An Alternative Information Plan

Matteo Monti
Steen Rasmussen
Marco Moschettini
Lorenzo Posani

SFI WORKING PAPER: 2017-07-021

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent
the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SF], inspired by an invited visit to or collaboration at SF], or
funded by an SFI grant.

ONOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted
only with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE

An alternative information plan

Matteo Monti®*®!* Steen Rasmussen®?*, Marco Moschettini®® and Lorenzo Posani®

#Center for Fundamental Living Technology (FLinT),
University of Southern Denmark (SDU), Denmark;

PEcole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
¢!Complex Systems Group, University of Bologna, Bologna, Italy;
“?Department of Computer Science and Engineering,

University of Bologna, Bologna, Italy;
dSanta Fe Institute (SFI), New Mexico, USA;
°Laboratoire de Physique Statistique, Ecole Normale Superiéure, Paris, France

*Corresponding authors. Emails: matteo.monti@msoftprogramming.com, steen@sdu.dk

June 27, 2017

Abstract

We present and evaluate an alternative architecture for data storage in distributed networks that
ensure privacy and security, we call RAIN'. The RAIN network architecture offers a distributed
file storage service that: (1) has privacy by design, (2) is open source, (3) is more secure,
(4) is scalable, (5) is more sustainable, (6) has community ownership, (7) is inexpensive, (8) is
potentially faster, more efficient and reliable. RAIN has the potential to democratize and disrupt
cloud storage by eliminating the middle-man: the large centralized data centers. Further, we
propose that a RAIN style privacy and security by design architecture could form the backbone
of multiple current and future infrastructures ranging from online services, cryptocurrency, to
part of government administration.

Keywords: distributed storage; privacy by design; internet of things; community ownership;
sustainability; bio-inspired design

1 RAIN is a metaphor for what comes after the clouds.

A.2 STATE OF THE ART

Part A
Introduction

A.1 Background

The Internet data storage services provided to-
day violate privacy, are expensive, and come at
a high environmental cost. More than 3% of
the world’s power consumption is currently due
to datacenters, its CO5 footprint surpassed that
of global air traffic in 2013 [1], and their power
consumption rate is rapidly growing [2]. Our
preliminary estimates suggest that a distributed
infrastructure made of low-energy devices, finely
distributed in close proximity to the clients they
service, would have significantly lower power re-
quirements than a centralized paradigm, which
requires active cooling and increases the load on
long-range Internet routing infrastructure.

Further, the high entrance cost to the mar-
ket creates monopolies where only the largest
companies are capable of offering scalable cost-
efficient services. Owned by the community of
its users, e.g. citizens, businesses and organiza-
tions, this network service will be free to join,
democratic and designed to guarantee the pri-
vacy and security of the data it stores.

Since it is now possible to have cheap, energy
efficient, fast, reliable, and always online com-
puting nodes in our homes and businesses, our
architecture relies on privately owned computing
devices (e.g. Raspberry Pis with flash drives).
Our network design leverages on the collective
storage power of these devices: every node will
store parts of other nodes’ data to guarantee
redundancy and reliability, and a carefully de-
signed cryptographic architecture will prevent
unwanted access to the stored data.

A.2 State of the art

A wide variety of technologies have been devel-
oped along the way from mainframe-terminal
paradigm to Internet of Things and decentral-
ized networks. In this paper, we will under-
line, when needed, what technologies still need
to be perfected to achieve our goal of developing
an headless, peer-to-peer infrastructure offering
a level of reliability, security and performance
comparable to that of a centralized paradigm to
an arbitrarily large user base. However, most of
this work will arguably consist in using technolo-
gies that are already in place under stronger reli-
ability assumptions offered by the possibility of
having permanently online, low-energy devices
in our homes and businesses.

A.2.1 Technologies

Hardware Internet of Things technology
is arguably at the core of RAIN’s architecture,
as we plan to develop our entire infrastructure
on home-based single-board computers such as
Raspberry Pi. While no significant difference
would exist in terms of security and reliability
between a network made of, e.g., personal desk-
tops and one made of single-board computers,
the latter make the deployment of RAIN’s net-
work feasible, as their cost and energy require-
ments are small enough to make a RAIN node
part of a normal network setup.

Decentralization and distribution Dis-
tributed computing significantly predates peer-
to-peer technology: Grid Computing (see, e.g.,
[3]) quickly became an effective replacement for
supercomputers as soon as the computing power
of many slower nodes exceeded that of a main-
frame. When an increasing number of users had
access to high-speed Internet connections, Grid
Computing projects (like BOINC [4]) were devel-
oped to tackle not only the computing power of
arrays of nodes in large computing facilities, but
also the spare resources of personal computers
of volunteers.

A wide variety of Internet services is now of-
fered by Cloud infrastructure, that builds on top
of Grid an abstraction layer that takes care of
autonomously mapping services to the hardware
that offers them. However, it relies on a similar
semi-centralized infrastructure, where multiple
servers in one or more facilities collectively offer
a service by load-balancing the requests.

In order to process and make accessible the
increasing amount of communication produced
by a growing population of Internet of Things
devices, Edge computing technology (see, e.g.,
[5] [6]) decentralizes the paradigm further, us-
ing finely-distributed cloud nodes that are geo-
graphically close to the source of data to perform
pre-processing and improve distribution perfor-
mance.

Redundancy & retrievability The prob-
lem of reliably storing and retrieving informa-
tion on faulty devices is addressed in central-
ized as well as decentralized contexts by error-
correcting codes (such as Solomon-Reed encod-
ing [7]), RAID (Redundant Array of Independent
Disks) technology (see, e.g., [8]), and in peer-to-
peer contexts with Distributed Hash Tables, as
in [9] (see, e.g., [10]).

Security The issue of storing data on un-
trusted nodes while guaranteeing confidentiality

A4 STRUCTURE OF THIS WORK

A.2.2 Related projects

and integrity has been addressed in the past by
means of asymmetric ciphers and Authenticated
Data Structures [11] [12]. Specifically in the con-
text of headless networks, the issue of removing
trusted third-party authorities is currently ad-
dressed by blockchain technolgy (see, e.g., [13]):
we later argue that Authenticated Distributed
Hash Tables could be in principle used to sub-
stitute that technology in a context where all
nodes have a relatively high uptime.

P2P security More specifically in the field of
peer-to-peer networks, where no party is trusted
a priori, we will be using Proofs of Space [14]
[15] as a means to perform hardware commit-
ment and limit Sybil attacks, and distributed,
verifiable random number generation to guaran-
tee security properties of the global organization
of our network.

A.2.2 Related projects

Cubbit A startup project founded by two
of the authors (Moschettini and Posani), im-
plements the redundancy strategy and recov-
ery procedures described in this paper to offer
a distributed file storage service using single-
board computers and home-grade Internet con-
nections. Metadata is stored in a traditional
client-server architecture.

Storj A cooperative storage cloud based on
Bitcoin blockchain technology where cryptocur-
rency is exchanged for storage.

Lima A startup project offering a specialized
single-board device to interface personal storage
devices with an Internet connection. No redun-
dancy across multiple devices is implemented.

IPFS An open source distributed file system
protocol designed to persistently store and make
available objects on the Internet. There is no
central point of failure, and nodes do not need
to trust each other.

Telhoc A company specialized in securing and
optimizing peer-to-peer database storage.

A.3 Potential applications

The RAIN architecture is a bio-inspired network
with redundancies, distributed control, high en-
ergy efficiency, error correction, self-repair, and
obvious potential for autonomous adaptation
(learning) in later versions. Together with these
high level properties, the architecture’s privacy

by design, open source, community ownership,
scalability, and performance makes it a candi-
date architecture for supporting a number of ad-
ditional services besides cloud storage. These in-
clude secure communication (text, voice, video),
content delivery, search engines, finance (cryp-
tocurrency), digital manufacturing, transporta-
tion (autonomous vehicles), as well as part of
secure e-governance (state administration). In
short we can envision a RAIN style architecture
with privacy and security by design at the center
of the our emerging infrastructure of infrastruc-
tures.

A.4 Structure of this work

This work is divided into three parts.

The first part, Architecture Feasibility,
demonstrates that a distributed infrastructure
with a redundancy strategy based on Solomon-
Reed encoding easily yields a data lifetime of
10%6 years (~ age of the Earth), with a storage
ratio (how much we need to write across the net-
work vs. the size of the data uploaded) of 1.5,
using a local village of 36 physical nodes where
the primary data is stored. Assumptions, proofs
and estimates are detailed in this section. This
part provides a proof of principle for the pro-
posed RAIN architecture.

The second part, Architecture Challenges,
defines the scientific and technical challenges for
designing data privacy and security, network or-
ganization as well as data, metadata and cre-
dential handling. As this cryptographic part of
the architecture is both technical and lengthy
these details will be published elsewhere. In this
part we also briefly touch on the environmen-
tal impact issues of our distributed infrastruc-
ture and that of a traditional centralized client-
server paradigm. This part outlines the next
steps needed in developing the RAIN architec-
ture.

In the Potential Impact part, we provide
an overview of the potential impact a large dis-
tributed digital infrastructure like RAIN could
cause. RAIN could support the development
of communitarian services including telecommu-
nication, content delivery, cryptocurrency, and
distributed administrative (nation state and re-
gional governmental), which currently are ser-
vices managed in a centralized manner through
trusted third parties.

B.1 NODE PROPERTIES

Part B
Architecture
Feasibility

Our network will be free to join by anyone with a
headless single-board computer (e.g. Raspberry
Pi), a storage device and a home-grade Internet
connection.

Nomenclature

Network: the set of interconnected single-
board computers and servers operating our
service.

Client: a device (e.g., personal computer,
smartphone) that a user uses to access our
service.

Node: a headless single-board computer,
attached to a storage device (e.g., HDD,
SSD), owned by a user and persistently con-
nected to his/her home Internet connection.

Drive: an online environment where files
can be stored and shared by one or more
users.

Our Free and Open Source software will be avail-
able to the end user in the form of downloadable
clients. Once installed on a new user’s personal
computer, our client will download a platform-
specific disk image including a lightweight op-
erating system and our pre-configured software,
and use it to initialize the user’s single-board
node. This initialization procedure also serves
the purpose to bind the node to its user’s ac-
count.

Once the node has been initialized, the user is
asked to power it and persistently connect it to
a home-grade Internet connection. Whenever a
storage device (e.g., an hard disk or a flash drive)
is connected to the node, half of its capacity is
allocated to its owner’s account.

A user can associate one or more clients to
his/her account, and use them to access the ser-
vice via a Graphical User Interface that allows
file tree navigation. Users can create drives,
namely, storage environments that can be shared
among one or more users. Each drive has a dis-
tinct file tree and an owner, that can manage
other users’ privileges or revoke their access.

If a user’s node experiences temporary down-
time or permanent failure, its owner’s files’” avail-
ability is unaffected. Any user’s files can be ac-
cessed from any Internet connection. Whenever
a client is not available, access is guaranteed by
a Web-based interface.

B.1 Node properties

Our network is based on unreliable nodes subject
to downtime (temporary unreachability due to
connectivity issues) and failure (permanent loss
of data due to hardware breakage or wearing, or
to human interaction). In order for it to reliably
store data, a redundancy strategy must be
implemented.

Our redundancy model depends on three
node properties:

Lifetime ([L] = s): the amount of time
between the moment a node enters the net-
work and its first unrecoverable failure.

Downtime (d € [0,1]): the fraction of
time a node is unreachable due to tempo-
rary network- or power-related issues.

Upload and download speed ([S,] =
[Sa] = B/s): the average amount of data
that can be transferred from and to a node
per time unit.

Disclaimer (A) As example scenario, we
modeled our expected network behavior for a set
of nodes in Italy, urban area of Bologna.

Disclaimer (B) Wherever little or no data is
available, we will try to provide the most re-
laxed authenticated conservative estimate. This
will often result in overly conservative estimates,
which we will relax only when more data will be
available.

B.1.1 Lifetime
Hazard function

Let R(t) be the survival rate of a node, i.e.,
the probability that a node will not experience
an unrecoverable failure before ¢.

The hazard function h(t) is defined as the
limit fraction of nodes experiencing failure per
time unit:

1 dR

h(t) = —Wﬁ(t)

We can express R as a function of i by

R(t) = exp <— /Ot h(t’)dt’)

and note how, if h(f) = const, R is an exponen-
tial function and failure is a memory-less pro-
cess. From R(t) we get the probability density
of lifetimes I(t) by

B.1 NODE PROPERTIES

B.1.1 Lifetime

and the expected lifetime L by

o0
L= / ti(t)dt
0
And for h(t) = h = const we have L = 1/h.

Exponential approximation

In our case, failure can be caused by technical
malfunction or user interaction. We can there-
fore expand

h(t) = htecn(t) + huser(t)

Technical malfunction The failure rate of
devices subject to wearing (storage devices
among them) is commonly referred to as bath-
tub curve:

e Manufacturing imperfections generally re-
sult in early failures (infant mortality), thus
producing a higher failure rate at the early
stages of the device usage.

e Failure rate is then lower for a certain pe-
riod of time where in general only failures
of random nature occur.

e Failure rate increases again in the late
stages of the device usage due to wearing.

Storage devices connected to our network,
however, will not necessarily be new. The age
distribution a(t) of random, alive, not newly
bought devices is

__R@®
Jo R®)

therefore, let b(t) be a bathtub hazard function
and ppew the probability that a storage device
is newly purchased when the node is initialized,
then Aiecn becomes

a(t)

Brcch(£) = Prew b(8) + (1 = Pus) (J altb(t +) dt')
(1)

Figure 1 shows the effect of the above convo-
lution on an experimental [16] bathtub function.
AS ppnew decreases, the hazard function becomes
smoother and closer to its asymptotic value.

Under the assumption ppew << 1, htech can be
safely approximated to a constant equal to the
asymptotic value of b.

User interaction The rate of failures caused
by user interaction will highly depend on the us-
ability, performance and reputation of our net-
work, and is more difficult to estimate now.
User fidelity is subject to infant mortality (as
every other Internet service, our network will

Hazard function smoothing effect

T T
0.12 |- e SRS RENSSTSe=t B
F 01| geesTTT .
= s
o 0.08F EEFET- N\ _oee : .
B
I
e 0.06 |- b
o Sooooo —8— Pnew = 0.00
5 0.04f o Poew = 0.33 | |
E Pnew = 0.66
0.02 |- —8 Pnew = 1.00 | |
-l ©poosse o all
| | | i i i
0 1 2 3 4 5

Time (years)

Figure 1: Hazard function h¢ec, as per Equation
1 for different values of ppew. For ppew = 1,
htech reduces to the bathtub function b. AS ppew
decreases, htecn becomes smoother and higher.

have a bounce rate of users that try our service
but don’t find it appealing to their needs) but
not to wearing. hyser will therefore be higher for
young nodes, and reach a plateau after a short
trial period.

When discussing our upcoming security chal-
lenges, we will see how we plan to store no crit-
ical data on newly connected nodes. This will
contribute to reduce the bounce rare effect and
crop away the higher, non-uniform part of hyger,
which we will therefore assume constant.

Experimental data

Hard Disk Drives (HDD) A four-year
study on HDD wearing [16] (see Figure 1 for
Pnew = 1) provides experimental data in agree-
ment with a bathtub curve model:

Regime Failure rate
Infant mortality 5.1%
Random failures 1.4%
Wearing 11.8%

Under the limit approximation hppp(t) =
happ = 0.126/year we get an expected lifetime

Lypp =~ 8 years

Solid State Drives (SSD) Due to their ex-
tended lifetime, and to the fact that their high
cost delays acquisition in the enterprise market,
less experimental data is available concerning
SSD lifetime.

Due to the absence of mechanical parts, SSD
wearing is not determined by time. Each flash
memory block can undergo a limited number
of rewrites before it becomes unusable. Load
balancing algorithms are implemented to evenly

B.1.2 Speed and downtime

B.1 NODE PROPERTIES

distribute the load across the sectors even if the
same file is rewritten multiple times. To pro-
vide an estimate of SSD lifetimes, we then need
to have an estimate of how much data will be
written on the drive per time unit.

For a node in our network, SSD write speed is
bound by its download bandwidth, which we can
preliminarily estimate (see later) to 6.5Mbit/s =
70GB/day. It is important to remark that this
is a large overestimate, as it assumes that ev-
ery user will use 100% of his nominal connection
bandwidth only to flood our service with write
requests.

An 18 month experimental study [17] has been
carried out to determine how much data could be
written on 6 different Solid State Drives. Data
was continuously written on them at maximum
throughput for the whole duration of the ex-
periment. The first SSD to experience a failure
broke down after 728 TB of data were written on
it (the last two failed around the 2.5 PB mark).

Together with the write overestimate above,
this yields an SSD lifetime expectancy of

Lgsp > 28.5 years

Node lifetime No data is available on the fail-
ure rate of common single-board computers like
Raspberry Pi, most informal failure reports re-
ferring to physical damage and not to wearing.
Due to this and to the fact that single-board
node failures are recoverable, we will therefore
assume the failure rate of nodes due to single-
board computer failure to be negligible.

As we said, we cannot provide estimates for
the user contribution to failure rate. In line with
our policy to provide conservative estimates, we
will then set the average expected node lifetime
to

L = 2 years

B.1.2 Speed and downtime

Download speed Accurate, high quality
data is available [18] from global Content De-
livery Networks that can use their service as a
means to study the download speed distribution
of a broad sample of Internet users.

Upload speed Data on upload speeds is
more difficult to obtain, as common users use
their connection mostly to download data (hence
the bandwidth asymmetry in home-grade Inter-
net connections). Data is explicitly gathered
[19] by organizations that offer connection speed
tests online. Their sampling, however, are bi-
ased, as connectivity issues often lead users to

make speed tests, and only the more experienced
users are aware of speed test services.

Downtime . Downtime data for home-grade
Internet connections is not publicly available
and difficult to gather. Uptime (real time = up-
time + downtime) monitoring would require a
node to be permanently active in users’ homes
to monitor their connection for extended periods
of time.

Experimental procedure

In order to get a reliable estimate for speed
and bandwidth, we develop a script to monitor
home-grade Internet connections for extended
periods of time with a Raspberry Pi 3.

e The script only runs when the Raspberry
is connected to a router. Every log entry
is paired with the router’s physical address
(MAC address) to permit analysis.

e Every two seconds, the script tries to ping
an external node (Google Public DNS; ad-
dress 8.8.8.8). Both success and failure
are logged.

e Every ten minutes, the external IP address
of the node is logged. We will use IP con-
sistency later as a means to detect Botnet
Attacks.

e Every thirty minutes, a speed test (using
Ookla’s Speedtest) is run, determining
and logging roundtrip time, download and
upload speed with the aid of an external re-
liable server.

e Every time the script detects a new router
(i.e., new MAC address), the connection’s
provider and location (latitude and lon-
gitude) are determined and logged us-
ing ip-api.com geolocation API and the
router’s vendor is determined and logged
using macvendors.com MAC Vendor Lookup
APL

Results We proceeded to monitor 7 home-
grade Internet connections, each for up to 48
hours. Raw data (MAC addresses were obfuscated
for privacy reasons) is available!.

Downtime data

lhttps://github.com/rainvg/supplementary-
material/tree/master/The’%20Alternativey
20Information’20P1an’20(2017) /netmonitor

https://github.com/rainvg/supplementary-material/tree/master/The%20Alternative%20Information%20Plan%20(2017)/netmonitor
https://github.com/rainvg/supplementary-material/tree/master/The%20Alternative%20Information%20Plan%20(2017)/netmonitor
https://github.com/rainvg/supplementary-material/tree/master/The%20Alternative%20Information%20Plan%20(2017)/netmonitor

B.2 SOLOMON-REED ERASURE CODES

' . . Let x = (xg,...,xny-1) be a vector of N
| Ping OK | Ping FAIL Downtime distinct values in K, which we call sampling
o 78 91088 (85+1)-107" points. We can define x’s Vandermonde ma-
B 0 2018 (0£7?) trix by uplifting each sampling point succes-
v 15 93013 (1.6 £0.4) - 10~ gively to the power 0, ..., N — 1 in each column
) 68 3690 (1.8+£0.2)-1072
€ 14 116101 (1.2+0.3)-1074 g !
¢ 4 2288 (1.74 4£0.04) - 1073 Ve — .
n 62 117561 (5.2+£0.7)-107% o N1
IN-1 " TN
Speed data
It is possible to prove that the determinant of
| Tests Upload Download Vand d trix i
a | 108 | (0.855 % 0.005)Mbit/s | (123 £ 0.2)Mbit/s & VANAETNONAE MAatrix 1s
gl 3 (72.7 + 0.5)Mbit /s (83 = 5)Mbit /s
v | 103 | (9.04+0.04)Mbit/s | (9.29 + 0.03)Mbit/s det(V*) = H (2 — x5)
) 5 (25.1 4 0.2)Mbit/s (63 + 3)Mbit/s 0<ici<N_1
e | 130 | (19.2+0.2)Mbit/s | (47.2 % 0.3)Mbit/s R
¢ 4 (0.82 & 0.09)Mbit /s (9 + 2)Mbit /s L o
| 131 | (0.843 4+ 0.004)Mbit/s | (12.9402)Mbit/s Which is non-null whenever i # j <= z; # ;.

Our experiment provides the following esti-
mates:

Average downtime 0.003
Average upload speed 17Mbit /s
Average download speed | 34Mbit/s

In line with our policy to keep all our esti-
mates conservative and compatible with a worst-
case scenario, for the rest of this work we will
assume:

d 0.005
S. = 02MB/s
S 0.5 MB/s

B.2 Solomon-Reed
codes

erasure

An erasure code is a forward error correction
code which transforms a block of N symbols into
a message with K symbols (K > N) such that
the original block can be recovered from a subset
of the message. We use Solomon-Reed encoding
[7], an optimal (i.e., the original block can be
recovered from any N symbols of the message)
erasure code that uses polynomial oversampling
and redundancy over finite fields.

B.2.1 Polynomial interpolation

Matrix preliminaries

Let K be a field. We define an N — 1 degree
polynomial on K by

pa0,<~~7aN71 (LE)

with ag,...,any_1,z € K.

Now let §; ; denote the Kronecker delta (J; ;, =
1, 0; j#; = 0). For any j € [0, N—1] we can solve

of a7 [g do.j
ey o) e) Lo
4 4 (2)
for a(()x’J), e ﬂ%’fﬁi. Note that the right side of

Equation 2 constrains the value of the polyno-
mial of coefficients a(()x’J), cee ag\’;’_j% to be 1in z;
and 0 in x;2;. As j can take N distinct val-

ues, Equation 2 defines N linear systems of N

equations.
We now define the Lagrange basis
{1659} ;e p0,n—1) for x by
13) — pa[()x,j)’m,ag\);,_jl)

and by Equation 2 we have for each j,i € [0, N —
1]
l(x’j) (ZL’Z) = 5i,j'

Let y = (yo,--.,ynv—_1) € KV define a partic-
ular set of desired polynomial values correspond-
ing to each sampling value x. Since polynomials
form a vector space we have that

N-1 _
p=¥) = Z y; 109
=0

satisfies
P> (2;) =y,

as the value of each 1) is 1 only in x;, and 0
in all the other sampling points.

In other words, for any set of NV distinct points
x and NN values y, it is possible to determine the
coefficients of a polynomial whose value on each
T; 1S Y.

B.2.2 Galois Fields

B.2 SOLOMON-REED ERASURE CODES

Computational complexity

As we have seen, polynomial interpolation is a
two-step procedure. For a given x, the coeffi-
cients {aEx’j)}M of the Lagrange basis on x can
be determined as per Equation 2.

Indeed, Equation 2 can be rewritten as

N-1\ —!

ag™’)) Jo.5
o))\ A ey
where the Kronecker deltas simply select

columns of the inverse matrix. Therefore the
Lagrange basis for one x can be computed with
one matrix inversion.

Once the Lagrange basis matrix has been com-
puted, the coefficients a(()x’y)7 .. ,ag\’f;yl) of pt¥)
are then given by

(x,¥) 0 N—1\ —1

Qg Lo Xy Yo
(x,y) 0 N-1

an”y IN-1 TN_1 YnN-1

which requires only one matrix-vector multipli-
cation.

It is a known result that matrix inversion can
be computed in sub-cubic time. Strassen’s al-
gorithm [20], for example, allows N x N ma-
trix inversion in O(N%%7) time. Other algo-
rithms are known with faster asymptotic com-
plexity (see Coppersmith-Winograd algorithms)
but their large constant factor makes them usu-
ally efficient only for very large matrices.

Matrix-vector multiplication can be optimized
on finite semirings [21]. By allowing O(N?*€)
preprocessing on the matrix only, it is possi-
ble to compute a matrix-vector multiplication
in O (%) time.

The two above results make the polynomial
interpolation process efficient, especially for rel-
atively small matrices, whenever we need to in-
terpolate several polynomials on the same x;s
but for distinct y;s, which, as we will see, is the
case at hand.

B.2.2 Galois Fields

Finite fields (Galois fields) exist that contain a
finite number of elements. A field with ¢ ele-
ments exists if and only ¢ can be expressed in
the form

q=r"
where p is a prime number and k is a positive
integer. Therefore, a field GF(2®) exists with

256 elements, and each element of GF(28) can
be represented by exactly one byte.

Computational remark Summation on
GF(2®) reduces to bitwise XOR-ing. Multiplica-
tion and inversion are more complex. However,
unlike GF(23%) and GF(25%), which could take
advantage of the larger registries of 32 and 64
bit CPUs, GF(2%) is small enough that multipli-
cations and divisions can be pre-computed and
stored in two exhaustive 64 KB lookup tables,
small enough to fit the L2 cache of a typical ARM
CPU.

B.2.3 Polynomial oversampling
for redundancy

Let s = sg,...,55—_1 be a string of S bytes, that
we want to reliably store. Let N, K be integers
so that N < K <« S. We can organize s in
L = [S/N7] padded blocks a' of N bytes:

0

such that each a) can be interpreted as the
GF(28) coefficients of an N — 1 degree polyno-
mial. Note that since GF(2%) is finite, we must
have N < 256 to prevent degenerate polynomi-
als over different coefficients. Let

ff Ni+j< S
otherwise

@ —p . .
p Po® a0l |

We can now define L K-bytes long data

blocks b by

@ _ @) (s

bj = (J)
(note how again since GF(2%) is finite we must
also have K < 256).

Now, let x € KV be a vector with distinct
components zg # ... # xy-1 € [0, K — 1] and
y! defined by _

b =)

we know from Section B.2.1 that we can use x
and y as inputs for polynomial interpolation. In
particular, we have

vy _ ()
a; =a;
Due to oversampling, any N-subset of compo-

nents of b(®) is sufficient to recover the original
1)
al),

Summing up To implement Solomon-Reed
redundancy we organize s in N bytes long se-
quences a. We interpret each a! as co-
efficients for a N — 1 degree polynomial that
we oversample in 0,..., K — 1, with K > N.
Oversampling produces a b) € KX from each
a) ¢ KX, As we just showed, from any N

B.3 REDUNDANCY STRATEGY

components of each b(Y) we can recover the cor-
responding a) by means of polynomial interpo-
lation.

To implement redundancy, we can now store
each component of b(Y) separately: b(()i) will be
stored on a node, bgz) will be stored on indepen-
dent node, and so on. As a result, K nodes will
be storing each one component of b® and as
long as any N of them are online and reachable,
the original value of a¥) can be retrieved.

Samples generation Let i # k. Since b()
and b® are the result of polynomial oversam-
pling on two independent blocks a® and a®),
knowledge on the components of b®) contribute
to the recovery of al®). Therefore, while each
component of b®) needs to be stored on an inde-
pendent node, we can safely store a component
of b® on the same node that also stores a com-
ponent of b®) | as this does not affect the overall
probability to recover a) or a(®).

Indeed, the most efficient way to implement
redundancy is to let each node store one of the
data samples s(@ ... s(E-1 defined by

Figure 2 shows the complete redun-

dancy process, starting from s, to produce
s@ . sE-1),

Data retrieval For any set of distinct
i9,...,in_1, if we retrieve from the network
s0) . s(in-1) then, for each k € [0, L — 1], in-
terpolation on {Sfilj)}‘je[O,N—l] yields a®)| whose
concatenation produces the original s. Figure
3 displays the whole retrieval process, starting
from sti0) ... s(in-1) to produce s.

Note how the above procedure requires L
polynomial interpolations for different values of
SSJ), but the sampling points remain ¢; for each
polynomial. As showed in Section B.2.1, this
makes the procedure particularly efficient for
large values of L, as it allows to invert only one
matrix and to amortize reconstruction time by
means of preprocessing on the Lagrange basis
matrix.

B.3 Redundancy strategy

B.3.1 Villages
Decay and recovery

In Section B.2; we have seen how Solomon-Reed
erasure codes allow us to generate, from an S-
bytes string of data, K data samples of size

[S/N]. Aslong as any N data samples are avail-
able, the original string can be retrieved. This
property alone, however, does not significantly
increase the lifetime of the string.

Let X denote a random variable representing
the lifetime of a node. Modeling failure as an ex-
ponential process (see Section B.1.1) the proba-
bility of a node being alive at time t is

P(X > 1) = ez:p(f%)

and the probability of H independent nodes be-
ing alive at time ¢

P(X0>t/\.../\XH,1>t) =

H
[[Pxi>0)

eap(~7)
follows an exponential distribution with average
L/H, i.e., it takes on average L/H for one of H
independent nodes to experience a failure. Since
exponential processes are memoryless the aver-
age time £, for a string to become unrecoverable
is

=1 (Z 1) = O (L{log(K) ~ log(N))

i=N

Whenever at least N data samples are avail-
able, polynomial interpolation and re-sampling
allow us to generate missing data samples and
store them on new nodes. In order to extend
data lifetime beyond the order of magnitude of
node lifetime, we will implement real-time data
monitoring and recovery procedures.

Optimal data distribution

A file is the minimum unit of data whose in-
tegrity we are safeguarding: failing to retrieve
any block of a file will be equivalent to failing
to recover the whole file. Under this premise,
the probability of failed retrieval is minimized
by storing corresponding samples of blocks in
the same file on the same set of nodes.

Storing distinct files on distinct sets of nodes
reduces correlations among failed retrievals
without affecting their expected number. On
the other hand, if multiple files are stored on the
same set of nodes, upon failure of a node more
files will simultaneously need to be recovered.
This will make the recovery procedure longer
and increase the probability of the redundancy
level falling under N before the recovery proce-
dure is completed. An optimal data distribution
strategy would store each file on a distinct set of
nodes.

B.3.1 Villages B.3 REDUNDANCY STRATEGY

S(O) S(l) PPN S(Kfl)
Il Il Il
0 0 0 0 0 0
s s sn-1 ag) ay” a0 b b
SN SN41 -t S2N-1 aél) agl) a§§>_1 — bél) bgl) b(]é)_l
: : I T I L
L L L — L L L
ss—1 0 0 aé) ag)L a§vi1 bé) bg). b(Kzl
Figure 2: Solomon-Reed redundancy process. A string s is organized in blocks a(® ... aT—1)

of N bytes each. Each block is interpreted as polynomial coefficients and the polynomial is over-
sampled to produce b(® ... bIL-1) (each arrow represents a polynomial oversampling). All the
corresponding components of each b() are then reorganized into data samples s(©, ... s(E=1,
each of which is stored on an independent node.

S(iO) S(il) . S(iNfl)
| | [
(0) (0 (0)
bio bil T biN71 — a(()O) aéO) e a‘g\?)—l S0 S1 SN—1
S RPN TR I I ORI C I G SN SN41 o San-1
N .. DY - H N DR DR . B DS .
L L L — L L L .

o i) N) s 0
Figure 3: Solomon-Reed retrieval process. N data samples s{o) ... s(iN-1) are recovered from N
independent nodes. They are reorganized in L N-component subsets of the original b(®), ... b®),
Polynomial interpolation (as per Equation 3; each arrow represents a polynomial interpolation on
the same Lagrange basis) is then used to reconstruct a® . al=1 which can be reorganized

into the original string s.

Polling overhead

Failure of a node can be caused not only by
failure of its storage device, but also by dam- File size distribution
age to its single-board computer or by user- : : :
generated permanent disconnection. The lat-
ter causes cannot be detected by the node ex-
periencing the failure and notified to the nodes
that share the redundancy of files with it. Real-
time, distributed monitoring of uptime and data
availability must therefore be implemented via
polling (namely, iterated active checking for the
availability of a resource).

H
2
(=2}

H
I
5

Probability density

H
2
oo

File size statistics In order to estimate the 10-9
polling overhead caused by storing each file on a 0 5 10 15
distinct set of nodes, we need to determine the File size (MB)

average number of distinct files each node will
be storing.

In order to do so, we implemented an auto-
mated online survey to anonymously scan the
size distribution of personal files of 34 volun-
teers. Volunteers were prompted with an online
form that allowed them to select one or more
folders from their computer, and were asked to
select any folder where personal files were stored

Figure 4: Experimental file size distribution gen-
erated by our scanner on the personal files of
34 volunteers. Bottom 98 percentiles are rep-
resented here (the top 2 were cropped to allow
semilogarithmic representation.)

10

B.3 REDUNDANCY STRATEGY

B.3.2 Redundancy parameters

(e.g. Desktop, Documents, Music, Pictures,
and so on). 1.01-10° files were scanned.

Figure 4 shows the resulting file size distribu-
tion. After a steeply decreasing regime, the dis-
tribution shows a dent around 3.8 MB followed
by an exponential distribution for larger files.

The experiment shows an average file size

(S) = 5.56 MB

Polling bandwidth If we preliminarily un-
derestimate N = 8, K = 12, the average data
sample’s size will be 695 KB, and the time
needed to transfer it will be approximately 7 s.
In order for recovery procedure time to benefit
from the reduced concurrency induced by inde-
pendently storing files, polling frequency must
be in the same order of magnitude, e.g., 10s. A
full node with C' = 1 TB storage capacity will
contribute to store on average 1.58 - 10° distinct
files, which would result in 1.89-107 polling con-
nections. The size of a single, empty UDP packet
is 52 B. The polling bandwidth required to mon-
itor files distributed independently across the
nodes would therefore be at least 98.3MB/s, far
beyond the upload speed S,, (see Section B.1.2).

Daemons and villages

In order to reduce polling the overhead stem-
ming from real-time, distributed data monitor-
ing, we will divide the storage capacity of each
node in partitions of Z bytes. Each partition will
be managed by a daemon, namely, an indepen-
dent instance of a data-managing software. Dae-
mons will be organized in groups of K that we
call villages. Each file in our network will be
stored by a village, and each daemon will store
the same components of each data block of each
file.

Remark: Z must be the same for every dae-
mon in the same village. Since every time a file
is uploaded to a village the same space is occu-
pied on every daemon (each daemon is storing a
data block of the same size), any space allocated
beyond the storage capacity of the smallest dae-
mon would be wasted.

B.3.2 Redundancy parameters
Lazy recovery

Polynomial interpolation and re-sampling allows
us to recover data samples that went missing.
In order to recover any number of missing data
samples, however, at least IV other data samples
need to be gathered on the same node (polyno-
mial interpolation requires at least NV samples to
occur).

11

Due to the fixed networking cost of interpo-
lation, it would therefore be more efficient to
allow multiple data samples of the same file to
be lost before performing a recovery procedure,
thus amortizing the fixed networking cost of in-
terpolation by re-sampling more missing data
samples at a time.

We will model a village with the following
rules:

e The village is always composed of K dae-
mons. Whenever a daemon experiences a
failure, it is immediately replaced by a new,
empty one.

Whenever the redundancy level of a file
(namely, how many distinct data samples of
the file are stored by the village) reaches a
recovery threshold T (h = T/N will be
called recovery ratio), a recovery proce-
dure is performed.

Let us call sources the daemons that, at
the beginning of the recovery procedure,
have a data sample of the file, and sinks
the daemons that don’t. The procedure is
implemented as follows:

— One of the sinks downloads N chunk
samples of the file from N sources.

— The sink recovers the original file and
re-samples all the missing chunk sam-
ples.

— The sink stores one of the new data
samples, and sends one of the other
T — N — 1 to each other sink.

Parameters

To sum up, our redundancy strategy depends
on four redundancy parameters, for which
adequate values need to be determined:

e Block size (N): the number of coefficients
in a polynomial.

Village size (K): the number of daemons
in a village, equal to the number of data
samples per file. r = K/N will be called
storage ratio.

Recovery threshold (T): the redundancy
level that triggers a recovery procedure for
a file. h = T/N will be called recovery
ratio.

Storage size (Z): the amount of storage
space managed by a daemon.

B.4 REDUNDANCY PERFORMANCE

B.4 Redundancy
mance

perfor-

The efficiency and reliability of our redundancy
strategy will be determined by the following val-
ues:

Data lifetime ([L*] = s): the average life-
time of a file stored by our network.

Recovery bandwidth ([B*] = B/s): the
average amount of bandwidth used by a
daemon to perform the recovery procedures
needed to maintain file redundancy.

Data downtime (d* € [0, 1]): the average
fraction of time a file is unretrievable due to
temporary network- or power-related issues.

B.4.1 Data lifetime
Recovery time

Assuming 100% storage occupancy 2, whenever
a node experiences a failure its village will be
storing NZ worth of files. The files that will
need recovery after a node n experiences a failure
will be those stored by n and exactly other T
daemons.

As we have seen earlier, the time a file spends
in a redundancy level [is on average L/l. There-
fore the probability of any file being hosted by
T + 1 daemons at any time is

3 L(T+1)7!
SIS
(T+1)7! (T+1)"1
ZZK:TH i1 log(K +1) — log(T + 1)

where the divisor of the right hand side of the
second line stems from

K+1 1

L/ —dx
T+1

L(log(K + 1)

>

—log(T + 1))

The probability for a file whose redundancy
level is T'4 1 to be hosted by any daemon is

T+1

K

therefore the average data that will need to be
recovered when a node experiences a failure is

C

Ph =

Nchph
NZ
K(log(K +1) —log(T + 1))
2This is likely to be a large overestimate, as it would

require each and every user in the network to occupy all
of his/her storage space.

<

The average data transfer load during a recov-
ery procedure is as follows:

Upload Download
C
Source 7 0
Sink (K_Jg;_l) KgT (1 + K_Jg_l) KgT

12

Most of the data transfer is carried out by
the sinks. As a home-grade Internet connec-
tion has an asymmetric upload/download band-
width, the time required to complete a recovery
procedure is therefore (see Section B.1.2):

%s

o

7

t, = max

)

N

K 71

(5
(

—_

|

Recovery failure probability

A file is permanently lost if its redundancy level
goes under N before its recovery procedure is
completed. The probability of any alive daemon
surviving at least ¢, is ps = exp(—t,/L). The
probability of losing exactly k& daemons out of T’
in ¢, time is

(k) _ T (
ENT — k)!

P, (T—k)

S

1—ps)Fp

and by the Chernoff bound the probability p; of
losing T'— N + 1 or more chunks is

T
= > p"? < exp(~TD(h,1 - py))
k=T—-N+1
with
ﬁmazDC)

and D(a,p) is the relative entropy between a
Bernoulli(a) and a Bernoulli(p) distribution:

D@m)m%(;>+“aﬂ%(i >

Lifetime

As we have seen in Section B.3.1, the average
time for the redundancy level of a file to decay
from K to T is

—a

—-bp

Ko
i=T+1
K
> L/ —dr = L(log(K)—log(T +1))
T+1 &

B.4 REDUNDANCY PERFORMANCE

B.4.2 Recovery bandwidth

Data lifetime

25 [T T T T]
10 —=—h=1.16
—8- h=12
o h=1.25
2 19 |- i
5 107 e n=133
)
o)
g 1013 - N
<
8
& 107f |
e
101 B : : : : : B

10 20 30 40 50 60
Village size (K)

Figure 5: Data lifetime for different values of the
recovery ratio h, as a function of the village size
K. Here we have r = 1.5 and Z = 100 GB.

The time for the redundancy level of a file to
decay from K to T and for the file to be recov-
ered is tqy + t.. The average number of these
redundancy cycles is 1/p;. Therefore the ex-
pected data lifetime is

_tat+ty
Yz

L*

Figure 5 shows data lifetime for different val-
ues of the recovery ratio, as a function of the
village size. Data lifetime can be made sufli-
ciently large for any practical purpose by villages
of manageable size, even when Z is as large as
100 GB.

Remarks

Reliability calculations depend critically on the
assumption of independence. In a centralized
storage paradigm, disk failures could be corre-
lated for any number of reasons: disks com-
ing from the same manufacturing lot, disks op-
erating in the same physical environment, and
so forth. Reliability estimates, therefore, tend
to be inflated when the assumption of indepen-
dence is unfounded [22] [23].

In a distributed paradigm, however, storage
devices will be purchased from independent lots,
and each will in general operate in an inde-
pendent physical environment with independent
conditions. Therefore, reliability estimates can
be considered more trustworthy in a distributed
context.

B.4.2 Recovery bandwidth

Recovery bandwidth can be easily computed
from the results of Section B.4.1. Upon node
failure, on average C' worth of data will need
recovery.

13

Recovery bandwidth

T T T T T T

22 + B
E 20 | —=—h=1.16 ||
3 —5- h=12
= 18 - h=1.25 ||
7§ —h =133
T 161 8
E
g4 a
>
§ 58— 8—*
~ 12 E/E'/E—‘B—-E-H |

10 = ! ! J | | B

10 20 30 40 50 60
Village size (K)

Figure 6: Recovery bandwidth for different val-
ues of the recovery ratio h, as a function of
the village size K. Here we have r = 1.5 and
Z =100 GB

Upon recovery, T sources will transfer data
to K — T sinks, and from the table in Section
B.4.1 we get the total amount of data) that
is transferred every time a recovery procedure is
performed

K-T-1
Q=2C (1 + N)

and the recovery bandwidth

. QL' Q@
B K(K) -1

Figure 6 shows the recovery bandwidth for dif-
ferent values of the recovery ratio h, as a func-
tion of the village size Z. As expected, B* is an
increasing function of h. Recovery bandwidth
seems to reach a plateau for large values of K,
on which it does not strongly depend. For large
villages and relaxed recovery ratios, B* is in the
order of 10 to 20 KB/s when Z is as large as
100 GB.

Remarks

Unlike data lifetime, whose value can be easily
made high enough for any practical purpose, re-
covery bandwidth is small, but non-negligible.
Our estimates, however, can be reduced by the
following arguments:

Full usage: we assumed that every user
of the village will use 100% of its allocated
storage space, which is unlikely to be true
in real-world scenarios.

Immortal files: we assumed that files are
never deleted. Files whose lifetime is shorter

B.4.3 Downtime

than a redundancy cycle (which is in the or-
der of several months) will be deleted before
undergoing any recovery procedure.

No access: we assumed that files are never
accessed. Whenever a file is downloaded by
a user, its data samples are collected and in-
terpolated by a client. Since the most costly
part of a recovery procedure is, in fact, al-
ready carried out, missing samples can be
re-sampled and uploaded, and the redun-
dancy for the file restored.

Recovery procedures can also be designed to
be carried out when network load is low. For
example, when the redundancy level for a file
reaches T + 1, an early recovery procedure
could be scheduled for the next nighttime. In the
likely event that no additional failure will occur
in the next few hours, the recovery procedure
will not significantly affect user experience, and
make use of the routing infrastructure when it
tends to be more idle.

B.4.3 Downtime

As we have seen, the probability of a file’s re-
dundancy level being k is

~1
pgk) = 74 Lk
LY imr i+t

and the downtime of a file whose redundancy
level is k is given by the binomial

k

k!
E — (1 —a)*k)
1k —n)!
e n!(k —n)!

dk) —

therefore

K
4 = Z PP d®)
k=T+1

Figure 7 data downtime for different values of
the recovery ratio h, as a function of the village
size K. As expected, downtime is a decreas-
ing function of h (as the recovery procedure is
performed before the redundancy level allows a
significant probability of enough nodes being si-
multaneously offline).

B.4.4 Conclusions
Parameters and performance

As a result of the tradeoffs defined by reliabil-
ity, polling overhead and recovery bandwidth we
chose the following parameters:

Block size (N) 24
Village size (K) 36
Recovery threshold (T) 28
Storage size (Z) 100 GB

Data downtime

107% n
o 10710 [-
E
g 1015
<10 r n
<
=
[a) 2 —=-h=1.16
107 & h=12 |
h=1.25
—=-h=1.33
1072° |- i 1 I | |]

10 20 30 40 50 60
Village size (K)

Figure 7: Data downtime for different values of

the recovery ratio h, as a function of the village
size K. Here we have r = 1.5 and Z = 100 GB

which result in the following performance:

Data lifetime (L*)
Recovery bandwidth (B*)
Data downtime (d*)

7.33 - 10% years
11.5 KB/s
9.51-10710

Conclusions

In the previous sections, we described our re-
dundancy strategy, designated four redundancy
parameters (block size, village size, recovery
threshold and storage size), and discussed a
model that allowed us to derive analytical ex-
pressions for three key performance indexes
(data lifetime, recovery bandwidth and data
downtime).

Solomon-Reed based redundancy strategy
with distributed, real-time data monitoring and
recovery procedures proves to be reliable and ef-
ficient, and a viable strategy to store data using
single board computers, consumer-grade storage
devices, and home-grade Internet connections.

Part C
Architecture
Challenges

Showing that an efficient and reliable redun-
dancy strategy can be designed to store data on
a distributed network of nodes is indispensable,
but not sufficient to build a network that can ac-
tually be used to securely store and share files.
In this section, we will provide an overview on
some of the foreseeable challenges for the full
development of RAIN.

14

C.2 NETWORK ORGANIZATION

C.1 Security challenges

As we discussed in the Introduction, the RAIN
network should guarantee confidentiality (any
unauthorized access to the content stored on
the network should be impossible), integrity
(it should be impossible to alter content stored
on the network without the tampering being de-
tected) and availability (it should be difficult
for attackers with limited hardware resources to
make some content permanently unavailable or
temporarily unaccessible).

The security protocols of traditional client-
server paradigms are designed under the as-
sumption that servers will be in physically se-
cure environments beyond the reach of attack-
ers. Discretion over who is granted access to
the data, however, is left to the provider of the
service and not to the user: in the recent past,
many of the largest Internet companies in the
world, handling personal data of billions of cit-
izens, have guaranteed access to government-
grade attackers [24] [25].

Since each node of the network will be beyond
our physical reach, and in the hands of poten-
tially malicious users, RAIN will need radically
different security protocols.

Attack model

RAIN’s security protocols will be designed under
the following attack model (namely, a set of
axiomatic assumptions about the extent of an
attacker’s access to our network and its intents,
see, e.g., [26]):

Access

The attacker will have read-only access to
all the raw data persistently stored in our
network.

The attacker will have physical access to up
to 1% of the nodes in our network.

The attacker will be able to gain physical
access to any node in the network in one
day.

The attacker will have at its disposal a com-
putational power comparable to that of the
whole world in the foreseeable future.

The attacker will not have access to un-
known computational technology, or know
cryptanalytic exploits to NSA Suite B
Cryptography algorithms (namely, AES,
ECDSA, ECDH and SHA-256/384).

15

Intents

1. The primary objective of the attacker
will be to gain access to plaintext data
stored by the network’s users.

. The secondary objective of the attacker
will be to alter the data stored by the net-
work’s user.

. The tertiary objective of the attacker will
be to severely disrupt the network’s service
(e.g., by making large amounts of data un-
available) in order to undermine users’ trust
in the network and convince them to revert
to a classical client-server paradigm.

C.2 Network organization

C.2.1 Honest Geppetto attacks

As we have seen, correlations among failures
disrupt data lifetime. For example, whenever
T'— N+1 nodes in the same village will under the
control of the attacker, an undetectable Hon-
est Geppetto attack (here we use the same
nomenclature as in [27]) can be delivered: ma-
licious nodes can behave identically to honest
nodes until some recovery threshold is reached.
When the redundancy of some files they are
hosting reaches T, malicious nodes can simul-
taneously wipe their content, thus making data
permanently unavailable.

C.2.2 Proofs of Persistent Storage

It is easy to see that no distributed storage net-
work can guarantee availability under a Google
attack (namely, a variant a Sybil attack where
the attacker has under its control an amount of
hardware resources far larger than the size of
the whole network). Especially in the case of
an Honest Geppetto attack, where it is impos-
sible to distinguish malicious from honest nodes
before they perform the attack, there is no ef-
fective way of selectively storing data on honest
nodes, and the probability of that happening by
chance is vanishingly low. The only feasible de-
fense against a Google attack is to have a large
enough network [27] (or to make its size grow
faster than the reward for an attacker to invest
its resources in a Google attack).

As per Assumption 2, the attacker might have
under its control an extensive amount of physi-
cal nodes, that we still assume to be a minority.
A malicious node, however, might spawn more
daemons than what allowed by its storage space,
and go undetected until the actual occupancy of
files overflows its capacity. By carefully over-
booking its storage, without any hardware cost,

C.2.3 Authenticated Distributed Hash Tables

C.2 NETWORK ORGANIZATION

the attacker might multiply the number of dae-
mons under its control.

In order to prevent this from happening, we
will make use of Proofs of Persistent Space, i.e.,
protocols that allow one party (verifier) to check
if the other party (prover) is persistently occu-
pying some committed space [14].

PoPS protocols exist with polylog(N) com-
munication complexity [15] that, however, are
vulnerable to tradeoffs that, at a cost of CPU,
could allow the prover to maliciously save part
of its committed space. In order to address
this issue, we developed a provably secure, tight-
bound PoPS that uses inherently sequential in-
tertwined functions and timeouts to prevent the
on-the-go recomputation of the storage commit-
ment.

By forcing each daemon to commit the storage
space it is making available, we will prevent the
attacker from controlling a larger percentage of
daemons than physical nodes.

C.2.3 Authenticated Distributed
Hash Tables

Publicly verifiable systems exist (namely,
blockchains [13]) that allow distributed book-
keeping on a public ledger of transactions with-
out need for the nodes involved to trust each
other, or a third party. Blockchains, however,
require each node to keep a full copy of the whole
transaction ledger, whose size grows in time.

As we will later see, in order to guarantee
availability, we will need to perform some rare
operations on the network, like the addition of
a new node or the creation of a village, whose
result needs to be verifiable by any other node.

In order to do this in a way that is scalable and
does not require each node to keep a list of every
global transaction ever occurred on the network
(as in a blockchain paradigm), a protocol based
on authenticated hash tables (for related work,
see [12] and [28]) is under development.

Our strategy will be to organize the entries of
a hash table in a Merkle tree where each value
can be retrieved by navigating the tree along a
path uniquely determined by the key.

This data structure can also be distributed
(authenticated distributed hash table) among
multiple nodes, each holding one or more entries,
and their corresponding Merkle proofs. It is pos-
sible to show that non-conflicting Merkle proofs
can be merged with each other, which allows for
local edits that can be propagated without cor-
rupting pre-existing entry proofs.

A consensus mechanism can then be devised
to sequentialize updates based not (as in, e.g.,
[13]) on CPU-intensive proofs of work, but on

16

the same PoPS in place to prevent Sybil attacks.

Our preliminary results suggest that it should
also be possible to partition the set of nodes
in interconnected communities bound to verify
separate segments of the ADHT. Allowing for
parallel validation of updates would be a signif-
icant breakthrough in the field of decentralized
ledgers, as it would remove the limit to the num-
ber of operations per second that can be carried
out on the ledger.

A paper on ADHT is under development.

C.2.4 Random beacon

As we will see, many of our protocols will rely
on the possibility to generate globally verifiable
random numbers. While in principle distributed
random number generation could be performed
by a Byzantine consensus protocol among all the
nodes, its communication complexity would be
as high as O(N?) [29], which a planetary net-
work, potentially with billions of nodes, cannot
afford.

The development of a reliable random beacon
(as in [30], but free from unilateral management)
is therefore of paramount importance in the de-
velopment of our network.

Using time-hard functions

It has been shown [31] that inherently sequen-
tial, time hard functions exist (e.g., square root
over GF(p) with p mod 4 = 3, that requires at
least logy(p) — 2 inherently sequential multipli-
cations on the field) that, while being wallclock-
time hard to compute, can be verified with very
little computational effort (one multiplication in
the GF(p) square root case).

This allows us to implement a timed protocol
where multiple nodes can seed the generation
of the random number, but a malicious node is
unable to adjust its seed to affect the final gen-
erated value, because doing so would require a
wallclock time effort longer than the window it
has to provide its seed.

Using again PoPS as a commitment mech-
anism to prevent a single node with limited
hardware resources to spawn an arbitrarily large
number of daemons [15], we can limit the frac-
tion of the seeders pool (namely, the daemons
that can contribute to seed the random number
generation) that even a very large attacker can
control.

Using ADHT, we can now publicly keep track
of the number of nodes in the seeders pool,
and monitor how many times each daemon con-
tributed to the seed.

Now, if we program each honest daemon to
contribute to one seed every, e.g., /S, S being

C.3 DATA

C.2.5 Village formation

the number of seeders and r a limited number
(e.g., 100), each number will be seeded on aver-
age by r independent seeds, and the probability
of all of them being malicious (the outcome will
be random if at least one of the seeds is random)
will decay exponentially in r.

Daemons will be free to randomly choose what
random numbers to contribute to, but if a dae-
mon contributes too often (note how this can be
monitored with a authenticated hash table), its
contributions will be considered invalid and be
filtered (this prevents flooding).

This mechanism (which we will describe in
more detail in an upcoming paper) is similar to
the process of mining [13], but with two ma-
jor differences: the hardware commitment is in
terms of storage space, and not computing power
and multiple daemons will seed the same random
number, thus improving the overall security of
the mechanism.

Remark: even if this mechanism can sustain-
ably generate a relatively small amount of ran-
dom numbers per time unit (e.g., one random
number every 30 minutes), a larger amount of
random numbers can be generated by using the
random beacon to select a limited random sub-
set of nodes from the pool (the set will change
every, e.g., 30 minutes), and use a traditional
Byzantine consensus algorithm on that subset to
generate random numbers at a higher frequency.

Assumptions 2 and 3 can be used to guarantee
the security of random numbers generated using
this protocol.

C.2.5 Village formation

Once the publicly verifiable generation of ran-
dom numbers is guaranteed, a protocol to or-
ganize daemons into villages will be designed in
order to verify the trustworthiness of daemons
and to minimize time correlations induced by
the attacker without compromising the perfor-
mance of the network. Trustworthiness will be
verified via distributed uptime and IP consis-
tency tests. Memory-hard functions on com-
mitted storage can be also used to detect bot-
nets. New daemons will be assigned as freeload-
ers to pre-existing villages. New villages will be
formed by randomly selecting daemons from the
freeloaders pool only when storage is saturated.
This allows us to minimize the possibility of the
attacker to introduce correlations in the forma-
tion of new villages.

C.2.6 Bootstrapping connectivity

In order for data to be stored and retrieved by
users on different drives, each node of our net-
work needs to be reachable by any other. This

17

poses a challenge both in terms of networking
and security, as on the one hand NAT-traversal
techniques and bootstrapping techniques need
to be reliable and scalable, and on the other
the attacker must be prevented from undermin-
ing the connectedness of the network. Non-
secure, worldwide network bootstrapping solu-
tions, however, are already in place, developed,
e.g., in the scope of trackerless torrent protocol
[9], and IPFS protocol [32].

An exponential network topology can be de-
signed to guarantee O(log(NN)) connectivity and
O(log(N)) crossing time, and ADHT can be
used to perform timely global bans on the boot-
strap network.

C.3 Data

C.3.1 Storage table synchroniza-
tion

Once daemons are successfully organized into
villages, each daemon will have some amount
of storage allocated by its fellow villagers. A
village-wide ledger will be designed to keep track
of new files uploaded and their hashes. Since
each villager will be in charge of updating only
its part of the ledger, no concurrency proto-
col needs to be implemented. Incremental syn-
chronization protocol (e.g., GIT) already exist
to minimize communication overhead and op-
timize reliability of updates distribution when
nodes have a non-negligible downtime.
Villagers will be in charge of monitoring the
legality of each other’s operations, and a fair bid-
ding protocol will be devised to ban villagers
that misbehave or deny access to their data.

C.3.2 Distributed data monitor-
ing

As we discussed, villagers will monitor each
other’s data availability. This will be done by
means of Merkle trees [11] and signatures. This
will be non-trivial, as we want to make sure that
space involved in a ADHT commitment can still
be used to store actual data: PoPSs should serve
the purpose to prove that a daemon has some
hardware available and uniquely committed to
the network, but they should not interfere with
how that space is used.

A bidding protocol will be designed to trigger
a recovery procedure, along with secure, global
ways to find substitute nodes from the freeload-
ers pool whenever nodes become permanently
unavailable.

C.5 CREDENTIALS

C.4 Metadata

C.4.1 Synchronization

Data is uploaded by users on their nodes’ vil-
lages, using the storage separately allocated by
each village to their account. When data is or-
ganized in file trees and shared with other users,
however, synchronization becomes an issue of
relevance. As any other piece of data, drive
metadata will be encrypted but, unlike data,
nodes will be able to edit it so as to make changes
to the file tree. In the context of a shared drive,
multiple users can simultaneously try to push
their edits to the drive’s metadata, and atomic-
ity needs to be guaranteed.

The problem is widely discussed in litera-
ture, and addressed by pessimistic algorithms
[33] (that involve acquiring multiple locks be-
fore pushing an update to multiple nodes, useful
when inconsistencies are either very dangerous
or very frequent) and optimistic algorithms [34]
(that allow for temporary inconsistencies among
the copies and focus on quickly resolving them).

C.4.2 Efficient ban

Metadata in a drive is encrypted with a symmet-
ric key, which, when a new user is invited to join
the drive, is encrypted with his/her public asym-
metric key and shared. When a user is banned,
however, a new symmetric key needs to be gen-
erated in order to exclude the banned user from
access to the data stored in the drive. When the
amount of users in the drive is large, however,
sharing the new key to all of them is a costly
procedure. Similar problems are found, e.g., in
the field of premium television channels, where
new keys need to be distributed appropriately
only to subscribers.

Algorithms exist in literature efficiently ad-
dressing the problem [35]. On our side, an
O(log(N)) protocol is under development to ef-
ficiently share new keys to all the users except
one.

C.4.3 Data-metadata
nization

synchro-

While atomicity will be guaranteed in the con-
text of metadata synchronization, data and
metadata are in principle independent. A proce-
dure needs to be devised to prevent orphan data,
i.e., data that is not referenced by any meta-
data. This can be done by allowing villages to
communicate. Whenever data will be stored on
a village, it will be marked as temporary until
a metadata village confirms to be referencing it.
When a reference is removed from a drive, the

18

village storing its metadata will notify the vil-
lage storing the data to delete the data to save
space.

C.5 Credentials

C.5.1 High-entropy authentica-

tion mechanisms

In order to prevent the attacker from pursuing
its primary and secondary objective (see As-
sumptions 1 and 2), end-to-end cryptography
will be implemented using asymmetric keys gen-
erated at the moment of signup. Since, as we
said in Section: User Experience, users should
be able to access their data from anywhere, a
user’s private key will need to be persistently
stored on the network, encrypted with a key that
can be generated by an authentication mecha-
nism. In a client-server context, the encrypted
key would shared by the server only when the
user proves to be able to decrypt it, thus acting
as a bottleneck for any brute-force or hash table
attack (for example, a server can lock an account
for a few minutes if too many incorrect trials
are made). This protects low-entropy passwords
from attacks (or, in the case of an attacker in
control of the server, completely undermines the
security of an end-to-end encryption based on
weak passwords). Due to Assumption 1, how-
ever, there is no place in the network where we
can store an encrypted private key without the
attacker being able to retrieve it. Due to As-
sumption 4, the attacker can perform a brute
force or a hash table attack on the key, of which
it has the ciphertext.

This issue can be addressed in two parallel
ways. On the one hand, the decryption func-
tion can be made hard to compute [36]. Even
without acting as effectively as a server bottle-
neck, this will slow down brute force attackers,
but it comes at a cost in terms of user experi-
ence: the login process to the service should not
take more than a few seconds on a standard ma-
chine. On the other hand, we will try to increase
the entropy of our authentication mechanism. In
order to do so without making its solution dif-
ficult to memorize, we plan to enforce the use
of passphrases, rather than passwords, by de-
sign. By leveraging on associative memory, this
can be done in two ways.

Image-word associations Research has
been already carried out on the possibility
to use images as a part of an authentication
mechanism [37]. Here we propose an example
of an image-based authentication mechanism.
Upon signup, the user is prompted with a

C.6 ENVIRONMENTAL IMPACT

C.5.2 Distributed hash tables on GBN

collection of images. Images are represen-
tational, but without a uniquely identifiable
semantic content. The user is asked to pick a
certain number of images (e.g., 10) that are
easy to associate to a personal memory, and to
associate one or more words to each. During
signing, the user is prompted with the images
that he/she selected, and asked to enter the
corresponding words. If words were uniformly
picked among the 2000 most common words in
the user’s native language, a 10-word passphrase
would be approximately as secure as a 110-bit
random key. In order verify the hypothesis that
word-image associations are easier to memorize
and have a higher entropy than passwords, we
developed an online experiment where password
entropy and memory persistence are measured.
Preliminary results are encouraging as far as
memorization is concerned, with some users
remembering with 100% efficiency up to 286-bit
equivalent passphrases. However, some users
tend to choose words that describe the image,
rather than a memory associated with it. This
immensely reduces the final entropy of the
passphrase.

Word-word association Word-word associ-
ations can be used instead of images [38]. Upon
signup, the user is asked to enter a certain num-
ber of words (e.g., 10), and associate to each
another word with a personal, easily recallable
meaning. During signing, the user is prompted
again with the words he/she chose, and asked to
enter again the corresponding words. In order to
filter out trivial associations, we plan to run a
crowdsourced free word association experiment,
where a network of more common associations
is built depending of nationality. This would al-
low us to provide the user with an estimate of
his passphrase entropy, and filter out then less
robust ones.

C.5.2 Distributed hash tables on
GBN

When signing in from a new client, a user will
be only asked to enter his username and his
passphrase. It will be necessary, therefore, to
store distributed login information at a global
level on the network, in a way that allows in-
formation to be retrieved from anywhere in a
limited amount of steps. This can be done
by organizing nodes in large redundancy groups
(namely, Distributed Hash Tables like [9]), and
storing login information for each user in a group
that can be algorithmically determined from
his/her username.

19

C.6 Environmental impact

RAIN’s architecture is distributed and relies on
nodes whose hardware is limited both in num-
ber of transistors and power requirements. A
key milestone will therefore be to study how a
large scale transition from a centralized to a dis-
tributed paradigm could affect the environmen-
tal impact of the Internet.

Here we report preliminary estimates and
qualitative arguments for this infrastructure’s
energy efficiency.

C.6.1 Efficiency arguments

Low-energy nodes The power dissipation for
a capacitor C' over a voltage V that oscillates
with a frequency of v is given by

P = %C’Vzu

which defines an essential part of the dissipa-
tion for a digital computer: the dissipation of
the creation and removal of a bit of information.
Single-board computers (like Raspberry Pi), on
which we plan to develop our infrastructure, are
built from components optimized for low-energy
performance (e.g., ARM processors are often used
in cellular phone technologies (see e.g. [39] [40]),
where battery life is of paramount importance
and cooling is passive). The reduced clock speed
and size (RISC processors require a smaller num-
ber of transistors) of the nodes on which we plan
to develop our architecture could therefore make
them more energy efficient than faster servers,
the overall complexity of each task being equal.

Embedded energy Hardware manufacturing
processes significantly contribute to the energy
budget of Internet-mediated transactions. For
example, [41] shows that the production process
of a server represents nearly the 20% of its life-
time overall energy cost. Moreover, as suggested
in [42], servers are replaced at an increasing pace
to supply the performance needed to offer up-
to-pace services, with an expected lifetime cur-
rently around 3 years.

Low-energy nodes have a smaller number of
transistors and often rely on larger-scale tech-
nology (e.g., 14 nm Skylake microarchitecture
currently used to produce Intel Xeon series vs
40 nm technology for Broadcom BCM2837, cur-
rently in use in Raspberry Pi 3). These two
effects, along with the reduced size of their com-
ponents, could have a significant energy saving
impact on the manufacturing process.

Datacenter infrastructure It is estimated
[43] that approximately 50% of the total power

C.6.2 Node efficiency comparison

C.6 ENVIRONMENTAL IMPACT

consumption of a datacenter is due to servers
and storage, where the rest of the balance mainly
includes cooling 25% and powering of the in-
volved distribution network hardware 20%.

Due to its distributed architecture, and to the
low energy nature of its nodes, our infrastructure
would be passively cooled, and use an infrastruc-
ture that is already in place to service citizens
and organizations.

Long-range routing infrastructure The
geographical distribution of the nodes in our net-
work would be significantly more fine grained
than that of a traditional, centralized paradigm.
By storing data on nodes that are geographically
close to its users, it could be possible to reduce
by orders of magnitude the average routing dis-
tance to provide access to the data.

For example, accessing Facebook from
Bologna, Italy probably involves a communi-
cation with one of its datacenters in Europe,
the closest being in Ireland [44], at a linear
distance of more than 1500 km. Conversely,
for a sufficiently deep service penetration, it is
not unreasonable to assume that most of the
personal data for a user in Bologna could be
stored by a node in Bologna, thus reducing the
routing distance to a few kilometers.

It is not easy, however, to estimate the en-
ergetic impact that this change of paradigm
would have on the current routing infrastruc-
ture, which is optimized to service a centralized
architecture. For example, it has been shown
[45] that a significantly larger expenditure of en-
ergy in communication networks is due to access
networks (i.e., the part of the routing infrastruc-
ture that directly provides access to the users)
than to core networks (i.e., the faster routing in-
frastructure that carries data in long-range com-
munications). Shorter range communications
could therefore be less optimized, not due to in-
herent properties in the routing technology, but
to optimization for a centralized paradigm.

Intensive data processing A centralized ar-
chitecture needs a constant stream of revenue in
order to be sustainable. As we have seen in the
Part A, some of the largest owners of datacenters
make intensive use of the data collected through
their services to generate profit. Independently
of the privacy issues that this practice raises, it
is easy to argue that it comes at a significant
cost in terms of computing power.

A distributed architecture could be sustained
locally by the same community that uses it.
This would make it unnecessary to find differ-
ent, privacy-invasive and CPU-consuming ways

20

of processing data to, e.g., provide better tar-
geted advertisement services.

C.6.2 Node efficiency comparison

In order to determine an order-of-magnitude
energy efficiency ratio between a single-board
computer and a server, we performed a set of
cryptographic benchmarks on a Raspberry Pi
3 single-board computer and a Dell PowerEdge
R815 server, mounting 4 AMD Opteron 6328
8-Core 3.2 GHz.

Remark: we chose to benchmark crypto-
graphic operations because of the static nature
of the content stored and distributed by our net-
work: in a real case scenario where the CPU cost
of secure delivery of content over the Web is re-
duced to the cost of an HTTPS transaction, it was
shown that 70% of the CPU cost was due to SSL
processing [46].

Experimental procedure The benchmarks
were run on the Raspberry PI on a clean
installation of Raspbian Jessie, and on the
PowerEdge on a clean installation of Springdale
Linux 6.

We used the benchmark software integrated
with the OpenSSL library. Both platforms used
OpenSSL 1.0.1e-fips. AES encryption was
benchmarked with 256 bit keys in CBC mode.

The benchmark was ran both in single-thread
mode and in multi-thread mode, using all the
available cores (4 and 32, respectively). 15
single-thread and 20 multi-threaded benchmarks
were ran on each platform.

Remark: during the test we observed a
significant dependency of the speed of the
Raspberry Pi on its temperature. No cooling
measure was taken, and the multi-threaded tests
were looped repeatedly and the values taken
when the speed stopped showing a decreasing
trend.

Our results are as follows (all the values are
in MB/s):

1 thread > 1 thread
RPI 36.90 + 0.02 96.9 + 0.2
PEdge | 175.26 4+ 0.08 3981 +5

Values for the maximum loads power con-
sumption of Raspberry Pi and PowerEdge were
obtained from [47] and [48] respectively:

D.1 SERVICES

Maximum load power

3.TW

RPI

PEdge 563 W

Which result in an encryption efficiency
of 26.2MB/J for the Raspberry Pi, against
7.1MB/J for the PowerEdge.

Obviously, more detailed investigations are
needed to determine the energy and environmen-
tal impact of the proposed distributed datastor-
age architecture as well as how it compares to
the current centralized datastorage paradigm.

Part D
Potential Impact

A distributed, open-source, community-owned
infrastructure for the storage, distribution and
manipulation of information has multiple appli-
cations beyond the storage of personal and other
sensitive user data. Here we propose some in the
fields of Services, Finance and State Administra-
tion.

D.1 Services

RAIN’s first goal is to reliably and securely store
private data. This service can be offered in a
scalable way, as its design involves connecting
more nodes to the network as new users start
using the service. A wide variety of critical ser-
vices, however, could be hosted on RAIN’s in-
frastructure once its acquisition is deep enough.
Here we propose some examples.

D.1.1 Messaging platform

Due to the simultaneous scaling of demand and
offer (the more users use the service, the more
nodes are connected to it) and to the relatively
low bandwidth requirements (whose bottleneck
is often determined by mobile phone connec-
tion speeds), messaging services are among the
easiest additional services that could be imple-
mented on top of a pre-existing storage and dis-
tribution infrastructure for personal data.
Indeed, classical storage villages could be used
as a means to store outgoing messages, available
for any recipient to be retrieved. Messages could
be end-to-end encrypted using the same strat-
egy that guarantees the security of shared files.
In principle, this could guarantee an uncircum-
ventable secrecy of communications, while allow-
ing our users to exchange messages and media

21

without having to alter their usual user experi-
ence.

Real-world scenario: WhatsApp

Throughout 2016, one billion of WhatsApp users
has sent an average of 64 -10° messages per day,
and 1.6 - 10? images [49].

Using the online interface WhatsApp Web
and a network inspector, we selected 50 random
images from a WhatsApp conversation to de-
termine how images are compressed when dis-
patched, and we determined an average image
size of (111 +8) KB.

Overestimating a text message size to 1 KB,
we therefore obtain a total service bandwidth of
241.6 TB/day, or 2.79 GB/s.

As a rough estimate, a secure messaging ser-
vice equivalent in size to WhatsApp could there-
fore be hosted on RAIN’s infrastructure by ded-
icating 1% of the upload bandwidth of 1.40-10°
of its nodes (here we used S, = 0.2MB/s, recall
Section B.1).

D.1.2 Content Delivery Network

A personal data storage service involves storing
a large amount of data with a rapidly decay-
ing distribution of popularity: files are accessed
only to those users to which they were explic-
itly shared. Publicly available content follows
a more heavy-tailed distribution of popularity
[50].

In order to provide access to very popular
data a one-to-one redundancy strategy, where
the number of copies for each file is tuned only
to prevent data loss, is not sufficient.

A large enough network already deployed to
store personal data could make use of the spare
storage resources of its users and aid e.g. the
distribution of web pages with an unprecedented
geographical extensiveness. Locally cached data
would be faster and less expensive to distribute,
and long-range routing infrastructure would see
its load reduced.

A peer to peer Web content delivery net-
work is already under investigation by the IPF'S
project [51], relying for the distribution of con-
tent on the personal computers of users access-
ing the content. A similar protocol could be im-
plemented on top of RAIN’s infrastructure with
the following advantages:

e Uptime: dedicated, permanently online
embedded computers would have a higher
uptime than personal computers. This
would significantly reduce the redundancy
needed to make a file available to large audi-
ences, as each node would be providing the

D.1.3 Social network

D.1 SERVICES

same content for a more extended amount
of time.

e Storage space: the protocol could make
use of a node’s spare storage space to cache
Web content. That space would already be
allocated by the user to mass storage pur-
poses, therefore the protocol would not be
in competition for resources with the rest of
the user’s environment.

e Computational resources: the protocol
would run on dedicated machines instead
of personal computers. The user experience
would therefore be unaffected by the proto-
col.

Real-world scenario: Wikipedia

Throughout February 2017, the online encyclo-
pedia Wikipedia had 585 - 10° pageviews [52],
for a total size (late 2014) of 23 TB [53]. By us-
ing the Random article feature, and a network
inspector, we sampled the data transferred to
load 300 random Wikipedia articles. The aver-
age data transfer per article is 243 KB, with a
standard deviation of 195 KB. Under the ap-
proximation of Gaussian distribution of sizes,
the error on the average is 11 KB.

The above sums to 142 TB/month, or
54 MB/s. As a rough estimate, Wikipedia could
therefore be hosted on RAIN’s infrastructure by
dedicating 1% of the upload bandwidth of 54-103
of its nodes (here we used S,, as per Section B.1).

D.1.3 Social network

RAIN’s infrastructure is designed to guaran-
tee privacy-preserving sharing of files among its
users while organizing data in a way consistent
to that of a social network. Preserving the net-
work’s cryptographic architecture could be seen
just as an extension to the software already in
place.

Having to manage only a limited number of
accounts, each node in the network could store
and process information dispatched by others,
related to the users to which its owner is con-
nected. Moreover, while a universal protocol
could be established to distribute data across
the network, the way contents are organized and
offered to the user would depend on software
running on each user’s node. This would allow
on the one hand the transparency, and on the
other the possibility to personalize the organi-
zation of content, as each node could organize
its user’s content in a different way depending
on the software it is running.

22

Real world scenario: Facebook

As of 2014, the total storage capacity of Face-
book, the largest social network in the world,
was 300PB [54]. User base growth data is avail-
able [55] and shows an approximately linear
growth from 1.276 - 10° users during the first
quarter of 2014 to 1.860-10° at the end of 2016.
Under the assumption of a steady production of
data by its users, we can extrapolate Facebook’s
current storage capacity by multiplying the old
figure by the square of the users’ ratio, obtaining
approximately 650 PB.

Under the assumption of each node having a
storage capacity of 1 TB, and dedicating 1%
of the storage capacity of each node to hosting
an equally large social network, approximately
65 - 10% nodes could host the same 1.86 - 10? so-
cial network accounts, while providing privacy,
transparency and customizability to its service.

D.1.4 Search engine

Multiple projects (e.g., [56] [57]) exist to imple-
ment distributed crawling, indexing and data
mining to provide independent, open-source
search engine services. Distributed crawling
would be a task especially suited for a network
already providing CDN services, as the crawl-
ing and indexing could be performed in-place by
the same nodes hosting the content, saving the
bandwidth needed to download the content and
index it on a separate server. Multiple comput-
ing infrastructures ® already implement similar
mechanisms, sending code to be locally executed
on the machine hosting the data rather than
moving the data to enable its processing on a
separate service.

Real-world scenario: Google

As of 2016, Google’s index comprises 130 - 10'2
distinct pages, for a total size of 100 PB [58].
Under the overestimate of a 10% daily update
rate, a distributed network of 100 - 10® non-
overlapping crawlers could keep the database
updated with as few as 1.5 page requests per
second per node. Storing the index in a Dis-
tributed Hash Table with 10x redundancy, the
same amount of nodes could store the whole in-
dex with an occupancy of 10 GB per node.
Such a large-scale distributed database, how-
ever, would likely require the design of new
indexing and routing algorithms optimized for
distributed systems to make the performance

3For example, the WLCG (Worldwide LHC Comput-
ing Grid), which stores and processes the data produced
by CERN’s Large Hadron Collider, runs data analysis
programs directly on the nodes storing the data, as it is
easier to move programs than the data they need.

D.2 CRYPTOCURRENCY

of a query comparable to that of a centralized
paradigm. As of 2009, a query to the Google
index involved an order of magnitude of 103 dis-
tinct servers [59], resulting in an extensive use
of an internal datacenter bandwidth whose per-
formance cannot be matched by that of a dis-
tributed system.

D.2 Cryptocurrency

As we said in Section C.2.3, a large enough set of
nodes with a relatively high uptime, organized
in a network where the number of daemons per
node is limited by a hardware commitment, and
managed for some critical aspects by a trustwor-
thy or verifiable publicly available random bea-
con, can be used to implement verifiable book-
keeping of a distributed ledger by means of au-
thenticated hash tables.

By means of verifiable hash tables, a set
of account balances can be efficiently and se-
curely stored, thus implementing a cryptocur-
rency with the following advantages:

e Due to the low communication and CPU
complexity of the process, it could address
the issue of the environmental impact of
cryptocurrencies (like Bitcoin [60]), whose
security relies on the constant solution of
CPU-intensive cryptographic problems [13].

e Its constant persistent space complexity
would guarantee scalability: while on the
one hand the most commonly used cryp-
tocurrencies require each user to store the
list of all the transactions ever occurred on
the network, the memory requirement for
this one would not increase with time. In-
deed, authenticated hash tables would store
the state of the ledger, rather than the list
of all its updates: while T transactions in-
volving, e.g., the same two accounts in a
blockchain-based cryptocurrency would re-
sult in a permanent storage requirement of
T new entries in the blockchain for all the
nodes in the network, in an AHT-based
cryptocurrency those updates would just
successively change the value of the same
field.

e Cryptocurrencies based on mining encour-
age the formation of mining pools (namely,
groups of nodes that join their computa-
tional power in order to solve cryptographic
problems more efficiently). However, it
has been shown [61] [62] that a coordi-
nated group of users controlling the abso-
lute majority, e.g., of the Bitcoin network’s
computing power could disrupt its security.

23

This is far from being a theoretical weak-
ness, as, for example, a single mining pool
has reached 50% of the total Bitcoin’s min-
ing power in June 2014 [63]. A cryptocur-
rency where mining pools are not rewarded
would help avoid this critical scenario, while
addressing the democracy issue inherent in
the high entry point of cost-efficient mining
hardware [64].

D.2.1 Transaction syntax

Authenticated hash tables allow any node with
O(1) previous knowledge on the status of the
hash table to verify that an edit has been done
to it. By grouping one or more edits together,
it is possible to define a set of legal transactions
and, by recursion, a legal hash table as an empty
hash table or any hash table obtained from a
legal transaction on a legal hash table.

For example, a basic cryptocurrency protocol
could involve the following transactions:

Signup: a new entry is added to the hash
table. The key is a user name, the content
includes an initial balance of zero and the
user’s public key. The transaction includes
the proof of the addition of the entry to the
hash table, and a signature with the user’s
public key.

Payment: a user A is paying another user
B some amount. The transaction involves
a proof of the existence of A, a proof of the
existence of B, the balance of A, the bal-
ance of B, the public key of A and a sig-
nature with the public key of A describing
the transaction. The proof also includes an
edit of A’s entry (reducing its balance by
the amount of the transaction) and an edit
of B’s entry (increasing its balance by the
amount of the transaction). The transac-
tion is accepted if both the users exist, if A
has enough money in its balance, and if a
valid signature is provided.

In this paradigm, the initial currency distribu-
tion process could be uniform in time (e.g., every
account receives some amount per time unit, the
time being measured e.g. in number of transac-
tions) or exponential (i.e., each account receives
proportionally to its balance). This eliminates
the need for energetically expensive mining by
replacing it with minting: currency is initially
distributed to all the nodes that take part in
ensuring the security of the network, e.g. by
storing proofs of persistent storage and double-
checking the stream of updates received by the
network. Note how both activities are not CPU
and energy intensive.

D.2.2 Universal transaction syntax

D.2 CRYPTOCURRENCY

Since authenticated hash tables can be used to
provably add, retrieve and remove entries from
a hash table, depending on the set of legal trans-
actions one defines, it is possible to implement a
wide variety of financial constructs in the cryp-
tocurrency.

D.2.2 Universal transaction syn-
tax

As we have seen, a globally accepted transaction
syntax could allow a set of peers offering a hard-
ware commitment to check a stream of updates
to a distributed ledger. This allows us to easily
define universal sytanxes. Consider the case, for
example, of a syntax where:

e A set of fields in the distributed ledger de-
fine a finite set of rules, e.g. in the form of
regular expressions.

e All updates are sent along with the proof
of the rule they are applying. Every node
can verify that the rule provided actually
lies in the ledger, and check that the rule is
respected by the update.

e Rules can exist to update every field, also
those that store rules. For example, one or
more rules can define a distributed voting
mechanism to update the fields storing the
rules themselves. This would allow users in
the network to define, and arbitrarily up-
date the transaction syntax without having
to alter the software that checks that they
are respected.

D.2.3 Taxation system

Some cryptocurrencies already implement, or
plan to implement, transaction fees as a form
of redistribution of wealth after the mining re-
sources have been exhausted.

Instead of implementing a fee for accepting a
block, thus splitting the value of the fee among
multiple accounts, one or more community ac-
counts could be included in the cryptocurrency.
The syntax of a transaction could involve, for
example, paying a small fraction of the amount
to a community account.

Since each transaction would be verified by
the whole community, tax evasion would be un-
feasible: our cryptocurrency would implement
taxes in the very language used for transactions.
Instead of putting the community accounts un-
der the control of any trusted third party, they
could rather be managed by distributed, verifi-
able algorithms.

Sponsoring FOSS, Creative Commons &
free knowledge

In Section D.1.2, we described how a Content
Delivery Network could be hosted on top of
a large enough personal data storage network
like RAIN. Integrating that possibility with a
taxable cryptocurrency integrated in the same
network could have remarkable implications in
terms of how knowledge is produced and made
available.

For example, authors of Free and Open Source
Software, Creative Commons Media and free
knowledge in general could make their content
available via RAIN’s distribution infrastructure.
A distributed, verifiable algorithm could then
monitor how much each content is accessed and
used, and use funds from the community account
to appropriately reward its authors.

The possibility for authors to be sponsored
by the community in the production of freely
accessible content would significantly contribute
in moving past a paradigm where content is ei-
ther sold (and mostly brokered by progressively
useless third parties that make profit on its dis-
tribution) or made available for free on a volun-
teer basis.

D.2.4 Privacy vs taxability

Among the arguably most significant factors
that limited the large-scale acquisition of cryp-
tocurrencies as a viable financial instrument is
the concern that the anonymity they provide
would make it simpler to evade taxes [65] [66]
and to fund illegal [67] [68] and terrorist [69] ac-
tivities.

In particular, in the case of cryptocurrencies
where all accounts are anonymous and new ac-
counts can be easily opened, the issue of fair
taxation is highly significant. Most taxation sys-
tems, in fact, implement a progressive mecha-
nism where those who earn more have to pay
a larger percentage of their income in tax. In
a context where there is no way to trace ac-
counts back to their users, there is no way to
implement this, as any user can easily split its
resources across a large amount of anonymous
alias accounts under his/her control.

On the other hand, we want to make sure to
protect the privacy of the transactions for each
user. In order to address the problem posed by
the trade-off between anonymity and taxability
/ traceability, we have developed a toy model
cryptocurrency based on ADHT (Authenticated
Distributed Hash Tables) that, if proven to be
secure, could offer a good compromise between
the two.

24

D.2 CRYPTOCURRENCY

D.2.5 Peer to peer lending & microcredit

Goal of the model In this model, we have
a set of citizens that make use of an ADHT to
implement a cryptocurrency, and an authority
(their government). Citizens want their privacy
safeguarded from mass surveillance programs,
but they also want to make sure that everyone
pays a fair tax, and that the under certain con-
ditions (e.g., provided with a warrant) the au-
thority will be able to uncover the transactions
of any specific user.

The transaction syntax Our model will be
simplified in that the amount of tax paid by each
account will be a function of the amount of cur-
rency received by that account during, e.g., the
previous month.

We will use the following transaction syntax
for our cryptocurrency (see D.2.1) in order to
provide all the properties described in the pre-
vious paragraph:

Signup: in order to open an account, a user
will need to first receive an identifier from
the authority. The authority will require
the user to provide his/her personal details
in order to receive an identifier. The iden-
tifier will be signed by the authority and
will not publicly disclose the identity of the
user. The authority, however, will know
which identifier belongs to which user.

Splicing: two wusers can create two
ephemeral accounts and transfer to them a
matching amount of currency. The transac-
tion will only be accepted if signed by both
the users and a set of witnesses (namely,
owners of non-emphemeral accounts), ran-
domly selected by a global random beacon.

A splicing transaction will occur in this
form:

(a,b) ——————— (c,d)

(a,b,wo,...,;wrk 1)

where a and b are accounts, n identifies
an amount of currency and those indicated
under the arrow are the signatories of the
transaction. Both a and b will spend n units
of currency and two new accounts, ¢ and d,
will be opened with n units of currency in
them. Only the signatories will know which
ephemeral account belongs to which user
(namely, if a’s owner is also ¢’s owner or
if a’s owner is also d’s owner).

An ephemeral account cannot receive
money, and it can only make one opera-
tion involving its whole balance before be-
ing closed, i.e., it can be used to create a
new ephemeral account or to proceed to a

25

payment to a non-ephemeral account (see
next transaction). Ephemeral accounts also
expire (if they are not used for longer than
a certain time limit, they are locked and
absorbed in a community account).

Payment: as in our first cryptocurrency
example, any account can make a payment,
but only non-ephemeral accounts can re-
ceive a payment. When a non-ephemeral
account receives a payment, it will publicly
add the corresponding amount to a log that
will be then used to pay the necessary tax.
This allows progressive taxations: accounts
are nominal, but transactions are obfus-
cated: an account that receives more can
now be subject to paying more.

Ratting out: when provided with a war-
rant signed by the authority, a witness to
a splicing transaction will publicly log the
correspondence between input and output
accounts involved in the transaction, en-
crypted with the authority’s public key.

In this model, while indeed the authority has a
complete correspondence table between citizens
and accounts, each account can make anony-
mous transaction by mean of a sequence of splic-
ing transactions.

Let N be the total number of accounts in the
cryptocurrency. At each splicing transaction, a
new ephemeral account is opened and the in-
determination on its owner doubles, as, in the
limit 2™ <« N, each ephemeral account can be
tracked back to O(2™) non-ephemeral accounts,
n being the number of splicing transactions have
contributed to the generation of the ephemeral
account.

The existence of witnesses, however, guaran-
tees that under certain circumstances (e.g., pro-
vided with a warrant) the authority can force
a witness into uncovering which account gener-
ated which during a splicing transaction. This
allows it, if needed, to successively track a trans-
action back to the non-ephemeral account that
generated it. However, due to the fact that the
result of the operation is publicly logged by the
witness, the authority will have no way of im-
plementing an undercover mass surveillance pro-
gram, as each ratting out transaction is visible
to all the citizens, that can then decide to limit
the power of the authority, or select a new one.

D.2.5 Peer to peer lending & mi-
crocredit
Lending has traditionally been mediated by fi-

nancial institutions that would lend private citi-
zen’s financial resources stored in bank accounts.

REFERENCES

It is easy to see, however, that loans can
be implemented in the syntax of a cryptocur-
rency based on authenticated hash tables. A
peer to peer lending and microcredit platform
could therefore be integrated in the cryptocur-
rency without need for third party mediation. A
similar paradigm is implemented by crowdfund-
ing platforms, that still act as lending mediators,
but grant the user control over what one’s money
is used for.

In order to address the limited economic dy-
namicity that could stem from relying on private
citizens to actively loan their resources, pub-
licly verifiable, democratic lending pools could
be formed to cooperatively select whose loans to
grant.

Automatic relending options could also be
provided by the cryptocurrency, since not only
data, but also scripts can be stored in a authen-
ticated hash tables and executed in a verifiable
way at appropriate times.

D.3 Discussion

We have introduced a distributed communica-
tion and data storage architecture that provides
a viable alternative to the growing centralized
data storage solutions.

Initially (Part B) we demonstrate the feasi-
bility of the proposed architecture. (a) We show
that expected data lifetimes of the same order of
magnitude as the age of the Earth can easily can
be obtained using Solomon Reed redundancy
strategies (~ 7 - 108 years) with a redundancy
factor of 1.5 using 35 data storage nodes. (b)
Based on measurement of end-user grade Inter-
net connectivity and Raspberry Pi data storage
nodes, we demonstrate that the RAIN architec-
ture performance easily match or exceed that
of the central data storage paradigm. We mea-
sured average data upload speed (~17Mbit/s)
and download speed (~34Mbit/s) as well as es-
timated data recovery bandwidth (~12 KB/s)
and downtime probability (~ 1079) exceeding
the existing centralized data storage paradigm.
(¢) Finally, the end-user costs for getting access
to the proposed RAIN data storage architecture
are significantly lower than the costs based on
the centralized data storage paradigm.

Secondly (Part C) we define the scientific and
technical challenges for designing data privacy
and security, network organization as well as
data, metadata and credential handling. In this
part we also sketch the energy and environmen-
tal issues for the proposed distributed architec-
ture and how it differs from large scale server
centers. This part outlined the necessary steps
involved in developing the RAIN data storage

26

architecture.

Finally (Part D) we provided an overview and
discuss the potential disruptive impact of a dis-
tributed, privacy and security by design, com-
munity owned digital infrastructure. We believe
a discussion of potential impact is also an impor-
tant component of the architecture design. In
reflecting on the impact we in particular need to
evaluate the critical connection between, on the
one hand, cyberprivacy and security, and on the
other hand, the potential political power struc-
ture within a modern society.

RAIN could support the development of com-
munitarian services including telecommunica-
tion, content delivery, cryptocurrency, and dis-
tributed administration (nation state and re-
gional governmental), which currently are ser-
vices managed in a centralized manner through
trusted third parties. Implementation of a
RAIN style architecture could thus distribute
the power from global centralized trusted third
parties to local citizens and business, while at
the same time presumably reduce the significant
energy requirement and resulting CO? impact of
centralized data storage.

Acknowledgements

We are grateful for partial financial support from
the European Commission sponsored SYNEN-
ERGENE project as well as for constructive dis-
cussions with and suggestions from Sofia Farina,
Per Odling, Leif Rasmussen and Piper Stover.
Lucinda Voldsgaard is acknowledged for proof
reading of the manuscript.

References

[1] A. Vaughan, “How viral cat videos
are warming the planet,” Indepen-
dent. https://www.theguardian. com/
environment/2015/sep/25/server-
data-centre-emissions-air-travel-
web-google-facebook-greenhouse-gas.

[2] T. Bawden, “Global warming: Data centres
to consume three times as much energy
in next decade, experts warn,” Indepen-
dent. http://www.independent.co.uk/
environment/global-warming-data-
centres-to-consume-three-times-as-
much-energy-in-next-decade-experts-
warn-a6830086.html.

[3] I. Foster and C. Kesselman, The Grid:
Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers Inc.,
1999.

https://www.theguardian.com/environment/2015/sep/25/server-data-centre-emissions-air-travel-web-google-facebook-greenhouse-gas
https://www.theguardian.com/environment/2015/sep/25/server-data-centre-emissions-air-travel-web-google-facebook-greenhouse-gas
https://www.theguardian.com/environment/2015/sep/25/server-data-centre-emissions-air-travel-web-google-facebook-greenhouse-gas
https://www.theguardian.com/environment/2015/sep/25/server-data-centre-emissions-air-travel-web-google-facebook-greenhouse-gas
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html
http://www.independent.co.uk/environment/global-warming-data-centres-to-consume-three-times-as-much-energy-in-next-decade-experts-warn-a6830086.html

REFERENCES

REFERENCES

4]

5]

[6]

7]

18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

“Boinc - open-source software for volunteer
computing.” http://boinc.berkeley.
edu/.

M. M. Gaber, F. Stahl, and J. B. Gomes,
Pocket Data Mining - Big Data on Small
Dewvices, vol. 2 of Studies in Big Data.
Springer International Publishing.

S. A. et al, “Mobile-edge computing
— introductory technical white paper.”
https://portal.etsi.org/Portals/
0/TBpages/MEC/Docs/Mobile-edge_
Computing_-_Introductory_Technical_
White_Paper_V1%2018-09-14.pdf.

I. S. Reed and G. Solomon, “Polynomial
codes over certain finite fields,” Journal
of the Society for Industrial and Applied
Mathematics, vol. 8, pp. 300-304, 1960.

R. H. Arpaci-Dusseau and A. C. Arpaci-
Dusseau, Operating Systems: Three Fasy
Pieces. Arpaci-Dusseau Books.

A. Loewenstern and A. Norberg, “Dht
protocol.” http://www.bittorrent.org/
beps/bep_0005.html.

H. Balakrishnan, M. F. Kaashoek,
D. Karger, R. Morris, and I. Stoica,
“Looking up data in p2p systems,” Com-
mun. ACM.

R. C. Merkle, “A digital signature based
on a conventional encryption function,” Ad-
vances in Cryptology - CRYPTO 1987,
p. 369, 1988.

A. Miller, M. Hicks, J. Katz, and E. Shi,

“Authenticated data structures, generi-
cally” SIGPLAN Not., vol. 49, no. 1,
pp. 411-423.

S. Nakamoto, “Bitcoin: A peer-to-peer elec-
tronic cash system.” https://bitcoin.
org/bitcoin.pdf.

L. Ren and S. Devadas, “Proof of space
from stacked expanders,” Cryptology ePrint
Archive, 2016.

S. Dziembowski, S. Faust, V. Kolmogorov,
and K. Pietrzak, “Proofs of space,” Ad-
vances in Cryptology - CRYPTO 2015,
pp. 585-605, 2015.

B. Beach, “How long do disk drives
last?.” https://www.backblaze.com/
blog/how-long-do-disk-drives-last/.

27

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

G. Gasior, “The ssd endurance experiment:
They're all dead.” http://techreport.
com/review/27909/the-ssd-endurance-
experiment-theyre-all-dead.

M. M. et “State of the in-
ternet report / g3 2016 report.”
https://www.akamai.com/us/en/our-
thinking/state-of-the-internet-
report/.

al.,

“Speedtest market reports.” http://www.
speedtest.net/reports/.

V. Strassen, “Gaussian elimination is not
optimal.,” Numerische Mathematik, vol. 13,
pp- 354-356, 1969.

R. Williams, “Matrix-vector multiplication
in sub-quadratic time: (some preprocess-
ing required),” in Proceedings of the Figh-
teenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 07, pp. 995—
1001, Society for Industrial and Applied
Mathematics, 2007.

E. Pinheiro, W.-D. Weber, and L. A. Bar-
roso, “Failure trends in a large disk drive
population,” in 5th USENIX Conference on
File and Storage Technologies, FAST 2007,
2007.

B. Schroeder and G. A. Gibson, “Disk fail-
ures in the real world: What does an mttf
of 1,000,000 hours mean to you?,” in Pro-
ceedings of the 5th USENIX Conference on
File and Storage Technologies, FAST 2007,
USENIX Association, 2007.

G. Greenwald and E. MacAskill, “Nsa
prism program taps in to wuser data
of apple, google and others.” https:
//www.theguardian.com/world/2013/
jun/06/us-tech-giants-nsa-data.

G. Greenwald, E. MacAskill, L. Poitras,
S. Ackerman, and D. Rushe, “Microsoft
handed the nsa access to encrypted mes-
sages.” https://www.theguardian.com/
world/2013/jul/11/microsoft-nsa-
collaboration-user-data.

“Attack model.” https://en.wikipedia.
org/wiki/Attack_model.

S. Wilkinson, T. Boshevski, J. Brandof,
J. Prestwich, G. Hall, P. Gerbes,
P. Hutchins, and C. Pollard, “Storj -
a peer-to-peer cloud storage network.”
https://storj.io/storj.pdf.

http://boinc.berkeley.edu/
http://boinc.berkeley.edu/
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
https://portal.etsi.org/Portals/0/TBpages/MEC/Docs/Mobile-edge_Computing_-_Introductory_Technical_White_Paper_V1%2018-09-14.pdf
http://www.bittorrent.org/beps/bep_0005.html
http://www.bittorrent.org/beps/bep_0005.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.backblaze.com/blog/how-long-do-disk-drives-last/
https://www.backblaze.com/blog/how-long-do-disk-drives-last/
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
http://techreport.com/review/27909/the-ssd-endurance-experiment-theyre-all-dead
https://www.akamai.com/us/en/our-thinking/state-of-the-internet-report/
https://www.akamai.com/us/en/our-thinking/state-of-the-internet-report/
https://www.akamai.com/us/en/our-thinking/state-of-the-internet-report/
http://www.speedtest.net/reports/
http://www.speedtest.net/reports/
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jun/06/us-tech-giants-nsa-data
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://www.theguardian.com/world/2013/jul/11/microsoft-nsa-collaboration-user-data
https://en.wikipedia.org/wiki/Attack_model
https://en.wikipedia.org/wiki/Attack_model
https://storj.io/storj.pdf

REFERENCES

REFERENCES

[28] S. A. Crosby and D. S. Wallach, “Authen-
ticated dictionaries: Real-world costs and
trade-offs,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 2, pp. 17:1-17:30.

[29] J.-P. Martin and L. Alvisi, “Fast byzantine
consensus,” IEEE Trans. Dependable Secur.
Comput., vol. 3, no. 3, pp. 202-215.

[30] “Nist randomness beacon.” https://www.
nist.gov/programs-projects/nist-
randomness-beacon.

[31] A. K. Lenstra and B. Wesolowski, “A ran-
dom zoo: sloth, unicorn, and trx,” IACR
eprint archive.

[32] “libp2p - modular peer-to-peer networking
stack.” https://github.com/1ibp2p.

[33] P. A. Bernstein and N. Goodman, “The
failure and recovery problem for repli-
cated databases,” in Proceedings of the Sec-
ond Annual ACM Symposium on Princi-
ples of Distributed Computing, PODC 83,
pp. 114-122, 1983.

[34] Y. Saito and M. Shapiro, “Optimistic repli-
cation,” ACM Comput. Surv., vol. 37, no. 1,
pp. 42-81.

[35] Y. Dodis and N. Fazio, Public Key Broad-
cast Encryption for Stateless Receivers,
pp- 61-80. Springer Berlin Heidelberg.

[36] C. Percival, “Stronger key derivation via se-
quential memory-hard functions.”

[37] M. Gibson, M. Conrad, and C. Maple,
“Evaluating the effectiveness of image-
based password design paradigms
using a newly developed metric.”
http://perisic.com/preprints/
EvaluateImagePasswordMetrics.pdf.

[38] R. Pond, J. Podd, J. Bunnell, and R. Hen-
derson, “Word association computer pass-
words: The effect of formulation techniques

on recall and guessing rates,” Computers &
Security, vol. 19, no. 7, pp. 645-656, 2000.

[39] “iphone 7 - technical specifications.” http:
//www.apple.com/iphone-7/specs/.

[40] Samsung Galaxy S7, “Samsung galaxy s7
— Wikipedia, the free encyclopedia,” 2017.
[Online; accessed Apr. 7, 2017].

[41] K. Craig-Wood and P. Krause, “Towards
the estimation of the energy cost of in-
ternet mediated transactions,” Preliminary
version of a technical report of the EEC
(Energy Efficient Computing) SIG of the

28

[42]

[43]

[44]

[45]

[46]

147]

[48]

[49]

[50]

[51]

[52]

ICT KTN (Knowledge Transfer Network),
2013.

J. Edwards, “New technologies mean
shorter server life cycles.”

M. Dayarathna, Y. Wen, and R. Fan,
“Data center energy consumption modeling:
A survey,” IEEE Communications Surveys
Tutorials, vol. 18, no. 1, pp. 732-794, 2016.

“Clonee data center - facebook.” https://
www.facebook.com/CloneeDataCenter/.

S. Lambert, W. V. Heddeghem,
W. Vereecken, B. Lannoo, D. Colle,
and M. Pickavet, “Worldwide -electricity
consumption of communication networks,”
Opt. Express, vol. 20, no. 26, pp. B513—
B524.

L. Zhao, R. Iyer, S. Makineni, and
L. Bhuyan, “Anatomy and performance of
ssl processing,” in Proceedings of the IEEE
International Symposium on Performance
Analysis of Systems and Software, 2005, 1S-
PASS ’05, pp. 197206, IEEE Computer So-
ciety, 2005.

“Power consumption.” https://www.
pidramble.com/wiki/benchmarks/
power-consumption.

“Power efficiency comparison of the dell
poweredge r815 and hp proliant dl1585 g7
rack servers.” http://i.dell.com/sites/
doccontent/shared-content/data-
sheets/en/Documents/Dell-2u-R815-
versus-HP-4u-DL585.pdf.

“How many text and photo messages
are sent using the top messaging
apps globally each day?.” https:
//askwonder.com/q/how-many-text-
and-photo-messages-are-sent-using-
the-top-messaging-apps-globally-
each-day-57738£a9b3159159003d£760.

L. A. Adamic and B. A. Huberman, “Zipf’s
law and the internet,” Glottometrics, vol. 3,
pp. 143-150, 2002.

J. Benet, “Ipfs - content ad-
dressed, versioned, p2p file sys-
tem.” https://ipfs.io/ipfs/

QmR7GSQM93Cx5eAgbabyRzNde1FQv7uL6X104k7zrJa3LX/

ipfs.draft3.pdf.

“Page views for wikipedia, both
sites, normalized.” https:
//stats.wikimedia.org/EN/
TablesPageViewsMonthlyCombined.htm.

https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://www.nist.gov/programs-projects/nist-randomness-beacon
https://github.com/libp2p
http://perisic.com/preprints/EvaluateImagePasswordMetrics.pdf
http://perisic.com/preprints/EvaluateImagePasswordMetrics.pdf
http://www.apple.com/iphone-7/specs/
http://www.apple.com/iphone-7/specs/
https://www.facebook.com/CloneeDataCenter/
https://www.facebook.com/CloneeDataCenter/
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
https://www.pidramble.com/wiki/benchmarks/power-consumption
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-2u-R815-versus-HP-4u-DL585.pdf
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-2u-R815-versus-HP-4u-DL585.pdf
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-2u-R815-versus-HP-4u-DL585.pdf
http://i.dell.com/sites/doccontent/shared-content/data-sheets/en/Documents/Dell-2u-R815-versus-HP-4u-DL585.pdf
https://askwonder.com/q/how-many-text-and-photo-messages-are-sent-using-the-top-messaging-apps-globally-each-day-57738fa9b3159159003df760
https://askwonder.com/q/how-many-text-and-photo-messages-are-sent-using-the-top-messaging-apps-globally-each-day-57738fa9b3159159003df760
https://askwonder.com/q/how-many-text-and-photo-messages-are-sent-using-the-top-messaging-apps-globally-each-day-57738fa9b3159159003df760
https://askwonder.com/q/how-many-text-and-photo-messages-are-sent-using-the-top-messaging-apps-globally-each-day-57738fa9b3159159003df760
https://askwonder.com/q/how-many-text-and-photo-messages-are-sent-using-the-top-messaging-apps-globally-each-day-57738fa9b3159159003df760
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://stats.wikimedia.org/EN/TablesPageViewsMonthlyCombined.htm
https://stats.wikimedia.org/EN/TablesPageViewsMonthlyCombined.htm
https://stats.wikimedia.org/EN/TablesPageViewsMonthlyCombined.htm

REFERENCES

REFERENCES

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Wikipedia, “Wikipedia:Size of Wikipedia
Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/w/index.
php?title=Wikipedia’%3ASize%200fY%
20Wikipedia&oldid=775138473, 2017
[Online; accessed 13-April-2017].

P. Vagata and K. Wilfong, “Scaling the face-
book data warehouse to 300 pb.”

“Number of monthly active facebook
users worldwide as of 4th quarter 2016
(in millions).” https://wuw.statista.
com/statistics/264810/number-of -
monthly-active-facebook-users-
worldwide/.

“Majestic-12: distributed search engine.”
https://www.majesticl2.co.uk/.

“Yacy - the peer to peer search engine.”
http://yacy.net/en/index.html.

“How search works - the story.”

J. Dean, “Challenges in building large-scale
information retrieval systems.”

K. J. O'Dwyer and D. Malone, “Bit-
coin mining and its energy footprint,” in
25th IET Irish Signals Systems Conference
2014 and 2014 China-Ireland International
Conference on Information and Commu-
nications Technologies (ISSC 2014/CIICT
2014), pp. 280-285.

Andes, “Bitcoin’s kryptonite: The 51%
attack..” https://bitcointalk.org/
index.php?topic=12435.

I. Eyal and E. G. Sirer, “Majority is
not enough: Bitcoin mining is vulner-
able,” 2013. https://arxiv.org/abs/
1311.0243.

R. Gill, “Cex.io slow to respond as fears
of 51 http://www.coindesk.com/cex-
io-response-fears-of-51-attack-
spread/.

S. Valfells and J. H. Egilsson, “Minting
money with megawatts,” in Proceedings of
the IEEFE, vol. 104, pp. 1674-1678, 2016.

O. L. Bateman, “Bitcoin might make
tax havens obsolete,” Motherboard.
https://motherboard.vice.com/en_
us/article/bitcoin-might-make-tax-
havens-obsolete.

E. Zwirn, “No, you can’t avoid taxes by
investing in bitcoin,” New York Post.
http://nypost.com/2017/04/08/no-

29

167]

[68]

[69]

you-cant-avoid-taxes-by-investing-
in-bitcoin/.

J. Bearman, “The untold story of silk road,
part 1,7 Wired. https://www.wired.com/
2015/04/silk-road-1/.

J. Bearman, “The untold story of silk road,
part 2: The fall,” Wired. https://www.
wired.com/2015/05/silk-road-2/.

S. Higgins, “Isis-linked blog: Bitcoin
can fund terrorist movements world-
wide,” Coindesk. http://www.coindesk.
com/isis-bitcoin-donations-fund-
jihadist-movements/.

http://en.wikipedia.org/w/index.php?title=Wikipedia%3ASize%20of%20Wikipedia&oldid=775138473
http://en.wikipedia.org/w/index.php?title=Wikipedia%3ASize%20of%20Wikipedia&oldid=775138473
http://en.wikipedia.org/w/index.php?title=Wikipedia%3ASize%20of%20Wikipedia&oldid=775138473
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.majestic12.co.uk/
http://yacy.net/en/index.html
https://bitcointalk.org/index.php?topic=12435
https://bitcointalk.org/index.php?topic=12435
https://arxiv.org/abs/1311.0243
https://arxiv.org/abs/1311.0243
http://www.coindesk.com/cex-io-response-fears-of-51-attack-spread/
http://www.coindesk.com/cex-io-response-fears-of-51-attack-spread/
http://www.coindesk.com/cex-io-response-fears-of-51-attack-spread/
https://motherboard.vice.com/en_us/article/bitcoin-might-make-tax-havens-obsolete
https://motherboard.vice.com/en_us/article/bitcoin-might-make-tax-havens-obsolete
https://motherboard.vice.com/en_us/article/bitcoin-might-make-tax-havens-obsolete
http://nypost.com/2017/04/08/no-you-cant-avoid-taxes-by-investing-in-bitcoin/
http://nypost.com/2017/04/08/no-you-cant-avoid-taxes-by-investing-in-bitcoin/
http://nypost.com/2017/04/08/no-you-cant-avoid-taxes-by-investing-in-bitcoin/
https://www.wired.com/2015/04/silk-road-1/
https://www.wired.com/2015/04/silk-road-1/
https://www.wired.com/2015/05/silk-road-2/
https://www.wired.com/2015/05/silk-road-2/
http://www.coindesk.com/isis-bitcoin-donations-fund-jihadist-movements/
http://www.coindesk.com/isis-bitcoin-donations-fund-jihadist-movements/
http://www.coindesk.com/isis-bitcoin-donations-fund-jihadist-movements/

	A Introduction
	Background
	State of the art
	Technologies
	Related projects

	Potential applications
	Structure of this work

	B Architecture Feasibility
	Node properties
	Lifetime
	Speed and downtime

	Solomon-Reed erasure codes
	Polynomial interpolation
	Galois Fields
	Polynomial oversampling for redundancy

	Redundancy strategy
	Villages
	Redundancy parameters

	Redundancy performance
	Data lifetime
	Recovery bandwidth
	Downtime
	Conclusions

	C Architecture Challenges
	Security challenges
	Network organization
	Honest Geppetto attacks
	Proofs of Persistent Storage
	Authenticated Distributed Hash Tables
	Random beacon
	Village formation
	Bootstrapping connectivity

	Data
	Storage table synchronization
	Distributed data monitoring

	Metadata
	Synchronization
	Efficient ban
	Data-metadata synchronization

	Credentials
	High-entropy authentication mechanisms
	Distributed hash tables on GBN

	Environmental impact
	Efficiency arguments
	Node efficiency comparison

	D Potential Impact
	Services
	Messaging platform
	Content Delivery Network
	Social network
	Search engine

	Cryptocurrency
	Transaction syntax
	Universal transaction syntax
	Taxation system
	Privacy vs taxability
	Peer to peer lending & microcredit

	Discussion

