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Abstract

We propose a general mathematical model describing the growth and
dispersal of a single species living in a 1-D spatially discrete array of habi-
tat patches affected by a sustained and directional change in climate. Our
model accounts for two important characteristics of the climate change
phenomenon: 1) Scale dependency: different species may perceive the
change in the environment as occurring at different rates because they
perceive the environment at different scales, and 2) Measure dependency:
different species measure the environment differently in the sense that
they may be sensible to or cue in on different aspects of it (e.g. maximum
temperature, minimum temperature, accumulated temperature) which is
associated with their physiological, ecological and life history attributes,
which renders some characteristics of the environment more biologically
relevant than others. We show that the deterioration in the quality of
habitable patches as a consequence of climate change drives the species to
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extinction when dispersal is not possible; otherwise, we proof and provide
a numerical example that, depending on the velocity of climate change,
the scale at which a species measures it, and the particular attribute of the
environment that is more biologically relevant to the species under analy-
sis, there is always a migration strategy that allows the persistence of the
species such that it tracks its niche conditions through space, thus shift-
ing its geographic range. Our mathematical analysis provides a general
framework to analyze species’ responses to climate change as a relational
property of a given species in interaction with a change in climate. In par-
ticular, we can analyze the persistence of species by taking into account
the ways in which they measure and filter the environment. Indeed, one
of our main conclusions is that there is not a single climate change but
many, as it depends on the interaction between a particular species and
climate. Thus the problem is more complex than assumed by analytically
tractable models of species responses to climate change.

keywords: Climate change, Species dynamics, Temporal scale de-
pendency, Allee effect threshold, Species’ fundamental niche, Migration
strategies, Threshold migration rate.

1 Introduction

It is well established that since the mid-20th century the earth surface and
oceans have warmed, that human influence has been the dominant cause of
the observed warming, and that temperature will continue to increase in 1 to
over 4 Celsius degrees approximately, by the end of century [40]. This sustained
global warming or climate change have already had an impact upon biodiversity,
affecting ecosystem services and leaving clear fingerprints upon the distribution
and abundance of the species (see [16], [46], [1], [42], [32], [31], [30], [18], [23]
and [27], among others).

There is evidence that species have changed their altitudinal and latitudinal
distributions at a median rate of 11 to 30 meters and 16,9 km per decade, re-
spectively (see [23] and [8]). Although these rates seem large enough to track
temperature changes, there is large variation across species’ responses such that
warming, especially if abrupt or rapid might cause extinction of some species
unless they are able to adapt. But several other causes could impact upon the
ability of a species to migrate fast enough to track their niche across space. It
may happen that the combinations of temperature, humidity and key resources
for a given species disappear (their niche is lost) or that while suitable condi-
tions may still exist they cannot be reached from the species’ present position
due to dispersal limitation and/or barriers created by human-driven landscape
changes (e.g. native habitat transformed into settlements or use in agriculture
or forestry).

The traditional approach to infer the response of species to climate change
is to use distribution or niche models ([36], [42]), which can be characterized as
mostly phenomenological, static, and statistical and suffer from several limita-
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tions such as not considering biotic interactions and evolution (e.g., [10]). An
alternative to model the impact of climate is to use process oriented models
that estimate the direct and/or indirect impact of climate change upon popu-
lations by fitting statistical models to time series data at particular locations
in space (e.g., [38], [13], [17]). While this approach is of great value to under-
stand the impact of both density dependent and independent factors, as well
as their interaction upon population dynamics, it has the limitations of being
data intensive and difficult to scale up from local sites to regions. Fortunately,
these limitations are slowly being overcome (see [44]), however we still miss a
general theoretical framework to model and project the response of species to
climate change and the potential effect of other components of global change
(e.g. land use change, habitat loss and fragmentation) in their response. In
this contribution we attempt to provide a general mathematical framework that
could be later expanded to address these issues.

Recent mathematical models of the impact of climate change upon species
persistence, using integro-difference equations (e.g., [48], [22]) or reaction-diffusion
models (e.g., [39], [5], [24], [26]) have been important in highlighting the impact
of patch size and climate change velocity, as well as the role of dispersal in
determining persistence. These models typically assume the existence of a uni-
formly suitable patch or domain of constant size, inside of which species disperse
and grow at a fix rate and outside of which the conditions do not allow for the
persistance of the species. Our formulation builds upon these efforts to model
climate change and does so by linking growth and dispersal explictly to changes
in climate. That is, how a change in climate conditions affects natality mortal-
ity and immigration rates. The explicit consideration of this link, however, may
be critical to understand the response of species to climate change (e.g. [11],
[28]). Further, since different species may perceive their environment at different
scales [25], and cue in on different aspects of it depending on their size, thermal
physiology and other traits (see, e.g., [20]), it is desirable for a general model of
species’ response to climate change to deal with this diversity of scales problem.
Indeed, for microbial species responsible for key ecosystem level processes, such
as decomposition and nitrogen fixation, the relevant scale could be days and the
relevant measure could be the average temperature, meanwhile for some species
of annual plants a year could be the relevant scale and temperature extremes
could be the most important signals that affect species persistence, while for
some tree species, the relevant scale could be years as well, but the relevant
measure could be the growing degree days accumulation (i.e. the number of
days above a threshold temperature. See [43]). Thus different species within a
community are likely to experience and be sensible to changes in climate in a
different way (e.g., [6]) and measure it in different time windows or scales. This
is likely one of the most significant aspects of the complexity of climate change;
it will not be the same change for everyone.

In this contribution we propose a general model to account for both the
link between climate change, growth and dispersal, as well as for the fact that
different organisms perceive and measure the environment in different ways. To
do this we consider a single focal species living within a 1-D hypothetical region
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divided in discrete patches and subjected to a change in it climate conditions.

Our main motivation is to characterize the migration strategies that would
allow for the persistence of species under a sustained environmental change.
We find that regions that do not allow for dispersal (like extremely isolated
fragments or oceanic islands) are a bad omen for the species persistence under
rapid and sustained environmental changes. Further, we show that depending
on the velocity of the environmental change and the scale and the way at which
the focal species measures the environment, there are migration strategies that
allow for the species persistence. Such migration strategies are based on the
paradigm that a species migrates to maximize its fitness.

In Section 2 we present the mathematical model and describe our results. In
Section 3 a numerical example is given and Section 4 is devoted to discussion.

Notations

Let us start by defining some of the most used mathematical terms and their
meaning.



Working paper

Table 1: Definition of frequently used mathematical notation.

Notation

Meaning

O

Focal region divided in countable patches 1,2,3,... along a 1-D
array.

2 ={z{tier,, Ry = {t € R: ¢ > 0}, is a continuous environmen-
tal process in patch i € O.

Species-dependent parameter representing the time window or
temporal scale that a given species use to assess and respond to
changes in its environment. For simplicity we refer to this as the
scale at which the species measures the environment.

Un

Set of all possible measures (attributes) of the environment that
could affect species fitness at a given scale A. Any un € Up is
assumed to be a continuous measure on R. For example, a species
could measure the average of temperature in each time window
of size /A or the minimum temperature or the maximum. All
these correspond to different pua. Thus different species ‘filter”
the environment by using a particular pa.

Zn()

2oy = Az heery = {7 ) (ha)bier, s a pa-filtered envirpn—
mental process in patch ¢ € O. For any ¢ € O and t € Ry, azz(t)
is assumed to belong to a bounded open set E C R. That is, E'is
the state space of the environment.

— AR = = kR — - -
Px = ie(’;ggR+ [xn(t) xn(t)} is the smallest difference in a pa

filtered environment between adjacent patches.

p*= sup |a! o —x”(rtl)] is the largest difference in a pua-filtered
i€O,teER L K K

environment between adjacent patches.

p= sup [’ &~ x? (t_)] is the largest possible jump in a pa-
JEOt>0 K
filtered environment within a patch.

y* = {y; }+er, is the species biomass dynamics in patch i € O.

The biomass threshold below which the growth rate of the species
is negative (i.e. Allee effect threshold).

Carrying capacity (0 <y < M < c0).

H : R xR — R is the growth function of the focal species. It
depends on the species biomass on its first component and on the
environment on its second component. Also, for all x € R, H(-, x)
has a unique maximum point at § € (v, M), independent of x.

Represents the largest open set in E such that H(g,-) < 0 on
it. Since in the long-term the environment, of a given patch and
for a given species, will deteriorate because of climate change, the
environmental conditions within it will be attracted to this set.

v

Represents the dynamical set W = {i’ € 9* : a:i;(,) ¢ ® and y” <
M}, where o' = {i’ € O :| i’ —i |= 1}. That is, the neighboring
patches to patch ¢ that are potentially habitable by the species.

A: R xR — R is a function that specifies the migration rate
expressed as a proportion of the biomass in a patch that migrates
to neighboring patches. 1§ depends on the species biomass on its
first component and on the environment on its second component.

il = {Cf"?teﬂ{a+ accounts for how much of the emigrating
biomass from patch i € O will move to neighboring patch i’ € 1.
It takes values in [0,1].
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Also, for a set A C R, denote by A for its closure, by int{A} for its interior
and by 0A for its boundary. An important set considered in this work is the
set (yx, ¥*) X (4, 2*), which represents the largest open rectangle in R x R such
that H(-,-) > 0 on it. In ecological terms, this set corresponds to the realized
niche of the species or those combinations of biotic effects (i.e. intraspecific in
a l-species model) and environments where growth is positive [7].

2 The mathematical model

Our model envisions a sustained and unidirectional environmental change along
a region O and its influence on one focal species. We follow a macroscopical
approach and consider O to be a large landscape undergoing an unidirectional
change in environmental conditions (e.g. temperature) implying an unidirec-
tional movement response (modeled as discrete biomass jumps between adjacent
patches) of the species inhabiting it. Accordingly, we are going to consider O
to be a 1-D arrangement of N € N patches of the same size undergoing climate
change. In practical terms, O represents the portion of land on which our focal
species will be able to track its niche.

In what follows we will present our model. We will start by describing the
dynamics of the abiotic environment, and how this is measured and “filtered”
by the species, in the sense that the biological attributes of species, such as
life span, dispersal distance, among others, make some scales and attributes of
the environment (e.g. median, mean or extreme values of temperature) more
biologically relevant than others. Then we will describe how the environment
affects the growth and dispersal of the species. Finally, we will explore the
conditions for species persistence and provide some numerical examples.

2.1 Dynamics of the abiotic or environmental process

For every patch i € O, let 2! € R be a process accounting for some abiotic
or environmental characteristic in i at time ¢ € R,. We consider z! homoge-
neous within each 4 (i.e. all individuals within patch i experience the same 2%),
continuous and taking values in a bounded open set.

Since temperature is a key variable associated to climate change and has
important fitness effects (see [40], [15], [27] and [3]), driving changes in growth
and distribution of species across gradients (e.g., [23]), we can think of 2¥’s as
representing temperature in the corresponding patches within . The process
z. could also represent a function of more than one environmental characteristic,
as for example, rainfall and temperature (see [27]). This will depend, however,
on the species under study.

For the sake of simplicity, we will model a single species whose niche is invari-
ant such that no evolutionary change is possible in response to climate change
(see Discussion), but in a framework that would allow us to assess the response
of different species that perceive changes in their environment at different scales.
To do this, we will hypothesize the existence of a species-dependent parameter
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A with respect to the z’s, whose absolute value will be dependent on the time
units we are working on. It will represent the time span or time window at
which the species “evaluates” the environment, in terms of how it affects its
population growth rate and migration potential. Thus, different species will
measure, and be affected by the environment in different ways.

The mathematical structure associated to the way that each species measures
the environment will be characterized as follows: First, each species measures
the environment according to a fixed temporal partition 0 =ty < t1; < t5 < ...
such that for all k € N, t;, — tx_1 = A\, where A has the interpretation given
above and can be different for different species. Secondly, let Ua be the set of
A-dependent continuous measures.

Finally, for all ¢ € O, we define a new environmental process x;(.) that is

the result of transforming the original one (2%) by some measure that captures
a characteristic of the environment that is biologically significant (i.e. accrues
fitness effects) for the species under analysis in the time window A, as (see
definitions in Table 1):

3

&
where z{) is the starting environmental state for patch 4, according to the species
environmental measure, and 1(t) = >, ke, b0y for all t € (t1,00),
where the indicator function lgepy,_ ¢y = 1 if ¢ € [tx—1,%x) and 0 other-
wise. That is, the behavior that the species is performing at time ¢ € [tg, tg41)
will depend on the measure of the environment over the previous time interval
[tk—1,tr). We are going to assume that the x;(_)’s do not exhibit a cyclic or an

x;(t) = m;(t) (ha) = ZkeN f(tk,l,tk] ZédﬂA(s)l{te[tkathﬂ)} + xél{tG[toﬁl)}
o €Ua

almost cyclic behavior. Note that for any fixed ua € Un, the x;(_)’s also take
values in a bounded open set and as they are piecewise constant functions (i.e.,
they can switch their values every A times), and then only right-continuous, we

will write ligmv;(s) = x;(t_) for all ¢t > 0.

So far, we have defined A and the x; _)’s, that is, the extent or temporal
window at which the species measures and the relevant aspect of the environ-
ment that the species cue in on within that window, respectively. Let see a
concrete example.

Example

Consider a region O divided in patches where 2! is the temperature (°C) of
patch ¢ at time ¢t € Ry (years). Suppose that we have a focal species living
in O, whose physiological and life-history attributes are such that the relevant
characteristic of the environment or “filter” is z? ., which represents the mean
annual temperature. That is, A = 1 year, ty_1 = k — 1 for all kK € N and
dun(s) = dui(s) = ds. Assume that the dynamics for the continuous tempera-
ture is:
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Zi=2 oot + %) + Dj cos(o1t + hi,0) + D2 cos(oat + ha o), (2)
A where z' sets the mean trend at ¢ = 0, @ > 0 is a drift parameter and the
last two terms represent a 2mw/p; and a 2w /s periodic variations respectively,
such that D; and D, are constants representing the daily and seasonal range
or amplitude of variation in temperature. The parameters h; o and hg o are
deviations from the mean trend associated to the initial conditions. The above
terms allow us to capture the typical cyclic behavior of temperature during a
year (e.g., with daily and seasonal cycles), and its corresponding amplitudes. If
the species under analysis measures the environment by cueing in on the mean
annual value of (2) we obtain:

xi}(t) = Z / Z§d51{t6[k,k+1)} + JCf‘)l{te[o,n}
keN.” |

= Pklpemrtny + 2olgeo.)} (3)
keN

where 2§ = z°. Notice that the species-filtered temperature changes linearly
in time (due to the constant drift parameter ¢) implying that all jumps in the
species-filtered temperature are of the same magnitude.

2.2 Dynamics of the species driven by the environmental
process

For our focal species living in O, consider that the environmental process follows
(1) with respect to a fix A-dependent measure ua € Ua, and let E be the state
space of the xfl(.)’s or the set of all possible values that the x;(,)’s could take.

Let yi be the biomass of the focal species in patch i € O at time t €
R, . Tts dynamics will consist of two main parts: A growth function H : R x
R — R and a dispersal function A : R x R — R,. Both parts have a first
component depending on the species biomass and a second one depending on
the environment. Also, all the functions involved are species-dependent; that is,
the specific structure of such functions and their parameters can vary according
to species functional traits and life history.

The general structural conditions on H are: H is a C?(R) ® C(R) function,
that is, twice continuously differentiable with respect to the first component and
continuous with respect to the second component. In addition, we define two
constants M or carrying capacity and v or Allee threshold, such that 0 < v <
M < oo and H*(-) = supH (-, z) is negative on [0,7) U (M, c0). Further, for all

zeE
z € E, H(-,z) on [0, M] has a unique maximum point § € (v, M) independent
of z (H(-,x) is concave on [0, M]).
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2.2.1 The general case

In the Supplementary Material we show that the particular case where there is
no migration, the species will go extinct. In what follows we will explore the
general scenario when migration is possible, and show that the migration rate
that allows survival depends upon the scale as well as the way species measure
the environment.

Migration may be an effective adaptive response to a changing climate as
long as it is possible and at an adequate pace. In this regard, our main re-
sult (Theorem 2 below) establishes a migration strategy that assures species
persistence under some environmental conditions, if there are no barriers to mi-
gration. In a region affected by an increase in temperature and with no barriers
to migration, species will change their spatial patterns of occupation as a conse-
quence of dispersal and differential persistence across patches. This case, which
we call the general case, will be developed in what follows.

The mathematical abstraction for this case will be to consider O as an un-
limited region, that is O = N (i.e., patch 1 is half-fenced since O starts in patch
1) but with a finite number of habitable patches, where growth is positive, but
whose environmental conditions are being gradually attracted into some spe-
cific “deteriorated environment”. The main challenge for species persistence in
this region is to migrate from habitable patches before they become attracted
to a such environmental condition. To do this, individuals have “to keep run-
ning” away from the deteriorating environment to keep their fitness unchanged,
similar to the Red Queen Hypothesis by Van Valen.

To develop the general case we need to consider the following definitions and
assumptions:

(G.1) Let us define a Deteriorated Environment (DE) as a set that belongs
to®={€e€B(E): H(g,-) <0on &} # 0, where B(E) is the set containing all
the open subsets of . Additionally, we assume that F N ®¢ is connected, that
is, int{ £ N ®°} # () cannot be represented as the union of two or more disjoint
nonempty open subsets of it.

(G.2) We assume that ® is an attracting set for x;(_), for all i € O. Further,

since @ is a disconnected set, we should specify to which subset of ® is x;(,)
attracted to, for all ¢ € O. To do this, denote by V € & the open connected
set representing the specific DE to which the environment is attracted to. Once
the environment of patch ¢ enters in V it becomes immediately uninhabitable
or “destroyed” for the focal species.

(G.3) We assume that the environment changes along a latitudinal-altitudinal
gradient in O: For all 4,7’ € O and t € R such that x;(t), xi}l(t) € V¢, with ¢’ > i,
define 7P = inf{t' > ¢ : a:j,(t,) € V} and 7 analogously. Then 72 < 7.

Thus, (G.3) implies a directionality in how the environment changes across
O, which captures the essential empirical fact that temperature decreases to-
wards higher latitudes and higher altitudes, which implies that along the gradi-
ent some sites will change before others in an ordered sequence.

Now, we need to specify a key assumption regarding the velocity at which the
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environmental change is advancing along O and the time at which the species is
affected by it. It will be a crucial assumption for the species persistence because
it differentiates the time at which the species measures its environment /A from
the time at which the environment deteriorates the patch potentially occupied
by the species (in the sense of (G.1)). It will make possible to establish two
different time scales and the way that they interact. Consider first the following
definitions:

Let (Y, ¥*) X (@u, %) C (7, M) x int{E N ®°} be the largest open rectangle
such that for every (y,z) € (ys,y*) X (s, 2*), H(y,x) > 0 (which makes sense
because of E'N ®° is connected). As E N ®°N (x,,x*)° consists in the union of
two disjoint closed sets, consider 7, and 7* as pictured in Fig. 1. That is, the
set of values outside of (x,,z*) that lie outside of ®.

SNV =T, — (1,0) =T —V

1)

Figure 1: Division of the state space E according to the growth function H.
Arrows indicate directionality of the environmental change according to (G.3);
that is, for any 1 € @ NV, x9 € Ty, o3 € (24,2%), ¢4 € T* and z5 € V we
have 1 < 2 < x3 < 24 < 5. For any y within (y.,y*), H(y,) will be always
positive on (z,,z*) and always negative on ®. The positivity or negativity of
H(y,-) on T, or T* will depend upon the value of y and the functional form
chosen for H.

Thus, according to (G.3) and Fig. 1, for any ¢ € R, we will have that the
species-filtered environmental process along the landscape patches will follow
the strictly ordered sequence: 33117@) < x%(t) < xfz(t) < .... Further, for any
i € O and t € Ry such that x;(t) < x4, we can define a time at which the
species-filtered environmental process at patch i enters and exits the set of
environmeptal anditiOIls (T4, 2%) as 7% = inf{t' > t: Ty 4y > T+t and T =
inf{t > 7/ : Ty > x2*}. Additionally, we can define the largest possible
difference in the species-filtered environment between adjacent patches as p* =

sup [z? ., —z'T1]. Finally we assume:
i€ tER, n(t) n(t)

(G.4) For an i € O and t € R as above, 720') > 70" and p* < 2* — ,.

This assumption guarantees the existence, since a point in time, of at least
one environmentally suitable patch in O where the focal species could grow.
Indeed, let i € O and ¢ € Ry such that @} ) € (2.,2%). Let 77" be the first

i+1 out out

exit time from (z,,z*) after ¢. Then, T (ronty € (x4, x*), because 11 > T
i _ il *
and Ty (routy ~ Tyiroury < TT— T

10
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Assumption (G.4) also encompasses assumptions (G.1)-(G.3). Thereby, if
(G.4) is assumed to be true, (G.1)-(G.3) hold true as well.

Even under these conditions, the rate at which the environment changes can
be variable as has been observed and predicted to occur across the globe [27].

For any ¢ € O and ¢t € R} we can now write our general model as:

vi= b+ Jy Hyio @i, ))yi_ds
+ 2 (se(0,tm(s)£n(s—)} {Zwew’ CoM AW s w5y e — ANWem s Ty )Ws— Liwi 20y
yelo,M], icO:yi>0}C{icO:zxi e EN®}#£0O

| | - @
where ' ={i' € O:[i' —i|=1}and V! = {i' € ¢’ : 2} ) ¢ & and y! < M}.
The migration function (A) specifies the proportion of the biomass that will
migrate at the end of the current time window A. The functions Ci'mig specify
the proportion of migrating biomass from patch i’ that is allocated to patch i.
These functions satisfy C*' % = 0 if i ¢ U and for W¥ #£ 0, Siew ci=i" = 1.
That is, a patch can receive biomass only from its neighbors, and only if its
environment is not already deteriorated or saturated at its carrying capacity.
Also, the model assumes that at ¢ = 0 the biomass of the focal species is allocated
only to non-DEs patches.

This general model involves two different time scales: The first one, de-
scribed in the right-hand side of the first line of (4), accounts for the continuous
growth within patch ¢; and the second one, described in the second line of (4),
accounts for the migration regime of the species in response to climate change
and according to what it experienced during the last time window A. In our
framework, biomass migration is a jump in time and space. In time because it
applies after /A units of time have elapsed, and in space because the spatial dis-
cretization of O makes migration to be seen as a “jump” from a patch towards
a contiguous one. Such jumps can occur just before the end of the correspond-
ing A time period, i.e., after measuring and responding to the environmental
conditions in the patch.

Notice that the model assumes that the continuous dynamics of the whole
biomass of the species is affected in each synchronized non-overlapping A time
periods. This envisions the biomass dynamics as a continuous flow along O.

The process ¥’ denotes the “potentially habitable i-neighborhood”, that
is, the model assumes that the species avoid sending immigrants to DEs and
saturated patches (i.e., patches whose biomass is at its carrying capacity).

With respect to the migration function, we are going to assume that A(-,-)
is a right-continuous function. This is because it acts each A time periods and
not continuously in between. As A represents the proportion of biomass that
will migrate, it takes values in [0, 1].

Regarding the functions cimig they can also be interpreted as a measure
of how much of the biomass leaving a patch 7 is sent to a neighboring patch 4’
As such measures will depend exclusively upon the quality of the neighboring
patches, we are going to assume that Ci~i"5 can be written as:

11
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_ f(xi,(‘))l{i’e\lu?} (5)

dinewi f(ﬂ?i;é))
where f is a species-dependent positive continuous function, that describes the
quality of a given patch to sustain biomass of the focal species; and the indicator
function 1y cgiy = 1if ¢/ € ¥/, and 0 otherwise. The function f describes the
species’ fundamental niche [19] or the combination of species-filtered environ-
ments where the species might maintain biomass. We further assume that there
exists a species-dependent parameter v € (4, x*) such that f(v) > f(x), for all
xz € EN{v}°. This parameter can be interpreted as the “ideal or best environ-
ment” for our species. The functions C*~*"’s assume that the focal species is able
to evaluate the quality of the neighboring habitat patches through f. Thus im-
plying that individuals of the focal species are constantly moving within patches
where they effectively have the possibility of “evaluating” the environments in
the adjacent patches. Our coarse-grain approach assumed, for the sake of sim-
plicity, that patches are internally homogeneous in environment. In reality,
however, patches will likely have gradients, that albeit small, can be used by
species as directional cues for movement.

As an example, consider f as:

Ci'—>i'

f@) = f(z;v,0) = exp {~(z —v)?/(20°)}, (6)

where v € (x4, 2*) and o > 0. That is, f is a normal density-like function with

location parameter v and scale o. If the relevant characteristic of the environ-

ment for some species is the mean annual value of temperature, then v will

represent the “ideal mean annual temperature” because supf(x) = f(v) = 1,
z€R

and o will represent how plastic or tolerant the species is in terms of environ-
mental temperature.

In Theorem 1 (see Supplementary Material) we proof that (4) has a unique
solution.

Some important concepts

We saw that v represents the “ideal or best environment” for the focal species,
therefore it is expected that if a certain patch has an environment valued in v,
the species therein will maximize its fitness. Translated into a mathematical
language, for all 2/, € F and for all y € (ys,y*), f(z') > f(z) & H(y,2') >
H(y,z), which will imply that the species maximum growth is reached at
Hp.x = H(g,v). Further, we will assume that the species looks for its ideal
environmental conditions and once it finds them it will remain there unless the
conditions change. Thus the species will migrate its biomass in proportion to
its relative fitness in the available patches. This is essential to keep in mind
when defining a functional form for A in (4). Thus, according to the above, we
will say that A is a Migration Strategy for Persistence (MSP) if it satisfies:
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=0, H(y,x) = Hmax
Ay.z) ¢ =1, H(y,z) <0,(y,2) & (y*,00) x (w0, 2") ,  (7)
€ (0,1), otherwise

and is such that the species persists. Notice that all the biomass found in a
habitat patch will migrate whenever H < 0 and the environmental conditions are
outside the region (x,,z*) or the biomass is < y* or both. The case H(y,z) <0
when (y,2) € (y*,00) X (z4,2*), may occur when immigrants crowd into a
good habitat and make the resident population to go above M and become a
pseudo-sink [47].

Theorem 2

Assume that (G.4) holds. Additionally, consider the following conditions:

1. There exists i € O such that (yo, o) € (Yx, 00) X (T, z*),

* . _ _ : i _ it
2. {z eT*UV :z+pe & V} =0, where p, = ieéﬂgudx%(t) xn(t)], and

3. v+p<a*, wherep= sup [xj ) _y], that is, the largest possible
j€0.t>0 n(t) n(t-)
jump in the species-filtered environment within a patch.

Then there exists at least one MSP.

Condition 1 in the preceding theorem says that, at the beginning, the species
occupies at least one patch of the dynamics and it is not doomed to extinction;
condition 2 says that once the environment of some patch i +1 € O exits
from (x,,x*), then the environment of patch i is in V (i.e., the length of 7* is
small compared to p, or the smallest possible difference in the species-filtered
environment between adjacent patches). If that condition does not hold, then
the species might go towards an opposite direction to the one followed by its
niche; in other words, with a positive probability the species might prefer to
go to an unsuitable patch for its growth instead of the suitable one. Condition
3 says that patches in the ideal environment v for the species growth cannot
completely ruin in a single A period. This condition sets a specific relationship
between the rate of the environmental advancement and the migration function
(see Proof below). Further, the MSP considers that the migration function
maximizes fitness, hence individuals will not leave a patch where the species
population is at Hy,ax.

The proof of this theorem can be found in Supplementary Material.

Remark: The procedure used in the above proof is applied repeatedly many
times as the species advances in O, hence surviving individuals will live far away
from its historic geographic range. Given the conditions specified in Theorem 2,
we know that there exists at least one A that satisfies (7) and is in fact a MSP.
To find this A pose a challenge for the numerical implementation of the model
as we show in the next section.
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3 Numerical example

In order to answer how the extent and the way a species measures the en-
vironment affect its persistence it is necessary to develop a model for how its
demography or population dynamics is affected. We will do this in what follows.

We are going to consider a focal species living in a region O, whose environ-
mental dynamics is described in the example before Section 2.2, where the the
continuous temperature is given by (2) and the species filtered environment is
given in (3).

Regarding the species biomass dynamics, we will use the logistic-type model
with Allee effect and with an explicit mortality term. Let {7F}ren be the
sequence of the x;(,)—jumps. For all k € N our model is described by:

djtt = [T(l‘;(t))(% - )(1 - %) - 6(xj7(t))]yzzh (8)
te [Tfﬁl,ﬁk)

Here, y’, = y§ and the growth function is given by H(y,z) = r(x)(y/y —1)(1—
y/M)—é(m), where H (-, z) reaches a maximum at § = (M ++v)/2,0 <y < M <
0o, with M and -~y as the carrying capacity and the Allee threshold respectively.
H belongs to the family of logistic growth functions with Allee effect, but where
rates instead of being constant vary according to the environment: r is the linear
birth rate function and S the death rate function, which are assumed to be in
C(R) and are such that ® = {z € E: r(z)(g/y—1)(1 — /M) < B(z)} # 0. So,
® is the largest DE representing extreme temperatures for the species growth.

Specific values/functions

To describe the allocation of the migrating biomass among neighboring patches,
as in (5), we need to define the function f or the species fundamental niche
function that describes the quality of a given patch to sustain a population of
the focal species based upon the environment = at patch i. We will assume f
as in (6); that is, f is a normal density-like function with location parameter v
and scale o, such that v represents the “ideal mean annual temperature” and o
represents how plastic the species is, or its environmental tolerance.

As pointed out above (see Some important concepts before Theorem 2), the
niche function is related to the species population growth function H. We will
represent this by linking v and ¢ with the species-dependent birth rate:

_ by —
T(l‘)—ar-f—m and ﬁ(x):ﬁ>0

To present our numerical example, we choose the following parameter values:
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Function/Parameter Value
zh —xpt Vi€ O 1x 107 t°C
Initial difference in temperature between adjacent patches
4 x1072°C
Magnitude of the change in the mean annual value of temperature
v and o 20°C and 1°C
Optimal temperature and temperature tolerance respectively
a, and b, 0 and 1
Parameters of the birth rate function respectively
B 1
Death rate
~ and M 100kg and 10.000kg
Allee threshold and carrying capacity per patch, respectively
o{E N &} {1822 x 1072°C; 2178 x 10~ 2°C}
Values of temperature delimiting the region outside DE

The greatest open rectangle (yu,y*) X (24, 2*) such that H(-,-) > 0 turned
out to be (331230 x 10~ 2kg; 678770 x 10~ 2kg) x (1826 x 10-2°C; 2174 x 1072°C).

Given the above values, we are going to set a time horizon of 100 years,
where the temperature over O will increase at most 4°C within it. Actually,
this increase is predicted to be in the range of 1°C to over 4°C approximately
(depending on the scenario considered) by the end of century ([40]), although
not necessarily this can occur in a linear way as in this example (thus, notice
that p = ¢). Also in this example, there is no species individuals living in
environments whose mean annual values are less than 1822 x 1072°C, so it is
enough to take F as any open set containing the interval [1822 x 1072z} + 4].

Note that, under (8) and using the values of the table above, the maximum
and minimum difference in temperature between adjacent patches are equal
p* = py = 1 x 1071°C, and the length of 7*, as defined in Fig. 1, is equal
to | T* |= 4 x 1072. Thus, condition 2 of Theorem 2 is immediately satisfied.
Also, we can show that (G.4) holds. First, since jumps of the x;(i)’s are equal to

4x1072°C and patches are environmentally separated by 1 x 10~1°C, exit times
from (z4,2*) of the environment of adjacent patches ¢ and 7 + 1 are separated
by 3A = 3 years. Second, 3480 x 1072p* ~ z* — z, in agreement with the

conditions specified under (G.4).

Assumption (G.4) widely holds, so it is also clear that condition 3 of Theorem
2 will be as well. Further, this also means that we will have a very wide number
of potential MSPs, which are important especially in the leading margins of
a species geographic range, where conditions are by definition critical as they
demarcate areas where the species persist from areas where the species does
not. In practice, to identify a MSP we will choose a critical initial condition
(near the points defined by {y., 2*}) satisfying condition 1 in Theorem 3, which
in this example corresponds to {y,z¢} = {331240 x 10~ %kg; 2173 x 1072°C},
yb = Okg for i > 1. To illustrate this, we are going to simulate two slightly
different migration strategies, where just one of these is a MSP, represented by
fixed values in (0, 1) of the migration function A (A = X and A\ = ) respectively),
in the corresponding cases posed in (7) (i.e. except when H(y,2) = Hpax and
H(y,z) <0 for (y,x) ¢ (y*,00) X (24, 2*)). Using the first migration strategy
the species will persist (i.e., it is a MSP), and using the second one the species
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Growth Function

Figure 2: The 3-D growth function. In our numerical example Hy,ax = H (g, V)
is reached at (5050kg, 20°C).

will die out (see Fig. 3 and Fig. 4 below). This numerical example indicates
that if we consider such migration values, there exists a threshold value A¢}, such
that the species will persist if A > Ay and will die out otherwise. This is because
of at the end of the first time period A the species has to move enough biomass
from patch 1 towards patch 2 to ensure its persistence. However, multiple,
maybe infinite, MSPs could exist if we consider dynamic migration functions.
Using a constant migration rate function (except when H(y, z) = Hpax and
H(y,z) <0 for (y,z) ¢ (y*,00) X (z4,2*), as indicated before) and a species’
fundamental niche f, as a probability density-like, allowed us to find a criti-
cal or threshold migration rate. This critical migration rate (in this example
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Figure 3: Species biomass dynamics during ten years and over the first seven
habitat patches in response to climate change. In this example A = X ~ 81x 1072
is a Migration Strategy for Persistence (MSP) and the biomass of the species
Srows.

Ath) determines persistence and is usually shown to exist in models of species
responses to climate change using integrodifference or reaction-diffusion equa-
tions (see, e.g., [48], [22], [39], [5], [24], [26]). We stress, however, that our model
considers that a species could choose among several strategies for persistence
(maybe infinite) if the conditions specified in Theorem 3 hold, resulting in a
migration function instead a fixed dispersal rate. Nevertheless, a numerical or
analytical analysis of functional MSPs is beyond the scope of this paper.

Our model also contemplates that different species can perceive environmen-
tal changes in different ways. Following this, it may be interesting to explore
persistence under different A\’s, or the temporal scales that a given species uses
to assess and respond to changes in its environment, and under different mea-
sures pua’s, and study the behavior of the corresponding A¢,’s. To do this, let
us consider different measures ua’s as members of a family of weighted means:
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Figure 4: Species biomass dynamics during ten years and over the first seven
habitat patches in response to climate change. In this example A = A ~ 80x 1072
is not a Migration Strategy for Persistence (MSP) and the biomass of the species
decays to extinction.

gqmax{zi,k —1 <t <k}+ (1 —¢q)min{z},k —1 <t <k}, g € [0,1], where the
measure used in the example above (i.e., mean annual temperature as described
in (3)) corresponds to ¢ = 1/2 in the above expression. The question now is
How does A, changes as we change ¢ and/or A? As our context is the warming
of O and the initial conditions are critical, the case ¢ > 1/2 (i.e., the species is
more sensitive to maximum temperatures than to average ones) probably results
in an initial situation where the initial patch becomes unsuitable for the species
growth, condemning it to extinction (in particular, condition 1 of Theorem 3
may not be satisfied). Therefore, only the case when ¢ < 1/2 deserves attention.
Also, we are going to consider two cases: A = 1 year and A = 2 years, under
the same family of measures, which also satisfy all the conditions/assumptions
for the existence of a MSP. One of the consequences of changing A is that the
change of the filtered-environment through time will be perceived differently by
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the different species: p =4 x 1072°C and p = 8 x 1072°C respectively. Notice,
however, that even though the change in the filtered environmental change is
larger for A = 2, it is small with respect to how much the species grows during
A = 2 years as compared to A = 1 year (since both species grow with the same
growth function H), and hence the corresponding threshold value for persistence
At is lower for A = 2, as shown in Fig. 5. Certainly a critical scale A above
which p does not satisfy condition 3 of Theorem 2 exists, maybe implying the
nonexistence of a MSP. Biologically speaking, this means that the species will
respond so slowly to environmental changes, that the environment will change
from being suitable to be deteriorated, and thus having no place to escape be-
fore a response is possible. This may explain why some species characterized
by fast life histories (like herbs) move faster in response to climate change than
trees in the same region (see [23]).

Finally, Fig. 5 shows that as ¢ becomes smaller (i.e., as the focal species
is more sensitive to changes in the minimum temperature rather than mean
or maximum ones), so does Ay, since the filtered temperature of patch 1 does
not go out immediately of the region where population growth is positive, with
respect to temperature or (z4,2*), as in the case with ¢ = 1/2, hence the species
can grow for a longer time and accumulate more biomass in the patch before
it leaves the region with positive growth, thus requiring a lower proportion of
migrating biomass to persist.

4 Discussion

In this contribution we presented a mathematical model that explicitly accounts
for two important characteristics of the climate change phenomenon: 1) Scale
dependency: different species may perceive the change in the environment as
occurring at different rates because they perceive the environment at different
scales, and 2) Measure dependency: different species may be sensible to or cue in
on different aspects of the environment (e.g. maximum temperature, minimum
temperature, accumulated temperature); that is they measure the environment
differently. For example, an increase in minimum temperatures can negatively
affect the survival of overwintering rust fungi (Puccina graminis) [37] and rice
grain yield [34]. More tellingly, an increase in minimum temperature during
spring can negatively affect the biomass of some species (e.g. the C4 grasses)
but have positive impacts upon the biomass of exotic C3 forbs in the same site
[2]. Similarly, a decrease in the number of frost days may foster the invasion of
exotic species over natives [45]. Scale dependency is also important as it affects
the rate at which species respond to climate change. Lenoir et al [23] report
that in general larger distributional shifts of plant species in west Europe were
correlated with faster life histories such as shorter life cycle, faster maturation
and smaller sizes at maturity, as well as with life forms; herb, ferns and mosses
will likely move faster than shrubs and trees. Similar patterns have also been
reported for the response of vertebrates to climate change [35]. This variability
and scale dependency could be amplified by biotic factors such as changes in
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Figure 5: Behavior of the threshold migration rate Ay under different measures
from the family g max{z{, k—1 <t < k}+(1—q) min{2}, k—1 < t < k}, ¢ € [0,1],
i,k € N, and different scales at which the species measures the environment: in
‘continuous line’ A = 1 and in ‘dashed line’ A = 2.

the intensity of biotic interactions [14].

In the worst case scenario, the species living in a given region could be rapidly
impacted by a changing climate and can not disperse or adapt fast enough to the
environmental change, increasing their extinction risk ([16], [46], [42], [1], [32],
[18] and [27]). While evolution and adaptation can be an important component
of a species’ response to a changing climate (e.g., [33], [9], [12]) in this work we
assumed that the environmental changes in our focal region O was such that no
species was be able to evolve and adapt fast enough to the changing conditions.
Thus, the species niche is fixed, there is no evolution and the only possible
response to a changing climate is dispersal.

To our knowledge, under the no evolution assumption, this is the first model
that accommodates in the same framework both phenomena: scale dependency
and measure dependency, as defined above. Further, we show that both are
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important in affecting the existence of what we call a Migration Strategy for
Persistence (MSP). As illustrated in our numerical example (Fig. 3 and Fig.
4), the potential existence of a MSP, which depends on the function A, does
not guarantee the persistence of a given species since its A may not be in the
region where MSP exist. The analytical and numerical characterization of this
region is an open problem, since it depends upon many factors. For example A
may be dynamic, instead of a fixed parameter as in our numerical example, and
depend upon the quality of a given habitat or upon how the species measures
the environment as exemplified in Fig. 5. This figure shows that under the same
growth function H the corresponding migration values for persistence is affected
by the scale at which the species measures its environment. In the numerical
example, the A¢,’s associated to the MSP is smaller for species measuring the
environment at a time scale A equal to 2 years than for species measuring it
at the time scale A of 1 year (i.e. the species with A equal to 2 requires less
migration for persistence). Nevertheless, in our numerical example species with
larger A will not always be better off in terms of migration, since for some
large enough value of A condition 3 in Theorem 3 will not be satisfied. For
example, for A = 50 years, p = 2°C, and a patch inhabited by the species
whose environmental conditions are close to reach the ideal one (v = 20°C)
will change so much that it will become inhabitable in one A, and thus a MSP
may not exist. A similar situation may occur regarding measure dependency.
Fig. 5 shows that in general, for our numerical example, as ¢ becomes larger
(i.e. as species become more sensible to higher temperatures) larger A\y,’s are
required in order to persist in the context of a warming climate. Indeed, one of
our main conclusion is that there is not a single climate change but many, as
its effects depend on the interaction between a particular species and climate.
This interaction is not only affected by the length or temporal scale relevant
to the species, but also for what is the change important for the species (i.e.
what climatic signal is the species more sensible to). Thus, the problem is more
complex than assumed by analytically tractable models of species responses to
climate change (e.g. [24], [22]).

Another important feature of our model is that it can accommodate differ-
ent types of population growth dynamics. For example, we chose to include an
Allee effect (i.e., v > 0) because they are paramount in affecting the movement
of species across landscapes and in setting the boundaries of their spatial distri-
bution ( [21], [41], [4]). Also, our model can be extended to a two dimensional
landscape and/or using more realistic dispersal kernels (see [29] for a review).
In its current version, our dispersal kernel corresponds to the function C:™" (see
Eq. (3)) that expresses the proportion of biomass that the focal species will
move to one of adjacent patches around the focal patch. In future extensions
this proportions could be made to apply to larger neighborhoods, and include
stochastic effects.

Finally, it is worth emphasizing that the numerical implementation of our
model, could accommodate the existence of patches that are not habitable be-
cause of land use changes (e.g., transformed to urban or agriculture), as well
as a more realistic dispersal functions that accommodates stochasticity, to as-
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sess their impact upon species’ persistence and responses to climate change in
human dominated landscapes. We expect to explore these possibilities in the
future with the aim of helping to build a quantitative framework to assess the
response of biodiversity to climate change in interaction with other drivers of
global change.
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Supplementary Material

The particular case of climate change but no migration is
allowed

Assume that our species is fenced in some patch i € O, i.e., the species cannot
escape from i neither receive immigrants thereof. For a fixed xﬁl(,) =z € E, our
model will be represented by the ordinary differential equation (ODE)

{ % = H(y%,x)yi (9)
yé € [07 M] ,
which has a unique solution for any finite time horizon [0, T by the Picard—Lindel6f
theorem. Moreover, its solution is non-negative and belongs to [0, M], which
implies that the solution of (9) is actually well-defined on R .
Now, we can add the dynamics of the environment by considering x;(_) to
be dynamical in (9) and obtain a piecewise ODE:

dy; _ i i i
{ diyt _-H(yt7xn(t))yt (10)
Yo € [0, M]

It is “piecewise” because (10) is defined between the jumps of x;(_); between
them we have a well-defined ODE as in (8). Note that the time range between
jumps is fixed and equal to A, as presented in (1). Thus, a solution of (10)
can be constructed by joining the solutions between the jumps of xfy(. , knowing
that the boundedness of the solution does not depend on the values taken by
(-

Note that the process ¥ is also right-continuous, where analogously we write
lslgly; =yi_ for all t > 0. Nevertheless, to avoid theoretical complications with

derivatives over such discontinuities it would be convenient to use the notation

dy% = H(yivﬂﬁz(t))yidt (11)
Yo € [0, M]
instead of (10), where y! = y + f(o,t] H(yé_,x;(sf))yg_ds.
The following lemma will be employed repeatedly throughout this special
case, whose proof follows from [1], Lemma 1.1 in Chapter 1.
Lemma

Let 0. be a process satisfying, for t > t;y,

df, < (&0, + ¢,)dt,

where & and (. are integrable functions over every finite time horizon. Then

t

¢ ¢
0 <0, exp{/fs_ds} + /exp{/ Eu—du}ls_ds

tin tin



Working paper

Given the general structural conditions assumed for H in Section 2.2, the
species always goes extinct when y§ € [0,7), that is when the initial biomass
is below the Allee threshold and regardless of the state of the environment. In
fact, we have that:

dy; = H(yj, !, )yidt < H*(y})yidt < H* (y)yidt,

since H*(+) is negative and increasing on [0,); and by the previous lemma we
obtain,

yi < yoexp{tH*(y5)} — 0
tToo

But when y} € [y, M] is possible for the species to grow positively. Nevertheless,
such an increase could be reversed if the environment becomes progressively
worst for the species such that H becomes always negative.

Henceforth, we are going to consider that the environment, as experienced
by the focal species, is becoming increasingly less suitable for its persistence. In
order to explicitly define it with respect to (11), and study its future behavior,
we need additional definitions and assumptions:

(S.1) Let us define a Deteriorated Environment (DE) as a set that belongs
to @ ={€ € B(E): H(j,-) <0 on &} # (), where B(E) is the set containing all
the open subsets of E. Additionally, we assume that E N ®¢ is connected, that
is, int{ £ N ®°} # ) cannot be represented as the union of two or more disjoint
nonempty open subsets of it.

(S.2) We assume that ® is an attracting set for z;(‘).

In (S.1) we consider E N ®°¢ connected because we think of ® as a set of
extreme values for the species within the state space E that are outside of the
range where the species could grow. Also, as ® is open, ® is reached by x;(.) in
finite time.

Unfortunately, in this particular case, independently of the starting point
(v, x}) of (11), the species unavoidably goes extinct. Indeed, let 7 = inf{t > 0 :
x;(t) € ®}, or equivalently x = inf{k € NU {0} : 2, € ®}, where 7 = Ax < oo
by (S.2). So, the extinction of the species can be shown by observing that:

dy; = H(yy, wy)yidt < H(G, z0)yidt,

and given that the inequality is true for all t € [r,7 + £A], for all £ € N, by
applying the previous lemma again, over ¢ € [1, 7 + (A], we get:

¢
Yo ron <yt expf / H (g, 2, y)ds} = ys eXP{Z H(g, ) 1) D}
(7, 7+LA] =1

By (S.1) and (S.2) H(g,m;(_)) < 0 on (7,00) and hence, ¥ . ZT—> 0.

Under this simple reasoning we can further conclude that the species will die
out if fenced. Nevertheless, if the species can move away from the deteriorating
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conditions from one patch into another through dispersal, thus escaping from
DEs at a large enough rate, the species might survive.

Theorem 1

(4) has a unique solution.

Proof

We can proceed similarly as in the case of no migration: we consider first
a “fixed environment” (i.e. for any window of size A, which are by definition
non-overlapping) and prove its well-posedness; finally, the general solution is

obtained by joining the solutions between the jumps of the x;(_)’s.

Without loss of generality, assume that the set {i € O : zf = 2' € E N ®°}
are the n first patches, that is {i € O : 2}, = 2 € EN®°} = {1,...,n}, for some
n € N. As those processes jump together at the same time, let {7%},cn be the
sequence of its jump times.

For R™ vectors Y = (y(,...,y™)T and X = (1), ...,2™)T, where T is the
matrix/vector transposition, let H (), X) be an n x n diagonal matrix whose
elements are (H (y¥, x(i)))izl,__ﬂn, and consider the following matrix norms for
real n x n matrices Q = (¢; ;)i j=1,...n"

)

1/2

lQle={ > (g,)°

1<i,j<n
and
| @ llmax= 127%)%” | Gij |,
and let || - || the usual R” Euclidean norm. We have the following relation

among these norms:

IR, )V < V0 (| HP, &) lmaxl| V1< V| H,X) (6]l Y

Thus, assumptions made for H can be expressed as follows: for each R > 0
there exist non-negative functions Mg(X,n) and Ng(X,n) such that:

I HO, X)Y [[< Mr(X,n),

I HQ, X)Y = HQ", X)Y" [ Ne(X,n) | V' =IY" |,

if |V, Il Y || and || V" | are less or equal to R.
Then, the following system has a unique solution:

dyi _ AN
;t = H(y}, v5)y;, te(0,m) (12)
yp>0,i=1,..,n
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(see [1], Theorem 1.2, Chapter 1). To construct the general solution, define for
every 1 = 1,...,n:

Ay;, =limlyr, —y;, -] = lim > CLZINWh —e w0 Yo —e = AW e T0)Ye —cLgwi )
i €t

Thus, we consider that

Yo = Yo + Ayl
where yi. _ = leiﬁ)lyire' If xf}ﬁl) € E N ®°, define:

y:—jl - hmc“—m )\(y‘lr"l—w xé)yil—e

T1—€
Therefore, we can define an analogous system as (12):
dut
= Hyal )y, te(T,m)
1€0, yr, >0

Finally, we can proceed similarly as above to construct the solution of (4) over
the disjoint sequence of time intervals {[7;, Ti+1) bien. O

Proof of Theorem 2

Let i € O satisfying condition 1 and 1et o = inf{t > 0 : ac;(t) > z*}. Note

that there exists £"" € N such that 79" = k2" A, where k"' —1 € NU {0} by
(G.4). Consider the following cases.
(a) k9" —1=0. By (G.4), ’t}t € (z4,2*%), and we have that,

1+1

. 141 7 7 7 —i+1 7 7 7
y out > lélf{)lcrg’“fng(ny“t—e’ Z'K?ut_l)y,riout e & C Uut )\(yTiout_, xﬁ?m_l)yn_out_

>>\( rout 7$i$ut,1)y*,

because C“Z,i“ =1 by condition 2. Now define A as:
0, H(yvx) = Hpax
Ay, x) = 1, H(y,x) <0,(y,z) ¢ (y*,00) x (z4,2*) , (13)
%1/E(y,z)7 otherwise

with £ : [0, M] x E — R4 N {0}¢ a right-continuous function. Notice that it
satisfies (7). We have that )\(yim ) iout _4) # A#,v) =0, since by condition

3, «? wout 1 > v. Note that there exists KO > 0 such that y’i’ult > 1y, if we define
the function ¢ in (13) such that (y,x) < £y, for all (y,x) € (yx,00) X (v,x*).
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(b) k9" — 1 > 0. We have that,

Yn = Yo+ / H(y,_,x)ys_ds — Z Myt xd)yi_
0,A] {s€(0,A]:n(s)#n(s—)}

=y + / H(yif,xé)yifds—leifgk(yzfg,xé)yzﬂ
©0.2]

= yo + / H(ys s 0)yads = Xy, 50)Yn -
(0,4]
= ylA— (1 - A(yZA—a ‘T%))) ’
because yiA_ = (yé + f(o Al H(yt xf))ygfds). Consider the following strategy:
in patch ¢ maintain the species biomass over y, until xﬁl(t) > v, and thereafter

proceed analogously as in (a) above. This can be done by choosing ¢; > 0 such
that:

Ys
Ay, z) <1— 2,
(y, ) )

if we define the function ¢ in (13) such that ¢(y,z) > ¢4, for all (y, z) € (y, 00) X
(T4, V]. ‘

Finally, by defining 72 = inf{t > 70" : x;‘ftl) > z*}, we can proceed in an
analogous way as above. Thus, the proof is finished. [J
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