would lead

them to perceive the payoffs in the bandit task as being random. The realised average individual

9A copy of the instructions is provided in the Appendix A.
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reward from participating to the experiment, including the lottery choice questionnaire, was A$30

(which included a A$5 show-up fee) for a maximum of one hour and a half spent in the laboratory,

including the time needed to read the instructions.

4 Learning alone

4.1 Descriptive data analysis

We start with a brief model-free overview of the most salient types of behaviour. Clearly, as

participants did not know the exact structure underlying the payoffs the four options generate,

many choice patterns could be believed to be ‘optimal’. Here we focus on the participants’ times

of discovery of the hidden cycle generating a payoff of 1 in every round. We diagnose a discovery

when a participant earns a payoff of 1 for twelve consecutive rounds and we define the time of

the discovery as being the median round number of the first batch of twelve consecutive rounds

generating a payoff of 1.10 Out of the thirty subjects who participated in this treatment, exactly

half of them discovered the hidden pattern but they did so at very different times: five of them

found it within 50 rounds, eight of them found it between 51st and 100th round and two of them

between 101st and 200th round. The other half of subjects in this treatment either never found

the pattern or settled for the safe option (option 4) which generates a constant payoff of 0.3.

Figure 1 shows the time-series of choices and payoff outcomes for six participants who displayed

different types of behaviour. While some discovered the hidden cycle within 50 rounds (Subject 19),

others ‘explored’ for a few rounds and settled for the safe option. Subject 10, for example, never

got a payoff of 1 when choosing other options while Subject 1 decided to exploit the safe choice

eventhough s/he sometimes got a payoff of 1 when choosing other options. Some participants also

settled into more complex and less profitable choice patterns: Subject 20 settled into a nine-round

cycle repeating the choice sequence (3, 4, 4, 4, 4, 1, 4, 4, 4), Subject 25 settled into the six-round

cycle (1, 3, 2, 4, 4, 4) while Subject 30 settled into another, almost optimal, six-round cycle (3, 2,

10For example, if someone receives a payoff of 1 from round 40 to 200, then his/her discovery time is round 45.
As we will see, some participants occasionally ‘deviated’ from the hidden pattern after having exploited it for a long
time, but most of them quickly returned to it.
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Figure 1: Examples of choice and payoff patterns in the baseline treatment.
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Figure 2: Risk Aversion vs Frequency of Safe Option. Triangle: subjects who have switched
multiple times in Holt and Laury (2002) questionnaire.

1, 3, 2, 4). These are heuristics that gave the sort of systematically good but not optimal results

to which we have alluded in the end of Section 2 above.

One might reasonably conjecture that risk averse individuals are more likely to exploit the safe

option than to explore risky ones, so we checked whether the individuals’ frequencies of choosing the

safe bandit is positively correlated with their aversion toward risk. Recall that the Holt and Laury

(2002) questionnaire consists of a series of lottery choice tasks in which participants are asked to

choose between two lotteries, one of which is less variable than the other. The lotteries’ payoffs are

such that when the probability of the High payoff for both options increases, an expected utility

maximising agent should choose the less variable lottery in the early tasks and at some point switch

to the more variable one; the later the task at which this switch occurs the more risk averse is the

subject.11

Figure 2 shows a scatter plot of the degree of risk aversion (the subjects’ switching points) versus

the frequency of choosing the safe option (freq4) along with a Spearman correlation coefficient. As

the reported coefficient is not statistically significant at α = 5%, we discard risk aversion as a

11Six out of thirty participants reverted to the “safe lottery” after having stopped choosing it. As such behaviour
might be considered aberrant since it seems to be inconsistent with rational choice theory under risk, we conducted
our analysis with and without these participants but found no significant change in our conclusions. For the analyses
including these subjects, we have used their first switching point to measure their degree of risk aversion. It is also
worth noting that in our context, if an individual who has chosen the safe arm, switches unsuccessfully to another
choice it would not be irrational to come back to the safe arm.

11



possible explanation for the observed behaviour. This non-significant relationship between the

observed behavior and risk preference is similar to that which Banks et al. (1997) report in their

bandit experiments.12 We now develop a reinforcement learning model that aims at reproducing

the observed behaviour.

4.2 A pattern-learning model

We assume that agents, who are initially not aware of the possible payoffs that each option generates,

remember the payoffs that result from choosing each option as soon as it is observed. Thus, for

our simple problem, after enough trials, agents will learn about all the possible outcomes that

each option generates. Let Πi
t(a) represent the set of payoffs agent i has observed each time he

chose option a until round t. Thus, if agent i has experienced all the possible outcomes from

choosing all four options at least once, before round t, we have Πi
t(a) = {0, 1} for a ∈ {1, 2, 3} and

Πi
t(4) = {0.3}. Of course, agents cannot be certain that what they have observed are indeed all

the possible outcomes.13 In addition, we need to decide how the agents in our model make their

choices amongst these different options.

The first step will be for individuals to recognise that their gain does not simply depend on the

particular option chosen but also on what point in time that option is chosen as opposed to some

alternative. Thus, the subjects in our experiments should not just condition their choices on past

experience with those choices but also on the “context.” In our case, the context is the order (or

timing) in which options are chosen. To incorporate these considerations in our model, we need

to make an assumption as to how agents become aware of the existence of a pattern in the payoff

generating process. We assume that agents become aware of the possibility of the existence of such

a pattern in the payoffs from options a ∈ {1, 2, 3} if they observe the sequence (choice, payoff) of

length li ≥ 2, starting with a payoff of 1, ri ≥ 1 times. If li = 2 and ri = 2, after observing the

sequence of choice payoff pair (1, 1), (1, 0), for example, over two consecutive rounds twice, agent i

will start considering the existence of a dependency (namely, choosing the option 1 after choosing

12We also did not find a clear correlation between the measured degree of risk aversion and the observed frequencies
of safe choices in the three paired treatments that are studied in the following section. See Appendix B.

13It is also possible that the time necessary to observe all possible outcomes could be long depending on how an
agent explores. So the set of possible outcomes perceived by an agent could be less than the whole set.
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it and obtaining payoff of 1 will result in payoff of 0).14

Once i starts considering such dependencies, he will start choosing the option conditional on

the outcome in the previous round. In particular, i will start remembering the possible payoffs

each conditional choice generates. Let Πi
t(a|h) represent the set of payoffs agent i has observed by

choosing option a conditional on history h until round t. For example, Πi
t(1|(2, 1)) will be either

empty or 1. While it is possible that an agent may condition his choice of options on the outcomes

of two or more previous rounds, we restrict our attention to those choices which are conditioned

only on the outcome of the most recent round (i.e., the choice of round t, at, depends on the

outcome of round t− 1 (hit−1 = (ait−1, π
i
t−1) )). Because of this assumption, we also assume li = 2

for all i. Note that for the problem we consider in this paper, the set of all the possible outcomes

in the previous round, hit−1, is {(1, 0), (1, 1), (2, 0), (2, 1), (3, 0), (3, 1), (4, 0.3)}.

How will these outcomes contribute to determining choices? We consider two sets of strategies:

unconditional and conditional. Unconditional strategies, those used before a subject becomes aware

of sequences, are simply choices of options a ∈ {1, 2, 3, 4}. Conditional strategies are round t choices

of options conditional on the outcomes in round t − 1, s = a|h. Agents start using conditional

strategies only after they have become aware of the existence of a sequential pattern as we have

described above.

Let us first describe an unconditional strategy. Ait(a) summarizes, at the beginning of round t,

the past experience for agent i from choosing option a. Let Ai0(a) = 0.5 for all i and a. We assume

that Ait(a) evolves as follow:

Ait+1(a) =


αiAit(a) + (1− αi)πit if a = ait

Ait(a) otherwise

where ait and πit denote the option chosen by agent i in round t and the resultant payoff, and

αi ∈ (0, 1) captures the weight put on past experience.

14We can easily allow an agent to start considering dependencies based on (choice, payoff) sequences that do not
start with payoff of 1. This will in fact speed up the learning of the inter-temporal dependencies. We did not do so
here because (choice, payoff) sequence starting with payoff of zero, such as (1, 0) can result in payoff of both 0 and 1
for all the possible choices among three options other than option 4.
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Given Ait(a), we assume that the probability of agent i choosing option a in round t is

Pr(ait = a) =
eλ

iAit(a)∑
k e

λiAit(k)

where λi reflects the sensitivity of i’s choice to his previous experiences. If λi →∞ he chooses the

action which has the highest Ait(a) and if λi = 0 he simply tries all actions with equal probabilities.15

Now let us describe i’s choice among conditional strategies. Let Bi
t(a|h) summarize i’s experi-

ence from choosing a conditional strategy a|h at the beginning of round t. Let Bi
τ (a|h) = Aiτ (a)

for all h at round τ when i became aware of the inter-temporal dependencies. After that, Bi
t(a|h)

evolves as follows

Bi
t+1(a|h) =


βiBi

t(a|h) + (1− βi)πit if a|h = ait|hit−1

Bi
t(a|h) otherwise

where βi ∈ (0, 1) captures the weight put on past experience.

Based on Bi
t(a|h), the agent chooses option a in round t according to

Pr(ait = a|hit−1) =
eµ

iBit(a|hit−1)∑
k e

µiBit(k|hit−1)

where µi reflects the sensitivity of i’s choice of a conditional strategy to past experiences. For

simplicity, we assume αi = βi and λi = µi for all i.

We fit our model to the experimental data for each subject by searching for a set of (αi, λi, ri)

from the predefined parameter space that maximizes

200∑
t=1

ln(P it (a
i
t))

where P it (a
i
t) is the probability of observing choice ait according to the model described above.

The parameter space we consider is αi ∈ [0.01, 0.99] with a step of 0.01, λi ∈ [0.1, 20.0] with a

15This logistic rule is commonly used in learning models, and can be derived as an optimal trade-off between
exploitation and exploration (Nadal et al., 1998; Bouchaud, 2013).
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Figure 3: CDFs of discovery times and total payoffs. Legend: Observed (thin solid with makers),
Simulated baseline model (thin dashed), and Simulated constrained model (thick solid). Mean
(standard deviation) for observed and simulated baseline model are also shown. P-values are based
on permutation tests (for independent samples), two-tailed.

step of 0.1, and integer ri ∈ [1, 10]. When the sum of log-likelihood has no unique maximum, we

select the set of parameter with the smallest ri as this parameter appears to be the unique source

of non-uniqueness. Hence, we start by fitting the model to determine the set of best parameter

values
{

(α̂i, λ̂i, r̂i)
}

for each individual i.16 We then consider a population of 1000 artificial agents

with parameters randomly drawn (with replacement) from this set and we compare the simulated

outcomes to those observed in terms of individuals’ discovery times and total payoffs.

Figure 3 displays the observed and simulated cumulative distributions (solid and dashed thin

lines, respectively) of discovery times and total payoffs. Running permutation tests (for independent

samples) do not reject the null of the stochastic equivalence of simulated and observed data samples

(p = .814 for discovery times and p = .597 for total payoffs, two-tailed tests) so that the model

fits the distributional properties of discovery time and total payoffs remarkably well. To put the

goodness-of-fit of this pattern-learning model into perspective, we compare it to the one of a

constrained version that disactivates the agent’s ability to recognize patterns and to consequently

use conditional strategies. This is achieved by imposing ri > 200 (the number of rounds of play)

which amounts to assuming that the agent never becomes aware of the existence of a temporal payoff

16See Appendix C for sample time series of choices and payoffs generated by the fitted model.
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structure and thus never uses conditional strategies. We fit this constrained version by searching

for each individual i the set of best parameters
{

(α̃i, λ̃i)
}

. The resulting plots of the simulated

distributions in Figure 3 (solid thick lines) clearly indicate no discovery within 200 repetitions and

consequently lower payoffs than those observed or simulated by our baseline model.

5 Learning from others

We now extend our baseline treatment and model to allow for and accommodate observational

learning.

5.1 Descriptive data analysis

Figures 4, 5 and 6 display the time-series of choices and payoffs for four pairs of participants in

each of the three additional information treatments considered, i.e., CPI, PI, and CI. The plots

indicate that while some pairs never discovered the hidden pattern (Pair 7 in CPI and in CI and

Pair 12 in PI), in a few others, one participant discovered it whilst the other did not (Pair 1 in CPI,

Pair 3 and 14 in PI and Pair 5 in CI). Yet, in other pairs, both participants eventually discovered

patterns (Pairs 5 and 16 in CPI, Pair 1 in PI and Pairs 1 and 4 in CI). As in the NI treatment,

a few participants who discovered the pattern occasionally deviated from it in subsequent rounds

(Subject 5 and 6 of Pair 5 in CPI, Subject 27 of Pair 14 in PI and Subject 19 of Pair 4 and Subject

23 of Pair 5 in CI). In contrast to the NI treatment, we find no evidence of participants settling

into more complex and less profitable choice patterns.

5.2 Three observational pattern-learning models

We present three extensions of our baseline pattern-learning model that allow for observational

learning. The three extensions assume that agents keep track not only of their own choices and

payoffs over time but also part of, or all of the other’s, and thus learn on the basis of these two

information sets. However, as the assumption that agents pay equal attention to their own outcomes

as to the other’s outcomes has been challenged in the experimental literature (see, e.g., McElreath
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Figure 4: Examples of choice and payoff patterns in the CPI treatment.
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Figure 5: Examples of choice and payoff patterns in the PI treatment.
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Figure 6: Examples of choice and payoff patterns in the CI treatment.
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et al., 2005; Bayer and Wu, 2016), we assume that agent i pays attention to (ai, πi) for sure and

pays attention to (aj , πj) with probability qi ∈ [0, 1].17 Let Γit = 1 represent i paying attention to

(ajt , π
j
t ) in round t (which happens with probability qi) and Γit = 0 otherwise.

5.2.1 The ‘Choice & Payoff Information’ (CPI) case

Let Ait(a) summarize, at the beginning of round t, the past experience for agent i from choosing

option a. Let Ai0(a) = 0.5 for all i and a. We assume that Ait(a) evolves as follows:

Ait+1(a) =


αiAit(a) + (1− αi)πit if a = ait

αiAit(a) + (1− αi)πjt if a = ajt 6= ait and Γit = 1

Ait(a) otherwise

As for the NI treatment, we assume that agent i becomes aware of inter-temporal dependencies

when i observes the same sequence of (choice, payoff) pairs. However, this sequence of (choice,

payoff) pairs can now be based not only on the sequence of his own (choice, payoff) pairs but also

on the observed sequence (assuming that Γit = 1 for two consecutive rounds frequently enough) of

j’s (choice, payoff) pairs.

Let Bi
τ (a|h) = Aiτ (a) for all h at round τ when i became aware of the inter-temporal dependen-

cies. We assume, after round τ , that Bi
t(a|h) evolves as follows:

Bi
t+1(a|h) =


βiBi

t(a|h) + (1− βi)πit if a|h = ait|hit−1

βiBi
t(a|h) + (1− βi)Γitπ

j
t if a|h = ajt |h

j
t−1 6= ait|hit−1 and Γit = Γit−1 = 1

Bi
t(a|h) otherwise

17Note that keeping track of whether participants pay attention to the other’s outcomes or not (for example by
displaying the information proviso a mouse-click) might provide an estimate of q or allow some modelling of how it
changes over time. However, since accessing this information does not guarantee that the participant factors it in
her/his decision, it remains unclear what such an analysis would reveal.
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Based on Bi
t(a|h), the choice of option a for agent i in round t is thus be defined as:

Pr(ait = a) =
eλ

iBit(a|hit−1) + Γit−1e
λiBit(a|h

j
t−1)∑

k e
λiBit(k|hit−1) + Γit−1

∑
k e

λiBit(k|h
j
t−1)

5.2.2 The ‘Payoff Information’ (PI) case

The basic idea here is that when i observes j obtaining a sequence of payoff 1s, i tries to figure

out how j is obtaining such a stream of high payoffs based on (1) what i knows about the set of

possible (choice, payoff) pairs and (2) their inter-temporal dependencies. On the one hand, if i is

not yet aware of the existence of the inter-temporal dependencies and conditional strategies, we

assume that by observing j’s sequence of high payoffs, i becomes aware of the existence of such

dependencies and strategies in addition to the process that we have described in our baseline model

based on sequences of agent’s own choice-payoff pairs. Adopting the same reasoning as in the case

of own experience, we assume that i would need to observe j obtaining a sequence of consecutive

πjt = 1 of length li = 2, at least ri times. Note also that i does not pay attention to j’s payoff

all the time (we keep the same probabilistic attention process described above), so that we need,

in case of li = 2, Γitπ
j
t = Γit=1π

j
t−1 = 1 at least ri times to become aware of the existence of the

inter-temporal dependencies and conditional strategies.

An example may help. Consider the following history of the payoffs received by agent j and of

the rounds in which agent i’s paying attention.

t 20 21 22 23 24 25 26 27 28 29 30 31 32 33

πjt 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Γit 0 0 1 1 0 0 1 1 0 1 0 1 1 0

here i observed j obtaining a payoff of 1 in two consecutive rounds three times: in rounds 22-23,

26-27, and 31-32. If ri = 2, we assume that from round 28 on, i will become aware of the existence

of inter-temporal dependencies and start updating based on j’s payoff, when i pays attention to it,

as well.

If i is already aware of conditional strategies and has just experienced the (choice, payoff)

sequence (1, 1), (1, 0), while observed j obtaining payoff of 1 in the same two rounds, then i will
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infer (assuming he already knows that Π(a)it = {0, 1} for a ∈ {1, 2, 3} and Π(4)it = {0.3}) that

choosing either 2 or 3 instead of 1 after (1, 1) could have generated a payoff of 1. In fact, this type

of inference is possible in our set-up only after i obtains a payoff of 1 in the previous round and 0 in

the current one.18 Notice also that this means that i will not use the information about j’s payoff

when s/he is not using a conditional strategy. We therefore assume that Ait(a) evolves as follows:

Ait+1(a) =


αiAit(a) + (1− αi)πit if a = ait

Ait(a) otherwise

On the other hand, if i is already using a conditional strategy (or has become aware of such

strategies due to the observation of j’s payoff) then,

Bi
t+1(a|h) =


βiBi

t(a|h) + (1− βi)πit if a|h = ait|hit−1

βiBi
t(a|h) + (1− βi)1 if h = hit−1, a 6= ait, π

i
t = 0, πit−1 = Γit−1π

j
t−1 = Γitπ

j
t = 1, 1 ∈ Πi

t(a)

Bi
t(a|h) otherwise

Again, we are assuming that j’s payoff information is used only if i has observed that j has obtained

a payoff of 1 in two consecutive rounds. The choice of a conditional strategy in round t will be

based on Bi
t(a|h) just as in the baseline case.

5.2.3 The ‘Choice Information’ (CI) case

Here, intuitively, the decision will involve mimicking. We will, however, implement it within our

modeling framework through the evolution of attractions to keep the modeling framework consistent

across our four conditions instead of modeling it directly as agents copying the observed choice

patterns. The basic idea will be that when agent i detects a pattern in the choices made by j, he

will assume that j is doing so because it generates a high payoff. Thus, the attraction for conditional

strategies will be updated with “presumed” high payoffs based on i’s observation about j’s choices

(of course, given i’s knowledge about the set of possible payoffs for each options and conditional

18After receiving a 0 payoff in the previous round, all choices (but 4) can result in both payoff of 0 or 1.
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choices). This process operates in addition to the learning process described in our baseline model.

First i has to recognize patterns in j’s choices. He does so when he observes that j has been

making the same sequence of li consecutive choices, among three options other than 4, ri times in

the row.19 Say i has observed j making the sequence of choices 3 → 2 twice in a row “recently.”

Here “recently” is defined as being among those recent block of two consecutive rounds in which i

has paid attention to what j has chosen and j has chosen 3 in one round. If i has already become

aware of inter-temporal dependencies, this will translate into i assuming that strategy 2|(3, 1) will

result in payoff of 1.

Again, an example may help. Consider the following history of choices made by agent j and of

the rounds in which i was paying attention to it.

t 20 21 22 23 24 25 26 27 28 29 30 31 32 33

ajt 2 1 3 2 1 3 2 1 3 2 1 3 2 1

Γit 0 0 1 1 0 0 1 1 0 1 0 1 1 0

In this example, j is assumed to be following the best choice sequence in the setup, and i has

paid attention to j’s choice in rounds 22, 23, 26, 27, 29, 31, and 32. Of the three blocks of two

consecutive rounds in which i paid attention, i.e., 22-23, 26-27, and 31-32, both the first and the

last ones contain the choice sequence of (3, 2) by j. This will induce i to start making inferences

about the conditional strategy 2|(3, 1).

In the case where i has not yet become aware of conditional strategies, then the first time i

notices the pattern in j’s choice sequences, we assume that i then becomes aware of the existence

of such strategies and starts learning about their performance.

Recall, however, that i does not observe j’s payoff directly. Thus, we assume that when i is

making unconditional choices, the observation of j’s choice will not be used in the evolution of

19Excluding the sequence of choices involving 4, such as persistently choosing 4, is specific to our current exper-
imental set up. But we do so here because we assume that agents will quickly learn that choosing 4 results in the
payoff of 0.3.
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Ait(a); and that this will happen only when i’s choices are conditional.

Bi
t+1(a|h) =


βiBi

t(a|h) + (1− βi)πit if a|h = ait|hit−1

βiBi
t(a|h) + (1− βi)1 if a|h = (ajt |(a

j
t−1, 1)),Γit = Γit−1 = 1, ajt ∈ {1, 2, 3}

Bi
t(a|h) otherwise

The choice of a conditional strategy in round t will be based on Bi
t(a|h) just as in the baseline

case.

5.3 Simulation results

We simulate the above models using the set of parameter values
{

(α̂i, λ̂i, r̂i)
}

that best fit the

baseline model, and assuming different values for qi = q for all i. That is, for each value of q and

for each individual in each of 500 simulated pairs of agents, we randomly draw (with replacement)

each of the parameter values from the set of parameters pertaining to the NI treatment. We

have chosen to evaluate the goodness-of-fit of our models on the grounds of such out-of-sample

predictions to overcome the identification problems that are inherent to the estimation of eight

parameters for each pair of participants (i.e., (α̂i, λ̂i, r̂i) and qi for each participant).

Figure 7 displays the simulated distributions of discovery times and total payoffs assuming that

q = 1 (i.e., agents are assumed to always pay attention to the other’s payoff and/or choice) along

with the observed ones. The plots suggest that overall, participants discovered the hidden cycle

somewhat faster and earned higher total payoffs than our simulated agents. However, running

permutation tests indicates that differences between observed and simulated data samples are

significant at α = 5% only for total payoffs in the CPI treatment (p = .024, and p = .058 for

discovery times). Otherwise, as the average statistics in Figure 7 indicate, our models provide a

remarkably good out-of-sample fit to the data (p = .500 in PI and p = .189 in CI for discovery

times, and p = .482 in PI and p = .277 in CI for total payoffs, two-tailed tests).

We proceed with cross-treatment comparisons of the models’ simulations and the observations.

The upper panel of Figure 8 displays the simulated distributions of discovery times (left panel)
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Figure 7: CDFs of discovery times and total payoffs.
Legend: Observed (solid), Simulations under qi = 1.0 for all i (dashed). Mean (standard deviation)
are also shown. P-values are based on permutation tests (for independent samples), two-tailed.
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Figure 8: CDFs of discovery times and total payoffs (with p-values of Kruskal-Wallis tests for
multiple sample comparisons and permutation tests for pair-wise comparisons (one-tailed)).
Legend: NI (Thick dashed blue), CPI (Thick solid red), PI (Thin dashed orange), CI (Thin solid
light blue).
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and total payoffs (right panel), assuming q = 1, whereas the lower panel displays the observed

distributions along with the outcomes of Kruskal-Wallis (KW) and permutation tests that assess

their equivalence. There are two things worth noting here. First, the simulated distributions clearly

confirm the conjecture that the more items of information one has about the other participant, the

faster the hidden pattern will be discovered and the higher the total payoffs will be. This is

confirmed by the observed distributions and test statistics for the NI and the CPI treatments but

not by those of the partial information treatments CI and PI which are not significantly different

from the NI treatment (p-values > 0.05). Second, the simulated distributions for the CI and PI

treatments are virtually identical and the observed ones are not significantly different which suggests

that the type of information received about the other participant does not significantly affect the

variables of interest. In the light of Sonsino (1997)’s claim that the repeated observation of the same

pattern of choices over a long period of time must be recognized by the observer (cf. Footnote 3),

these findings raise the question as to whether observing the others’ choices is cognitively equivalent

to observing the other’s payoff outcomes. On the one hand, the lack of significant difference

between the simulated distributions of the CI and PI treatments and the empirical support of this

prediction suggest that this is indeed the case. However, as we noted when presenting the pattern-

learning model for the PI treatment, one could argue that observing another’s payoff pattern is

not as informative as observing another’s choice pattern since the latter immediately calls for an

imitation of such behaviour that might lead to the discovery of the hidden pattern. This is offset by

the fact that observing a series of payoffs of 1, for example, reveals that there is a pattern of actions

which leads to these high payoffs and thus stimulates the individual to search for such a pattern.

This, in turn, would suggest that, if there is an informational difference, our observational pattern-

learning model fails to capture it. On the other hand, the lack of significant difference between the

observed distributions of CI and NI and of PI and NI suggest that the provision of information on

past choices or past payoffs is in fact not sufficient to facilitate pattern-discovery in our framework.

Here we recall that our descriptive data analyses indicated a considerable heterogeneity in subjects’

behaviour which, in turn, may have interfered with our predictions.
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5.4 Does observation facilitate discovery?

Although it is quite intuitive that observing the choices and/or payoffs of another person who has

discovered the hidden pattern should help an observer who has not yet found the pattern, it is less

clear whether observing the choices and/or payoffs of another participant who has not found any

pattern is equally helpful. We investigate this by first identifying in each pair of simulated agents,

the one who discovered the hidden pattern first, henceforth the Early finder, or second, henceforth

the Late finder. If the hidden pattern was not discovered, then the labels are randomly assigned.

For the baseline treatment, we randomly match agents in pairs and assign labels by comparing

their respective discovery times so as to get some benchmark for Early and Late finders who do

not observe any other agent’s outcome(s).

Figure 9 shows the distributions of discovery times of each type of simulated agents for four

values of q ∈ {0.4, 0.6, 0.8, 1}.

The simulations suggest that if q = 1 (as we assumed above), the distributions of discovery times

for both Early and Late finders will be ordered as CPI < CI ≈ PI < NI. However, for lower values

of q such as q = 0.6, the distributions of discovery time for the Early finders in the information

treatments (CI, PI, CPI) become similar, while those of Late finders maintain the same ordering

as when q = 1. And if q = 0.4, the discovery times of Early finders are basically the same across

treatments whereas for Late finders, only CPI results in a markedly earlier discovery compared to

the other treatments.

We proceed by displaying the observed distributions of discovery times of Early and Late finders

in Figure 10. The plots and KW test statistics for Late finders indicate that they greatly benefited

from the additional information; just as in our simulations with q ≥ 0.6. Those in CPI benefited

most and significantly more than those in CI or PI whose distributions are not significantly differ-

ent. When compared to NI, the plots and test statistics also indicate that the partial information

feedback of these treatments significantly improved their discovery times. Interestingly, the ob-

served distributions of Late finders in CI also suggest that when compared to PI, discovery times

sharply decrease from round 110 onwards which is in line with the conjecture that the CI treatment

should make it easier to discover the pattern once the other has discovered it and exhibits a cyclical
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Figure 9: CDFs of the simulated discovery times of Early and Late finders for three values of q for
all the treatments. q = 1.0 (1st row), q = 0.8 (2nd row), q = 0.6 (3rd row), and q = 0.4 (4th row).
Legend: NI (Thick dashed blue), CPI (Thick solid red), PI (Thin dashed orange), CI (Thin solid
light blue). 29
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Figure 10: CDFs of discovery times of Early and Late finders in the experiments (with p-values
of Kruskal-Wallis tests for multiple sample comparisons and permutation tests for pair-wise
comparisons (one-tailed)).
Legend: NI (Thick dashed blue), CPI (Thick solid red), PI (Thin dashed orange), CI (Thin solid
light blue).

choice pattern. As for the Early finders, we find no significant difference across treatments, as in

our model simulation for q ≤ 0.6, so that the additional information provided had no significant

effect on their performance.

To further determine who benefited most from the information provided, we track the evolution

of average payoffs of Early and Late finders in each treatment. Figure 11 reports their respective

median of round average payoffs for each batch of 10 rounds in each treatment. The plots and KW

test statistics suggest that round average payoffs are not significantly different across treatments for

the first five batches and are actually very similar across types (i.e., Early and Late). Differences

emerge from the sixth batch onwards: the round average payoffs of Late finders vary widely across

treatments whereas those of Early finders become identical. This confirms that the information

provided did not affect Early finders whereas it significantly helped Late finders. Note also that

the median average round payoffs in CI sharply increase between the eleventh and fifteenth batch,

which is again in line with the claim that discovering a pattern is easier as a Late finder in CI than

in PI because one can simply copy the systematic behavior of the Early finder.
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Figure 11: Dynamics of median round average payoff (over block of 10 rounds) of Early and Late
participants (with p-values of Kruskal-Wallis tests).

To this extent, the models’ general prediction (with q < 1) that the more information about

the other participant’s last decision and/or reward accelerates discovery appears to hold mainly

for Late finders, and the conjecture that it should be even faster in CI than in PI seems to hold

only once Late finders accumulated some experience of the game they were playing. So we have a

partial answer to the relative speed of discovery in CI as opposed to PI which we discussed earlier

but which is not directly incorporated in our model.

6 Conclusion

We report on a series of bandit experiments that manipulate the end-of-round information feedback

to assess the effect of observational learning on the discovery of the bandits’ hidden payoff structure.

We considered four treatments, each involving four options and consisting of 200 rounds of play.

The payoffs of the first three options have an undisclosed deterministic temporal structure which

generates a payoff of 1 in each round, provided that the options are chosen in the right sequence,

whereas the fourth generates a sure payoff of 0.3.

In a baseline treatment (NI), participants played in isolation, i.e., with no information on
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other’s play or outcomes. While some participants were surprisingly fast in “discovering” the

hidden mechanism in this treatment, half of them failed to do so by the end of the experiment.

Most participants initially explored among four different options. At some point, however, those

who were successful seem to have had an “aha” moment, and started to reinforce on sequences of

actions taken in the past. We propose a simple reinforcement model that captures such pattern-

learning and find that it reproduces the distributional properties of the observed discovery times

and total payoffs remarkably well.

In the three other treatments, participants were randomly matched in fixed pairs and received

information either on the other’s last choice (CI), the other’s last payoff (PI) or on both the other’s

last choice and payoff (CPI). These treatments allow us to assess the effect of observational learning

on the participants’ discovery of the bandits’ payoff pattern and the data confirms earlier findings

pertaining to game theoretic settings that the provision of information on both the other’s last

choice and payoff mostly accelerates discovery whereas the provision of partial information (i.e.,

the other’s last choice or last payoff) does not when compared to the baseline treatment (NI).

We extend our basic model to capture the behaviour observed in these treatments and find that

the discovery times are well supported by out-of-sample predictions in the partial information

treatments but not in the CPI one where participants performed even better than predicted. Such

a gap between predictions and observations in this treatment may be evidence for a compounding

effect of information that is not captured by our model. On the other hand, the irrelevance of the

type of information (choice or payoff) on the participants’ discovery times in CI and PI may result

from their heterogeneous traits. We therefore identify Early and Late finders within each pair and

find that the information provided significantly improves the discovery times of Late finders in all

three treatments while leaving those of Early finders largely unaffected. This is supported by the

model’s out-of-sample predictions and/or by an ex post adjustment of the probability of paying

attention to the other’s outcome(s).

To the best of our knowledge, our approach is the first to study this type of pattern-learning

with and without observational learning in an interaction-free environment. We believe that our

predictions could be further refined and stress-tested with further experiments that would control
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the size (or presence) of the safe bandit-option, the hidden payoff pattern and/or the length of the

game’s history provided in the information treatments.

Finally, our investigation relates to recent research in the neurosciences which investigates which

are the mental processes at work that lead individuals to learn how to understand and operate

in their environment. There, it is argued that different mechanisms operate in the brain when

an individual switches from exploiting the information about the various options he has tried to

exploring new ones (see Cohen et al., 2007; Laureiro-Mart́ınez et al., 2014, 2015).20 One approach

has been to identify the neural processes at work at “aha” or, referring to Archimedes, the “eureka”

moment when an individual suddenly perceives the answer to a problem s/he has been wrestling

with. There is now a substantial literature trying to identify the changes in neural activity that

take place when such a realisation occurs (see Auble et al., 1979; Kounios et al., 2008; Topolinski

and Reber, 2010). However, this literature has focused on solving a well-defined problem to which

it is known that there is a “solution” such as the Rubik’s cube or a mathematical puzzle. To better

understand the mechanisms involved in producing an “aha” moment, when subjects are facing a

situation without known solution would be of considerable interest.
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A Instructions for treatments CPI, PI and CI

Welcome to the ASBLab.

If you read the following instructions carefully, you can, depending on your decisions, earn a considerable

amount of money. It is therefore very important that you read these instructions carefully. The instructions

are the same for all participants.

It is prohibited to communicate with the other participants during the experiment. If you have a question

at any time raise your hand and the experimenter will come to your desk to answer it. Please switch off

your mobile phone or any other devices which may disturb the experiment. Please use the computer only

for entering your decisions. Please do not start or end any programs, and do not change any settings.

This Experiment

You are about to participate in an experiment which consists of two parts.

The first part consists of 200 rounds of play. The second part will be explained to you when you finished

the first part.

First Part

Task

In each of the 200 rounds of play, you are asked to choose one of 4 one-armed bandits. Once you made

your choice, you will be informed and will receive the bandits’ payoff (in Experimental Currency Units,

ECUs). The experiment then proceeds to the next round.

Information

You are not aware of the payoffs that you may receive from each of these bandits but you are told that

a bandits’ payoff outcome in one round does not depend on which bandit you chose in the previous round.

You are not allowed to collect any written information on the bandits’ payoff outcomes.

== [CPI treatment only] ==

Throughout the experiment, you will be matched with one other participant. At the end of each round,

you will get to know this participant’s bandit choice and the payoff outcome of that choice, and s/he will get

to know your bandit choice and the associated payoff. Note that the information displayed is about bandit

choices and the payoff outcomes associated to these choices.
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== [CI treatment only] ==

Throughout the experiment, you will be matched with one other participant. At the end of each round,

you will get to know this participant’s bandit choice, and s/he will get to know your bandit choice.

== [PI treatment only] ==

Throughout the experiment, you will be matched with one other participant. At the end of each round,

you will get to know the payoff outcome for this participant’s, and s/he will get to know your payoff outcome.

Payment

Your reward from participating to this first part will be equal the sum of the payoffs that you realised,

and this sum will be converted to the rate of $0.2 per ECU and individually paid to you.

Second Part

Task

In the second part of the experiment, you are asked 10 times to choose between “Option A” and “Option

B.” Please read carefully the questions asked. (The questions were displayed in sequence and were phrased

as in Table 2 below)

Payment

Once you have answered all questions, your reward from participating to this second part will be deter-

mined by 1) your answer to one of these ten questions and 2) by chance. The computer will randomly select

one of the ten questions that you have answered and you will be rewarded according to your decision (ie.,

Option A or Option B) for that question.

Even though you will make ten decisions, only one of these will end up affecting your earnings, but you

will not know in advance which decision will be used. Obviously, each decision has an equal chance of being

used in the end.
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Figure 12: Risk Aversion (x-axis) vs Frequency of Safe Option (y-axis). Triangle: subjects who
have switched multiple times in Holt and Laury (2002) questionnaire.

B Risk aversion and choices in paired treatments.

In this appendix we report on the correlation between the observed frequencies of safe choices and

the participants’ risk aversion in treatments CPI, CI and PI. The scatter plots in Figure 12 suggest

no clear tendency in this regard, and since the reported correlation coefficients are not statistically

significant (p-values > .05) we reject the conjecture that behaviour in these information treatments

is driven by risk aversion just as in the case of NI treatment.

C Examples of fitted model simulation

Figure 13 shows the time series of observed and simulated choices (left panel) and payoffs (right

panel) for three of the six participants displayed in Figure 1. Our model replicates quite well the

behaviour of Subject 19 who discovered the hidden cycle within 50 rounds, and of Subject 10 who

settled for the safe choice from early on. This, however, is less so for Subject 30 who ended-up

using an almost optimal cyclical pattern of length 6 (i.e., 3, 2, 1, 3, 2, 4).
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Figure 13: Comparison of the experimental data and simulated model for three subjects.

43


