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Nonlinearities in finite dimensions can be linearized by projecting them into infinite dimensions.
Unfortunately, often the linear operator techniques that one would then use simply fail since the op-
erators cannot be diagonalized. This curse is well known. It also occurs for finite-dimensional linear
operators. We circumvent it by developing a meromorphic functional calculus that can decompose
arbitrary functions of nondiagonalizable linear operators in terms of their eigenvalues and projection
operators. It extends the spectral theorem of normal operators to a much wider class, including
circumstances in which poles and zeros of the function coincide with the operator spectrum. By
allowing the direct manipulation of individual eigenspaces of nonnormal and nondiagonalizable op-
erators, the new theory avoids spurious divergences. As such, it yields novel insights and closed-form
expressions across several areas of physics in which nondiagonalizable dynamics are relevant, includ-
ing memoryful stochastic processes, open nonunitary quantum systems, and far-from-equilibrium
thermodynamics.

The technical contributions include the first full treatment of arbitrary powers of an operator. In
particular, we show that the Drazin inverse, previously only defined axiomatically, can be derived
as the negative-one power of singular operators within the meromorphic functional calculus and
we give a general method to construct it. We provide new formulae for constructing projection
operators and delineate the relations between projection operators, eigenvectors, and generalized
eigenvectors.

By way of illustrating its application, we explore several, rather distinct examples. First, we
analyze stochastic transition operators in discrete and continuous time. Second, we show that
nondiagonalizability can be a robust, intrinsic feature of a stochastic process, induced even by
simple counting. As a result, we directly derive distributions of the Poisson process and point out
that nondiagonalizability is intrinsic to it and the broad class of hidden semi-Markov processes.
Third, we show that the Drazin inverse arises naturally in stochastic thermodynamics and that
applying the meromorphic functional calculus provides closed-form solutions for the dynamics of
key thermodynamic observables. Fourth, we show that many memoryful processes have power
spectra indistinguishable from white noise, despite being highly organized. Nevertheless, whenever
the power spectrum is nontrivial, it is a direct signature of the spectrum and projection operators of
the process’ hidden linear dynamic, with nondiagonalizable subspaces yielding qualitatively distinct
line profiles. Finally, we draw connections to the Ruelle–Frobenius–Perron and Koopman operators
for chaotic dynamical systems.

PACS numbers: 02.50.-r 05.45.Tp 02.50.Ey 02.50.Ga

... the supreme goal of all theory is to make

the irreducible basic elements as simple and

as few as possible without having to surrender

the adequate representation of a single datum

of experience. A. Einstein [1, p. 165]

I. INTRODUCTION

Decomposing a complicated system into its constituent
parts—reductionism—is one of science’s most power-
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ful strategies for analysis and understanding. Large-
scale systems with linearly coupled components give one
paradigm of this success. Each can be decomposed into
an equivalent system of independent elements using a
similarity transformation calculated by the linear alge-
bra of the system’s eigenvalues and eigenvectors. The
physics of linear wave phenomena, whether of classical
light or quantum mechanical amplitudes, sets the stan-
dard of complete reduction rather high. The dynamics
is captured by an “operator” whose allowed or exhibited
“modes” are the elementary behaviors out of which com-
posite behaviors are constructed by simply weighing each
mode’s contribution and adding them up.

However, one should not reduce a composite system
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more than is necessary nor, as is increasingly appre-
ciated these days, more than one, in fact, can. In-
deed, we live in a complex, nonlinear world whose con-
stituents are strongly interacting. Often their key struc-
tures and memoryful behaviors emerge only over space
and time. These are the complex systems. Yet, perhaps
surprisingly, many complex systems with nonlinear dy-
namics correspond to linear operators in abstract high-
dimensional spaces [2–4]. And so, there is a sense in
which even these complex systems can be reduced to the
study of independent nonlocal collective modes.

Reductionism, however, faces its own challenges even
within its paradigmatic setting of linear systems: lin-
ear operators may have interdependent modes with ir-
reducibly entwined behaviors. These irreducible com-
ponents correspond to so-called nondiagonalizable sub-
spaces. No similarity transformation can reduce them.

In this view, reductionism can only ever be a guide.
The actual goal is to achieve a happy medium, as Einstein
reminds us, of decomposing a system only to that level
at which the parts are irreducible. To proceed, though,
begs the original question, What happens when reduc-
tionism fails? To answer this requires revisiting one of
its more successful implementations, spectral decompo-
sition of completely reducible operators.

A. Spectral Decomposition

Spectral decomposition—splitting a linear operator
into independent modes of simple behavior—has greatly
accelerated progress in the physical sciences. The im-
pact stems from the fact that spectral decomposition is
not only a powerful mathematical tool for expressing the
organization of large-scale systems, but also yields pre-
dictive theories with directly observable physical conse-
quences [5]. Quantum mechanics and statistical mechan-
ics identify the energy eigenvalues of Hamiltonians as the
basic objects in thermodynamics: transitions among the
energy eigenstates yield heat and work. The spectrum
of eigenvalues reveals itself most directly in other kinds
of spectra, such as the frequency spectra of light emitted
by the gases that permeate the galactic filaments of our
universe [6]. Quantized transitions, an initially mystify-
ing feature of atomic-scale systems, correspond to dis-
tinct eigenvectors and discrete spacing between eigenval-
ues. The corresponding theory of spectral decomposition
established the quantitative foundation of quantum me-
chanics.

The applications and discoveries enabled by spectral
decomposition and the corresponding spectral theory
fills a long list. In application, direct-bandgap semi-
conducting materials can be turned into light-emitting

diodes (LEDs) or lasers by engineering the spatially-
inhomogeneous distribution of energy eigenvalues and the
occupation of their corresponding states [7]. Before their
experimental discovery, anti-particles were anticipated by
Dirac as the nonoccupancy of negative-energy eigenstates
of the Dirac Hamiltonian [8].

The spectral theory, though, extends far beyond phys-
ical science disciplines. In large measure, this arises
since the evolution of any object corresponds to a lin-
ear dynamic in a su�ciently high-dimensional state
space. Even nominally nonlinear dynamics over sev-
eral variables, the canonical mechanism of determin-
istic chaos, appear as linear dynamics in appropriate
infinite-dimensional shift-spaces [4]. A nondynamic ver-
sion of rendering nonlinearities into linearities in a higher-
dimensional feature space is exploited with much success
today in machine learning by support vector machines,
for example [9]. Spectral decomposition often allows a
problem to be simplified by approximations that use only
the dominant contributing modes. Indeed, human-face
recognition can be e�ciently accomplished using a small
basis of “eigenfaces” [10].

Certainly, there are many applications that highlight
the importance of decomposition and the spectral theory
of operators. However, a brief reflection on the math-
ematical history will give better context to its precise
results, associated assumptions, and, more to the point,
the generalizations we develop here in hopes of advancing
the analysis and understanding of complex systems.

Following on early developments of operator theory
by Hilbert and co-workers [11], the spectral theorem for

normal operators reached maturity under von Neumann
by the early 1930s [12, 13]. It became the mathemat-
ical backbone of much progress in physics since then,
from classical partial di↵erential equations to quantum
physics. Normal operators, by definition, commute with
their Hermitian conjugate: A†A = AA†. Examples in-
clude symmetric and orthogonal matrices in classical me-
chanics and Hermitian, skew-Hermitian, and unitary op-
erators in quantum mechanics.

The spectral theorem itself is often identified as a col-
lection of related results about normal operators; see,
e.g., Ref. [14]. In the case of finite-dimensional vector
spaces [15], the spectral theorem asserts that normal op-
erators are diagonalizable and can always be diagonalized
by a unitary transformation; that left and right eigenvec-
tors (or eigenfunctions) are simply related by complex-
conjugate transpose; that these eigenvectors form a com-
plete basis; and that functions of a normal operator re-
duce to the action of the function on each eigenvalue.
Most of these qualities survive with only moderate pro-
visos in the infinite-dimensional case. In short, the spec-
tral theorem makes physics governed by normal operators
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tractable.
The spectral theorem, though, appears powerless when

faced with nonnormal and nondiagonalizable operators.
What then are we to do when confronted, say, by complex
interconnected systems with nonunitary time evolution,
by open systems, by structures that emerge on space and
time scales di↵erent from the equations of motion, or by
other frontiers of physics governed by nonnormal and not-
necessarily-diagonalizable operators? Where is the com-
parably constructive framework for calculations beyond
the standard spectral theorem? Fortunately, portions of
the necessary generalization have been made within pure
mathematics [16], some finding applications in engineer-
ing and control [17, 18]. However, what is available is
incomplete. And, even that which is available is often
not in a form adapted to perform calculations that lead
to quantitative predictions.

B. Synopsis

Here, we build on previous work in functional analy-
sis and operator theory to provide both a rigorous and
constructive foundation for physical calculations involv-
ing not-necessarily-diagonalizable operators. In e↵ect, we
extend the spectral theorem for normal operators to a
broader setting, allowing generalized “modes” of nondi-
agonalizable systems to be identified and manipulated.

The meromorphic functional calculus developed pro-
vides the extension by extending Taylor series expansion
and standard holomorphic functional calculus to ana-
lyze nonlinear functions of not-necessarily-diagonalizable
operators. It readily handles singularities arising when
poles (or zeros) of the function coincide with poles of
the operator’s resolvent—poles that appear precisely at
the eigenvalues of the operator. Pole–pole and pole–zero
interactions substantially modify the complex-analytic
residues within the functional calculus. A key result of
the new calculus is that the negative-one power of a sin-
gular operator exists in the meromorphic functional cal-
culus. It is the Drazin inverse, a powerful tool that is
receiving increased attention in stochastic thermodynam-
ics.

Taken altogether, the functional calculus, Drazin in-
verse, and methods to manipulate particular eigenspaces,
are key to a thorough-going analysis of many complex
systems, many now accessible for the first time. In-
deed, the framework has already been fruitfully employed
by the authors in several specific applications, includ-
ing closed-form expressions for signal processing and in-
formation measures of hidden Markov processes [19–21]
and for compressing stochastic processes over a quantum
channel [22]. However, the techniques are su�ciently

general they will be much more widely useful. We envi-
sion new opportunities for similar detailed analyses, rang-
ing from biophysics to quantum field theory, wherever re-
strictions to normal operators and diagonalizability have
been roadblocks.

With this broad scope in mind, we develop the math-
ematical theory first without reference to specific appli-
cations and disciplinary terminology. We later give ped-
agogical (yet, we hope, interesting) examples, exploring
several niche, but important applications to finite hid-
den Markov processes, basic stochastic process theory,
nonequilibrium thermodynamics, signal processing, and
nonlinear dynamical systems. At a minimum, the exam-
ples and their breadth serve to better acquaint readers
with the basic methods required to employ the theory.

We introduce the meromorphic functional calculus in
§III through §IV, after necessary preparation in §II. §V A
further explores eigenprojectors, which we refer to here
simply as projection operators. §V B makes explicit their
relationship with eigenvectors and generalized eigenvec-
tors. §V B4 then discusses simplifications of the func-
tional calculus for special cases, while §VI A takes up
the spectral properties of transition operators. The ex-
amples are discussed at length in §VI before we close in
§VII with suggestions on future applications and research
directions.

II. SPECTRAL PRIMER

The following is relatively self-contained assuming ba-
sic familiarity with linear algebra at the level of Refs. [15,
17]—including eigen-decomposition and knowledge of the
Jordan canonical form, partial fraction expansion (see
Ref. [23]), and series expansion—and basic knowledge
of complex analysis—including the residue theorem and
calculation of residues at the level of Ref. [24]. For those
lacking a working facility with these concepts, a quick re-
view of §VI’s applications may motivate reviewing them.
In this section, we introduce our notation and, in doing
so, remind the reader of certain basic concepts in linear
algebra and complex analysis that will be used exten-
sively in the following.

To begin, we restrict attention to operators with finite
representations and only sometimes do we take the limit
of dimension going to infinity. That is, we do not consider
infinite-rank operators outright. While this runs counter
to previous presentations in mathematical physics that
consider only infinite-dimensional operators, the upshot
is that they—as limiting operators—can be fully treated
with a countable point spectrum. We present examples of
this later on. Accordingly, we restrict our attention to op-
erators with at most a countably infinite spectrum. Such
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operators share many features with finite-dimensional
square matrices, and so we recall several elementary but
essential facts from matrix theory used extensively in the
main development.

If A is a finite-dimensional square matrix, then its spec-
trum is simply the set ⇤

A

of its eigenvalues:

⇤
A

=
�
� 2 C : det(�I � A) = 0

 
,

where det(·) is the determinant of its argument and I

is the identity matrix. The algebraic multiplicity a
�

of
eigenvalue � is the power of the term (z ��) in the char-
acteristic polynomial det(zI � A). In contrast, the geo-

metric multiplicity g
�

is the dimension of the kernel of
the transformation A � �I or, equivalently, the number
of linearly independent eigenvectors associated with the
eigenvalue. The algebraic and geometric multiplicities
are all equal when the matrix is diagonalizable.

Since there can be multiple subspaces associated with
a single eigenvalue, corresponding to di↵erent Jordan
blocks in the Jordan canonical form, it is structurally
important to distinguish the index of the eigenvalue as-
sociated with the largest of these subspaces [25].

Definition 1. Eigenvalue �’s index ⌫
�

is the size of the

largest Jordan block associated with �.

If z /2 ⇤
A

, then ⌫
z

= 0. Note that the index of the
operator A itself is sometimes discussed [26]. In such
contexts, the index of A is ⌫

0

. Hence, ⌫
�

corresponds to
the index of A � �I.

The index of an eigenvalue gives information beyond
what the algebraic and geometric multiplicities them-
selves yield. Nevertheless, for � 2 ⇤

A

, it is always true
that ⌫

�

� 1  a
�

� g
�

 a
�

� 1. In the diagonalizable
case, a

�

= g
�

and ⌫
�

= 1 for all � 2 ⇤
A

.
The following employs basic features of complex anal-

ysis extensively in conjunction with linear algebra. Let
us therefore review several elementary notions in com-
plex analysis. Recall, from complex analysis, that a
holomorphic function is one that is complex di↵eren-
tiable throughout the domain under consideration. A
pole of order n at z

0

is a singularity that behaves as
h(z)/(z � z

0

)n as z ! z
0

, where h(z) is holomorphic
within a neighborhood of z

0

and h(z
0

) 6= 0. We say that
h(z) has a zero of order m at z

1

if 1/h(z) has a pole
of order m at z

1

. A meromorphic function is one that
is holomorphic except possibly at a set of isolated poles
within the domain under consideration.

Defined over the continuous complex variable z 2 C,
A’s resolvent :

R(z; A) ⌘ (zI � A)�1 ,

captures all of A’s spectral information through the poles

of R(z; A)’s matrix elements. In fact, the resolvent con-
tains more than just A’s spectrum: we later show that the
order of each pole gives the index ⌫ of the corresponding
eigenvalue.

The spectrum ⇤
A

can be expressed in terms of the
resolvent. Explicitly, the spectrum is the set of complex
values z at which the inverse of zI � A does not exist:

⇤
A

=
�
� 2 C : R(�; A) 6= inv(�I � A)

 
,

where inv(·) is the inverse of its argument.
Each of A’s eigenvalues � has an associated projection

operator A
�

, which is the residue of the resolvent as z !
� [14]. Explicitly:

A
�

= Res
�
(zI � A)�1, z ! �

�
,

where Res( · , z ! �) is the element-wise residue of its
first argument as z ! �. The projection operators are
orthonormal:

A
�

A
⇣

= �
�,⇣

A
�

. (1)

and sum to the identity:

I =
X

�2⇤A

A
�

. (2)

The following discusses in detail and then derives several
new properties of projection operators.

III. FUNCTIONAL CALCULI

In the following, we develop an extended functional cal-

culus that makes sense of arbitrary functions of a linear
operator. Within any functional calculus, one considers
how the eigenvalues of A get mapped to the eigenvalues
of f(A); which we call a spectral mapping. For example,
it is known that holomorphic functions of bounded lin-
ear operators enjoy an especially simple spectral mapping
theorem [27]:

⇤
f(A)

= f(⇤
A

) .

To fully appreciate the meromorphic functional calculus,
we first state and compare the main features and limita-
tions of alternative functional calculi.
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A. Taylor series

Inspired by the Taylor expansion of scalar functions:

f(a) =
1X

n=0

f (n)(⇠)

n!
(a � ⇠)n ,

a functional calculus for functions of an operator A can
be based on the series:

f(A) =
1X

n=0

f (n)(⇠)

n!
(A � ⇠I)n , (3)

where f (n)(⇠) is the nth derivative of f(z) evaluated at
z = ⇠.

This is often used, for example, to express the expo-
nential of A as:

eA =
1X

n=0

An

n!
.

This particular series-expansion is convergent for any A

since ez is entire, in the sense of complex analysis. Un-
fortunately, even if it exists there is a limited domain of
convergence for most functions. For example, suppose
f(z) has poles and choose a Maclaurin series; i.e., ⇠ = 0
in Eq. (3). Then the series only converges when A’s spec-
tral radius is less than the radius of the innermost pole
of f(z). Addressing this and related issues leads directly
to alternative functional calculi.

B. Holomorphic functional calculus

Holomorphic functions are well behaved, smooth func-
tions that are complex di↵erentiable. Given a function
f(·) that is holomorphic within a disk enclosed by a coun-
terclockwise contour C, its Cauchy integral formula is
given by:

f(a) =
1

2⇡i

I

C

f(z) (z � a)�1 dz , (4)

Taking this as inspiration, the holomorphic functional
calculus performs a contour integration of the resolvent
to extend f(·) to operators:

f(A) =
1

2⇡i

I

C⇤A

f(z) (zI � A)�1 dz , (5)

where C
⇤A is a closed counterclockwise contour that en-

compasses ⇤
A

. Assuming that f(z) is holomorphic at
z = � for all � 2 ⇤

A

, a nontrivial calculation [25] shows
that Eq. (5) is equivalent to the holomorphic calculus

defined by:

f(A) =
X

�2⇤A

⌫��1X

m=0

f (m)(�)

m!
(A � �I)mA

�

. (6)

After some necessary development, we will later derive
Eq. (6) as a special case of our meromorphic functional
calculus, such that Eq. (6) is valid whenever f(z) is holo-
morphic at z = � for all � 2 ⇤

A

.
The holomorphic functional calculus was first proposed

in Ref. [25] and is now in wide use; e.g., see Ref. [17, p.
603]. It agrees with the Taylor-series approach when-
ever the infinite series converges, but gives an opera-
tional calculus when the series approach fails. For ex-
ample, using the principal branch of the complex loga-
rithm, the holomorphic functional calculus admits log(A)
for any nonsingular matrix, with the satisfying result that
elog(A) = A. Whereas, the Taylor series approach fails to
converge for the logarithm of most matrices even if the
expansion for, say, log(1 � z) is used.

The major shortcoming of the holomorphic functional
calculus is that it assumes f(z) is holomorphic at ⇤

A

.
Clearly, if f(z) has a pole at some z 2 ⇤

A

, then Eq. (6)
fails. An example of such a failure is the negative-one
power of a singular operator, which we take up later on.

C. Meromorphic functional calculus

Meromorphic functions are holomorphic except at a
set of isolated poles of the function. The resolvent of
a finite-dimensional operator is meromorphic, since it is
holomorphic everywhere except for poles at the eigenval-
ues of the operator. We will now also allow our function
f(z) to be meromorphic with possible poles that coincide
with the poles of the resolvent.

Inspired again by the Cauchy integral formula of Eq.
(4), but removing the restriction to holomorphic func-
tions, our meromorphic functional calculus instead em-
ploys a partitioned contour integration of the resolvent:

f(A) =
X

�2⇤A

1

2⇡i

I

C�

f(z)R(z; A) dz ,

where C
�

is a small counterclockwise contour around the
eigenvalue �. This and a spectral decomposition of the
resolvent (to be derived later) extends the holomorphic
calculus to a much wider domain, defining:

f(A) =
X

�2⇤A

⌫��1X

m=0

A
�

�
A � �I

�
m

1

2⇡i

I

C�

f(z)

(z � �)m+1

dz .

(7)
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The contour is integrated using knowledge of f(z) since
meromorphic f(z) can introduce poles and zeros at ⇤

A

that interact with the resolvent’s poles.
The meromorphic functional calculus agrees with the

Taylor-series approach whenever the series converges and
agrees with the holomorphic functional calculus when-
ever f(z) is holomorphic at ⇤

A

. However, when both the
previous functional calculi fail, the meromorphic calculus
extends the domain of f(A) to yield surprising yet sen-
sible answers. For example, we show that within it, the
negative-one power of a singular operator is the Drazin
inverse—an operator that e↵ectively inverts everything
that is invertible.

The major assumption of our meromorphic functional
calculus is that the domain of operators must have a spec-
trum that is at most countably infinite—e.g., A can be
any compact operator. A related limitation is that sin-
gularities of f(z) that coincide with ⇤

A

must be isolated
singularities. Nevertheless, we expect that these restric-
tions can be lifted with proper treatment, as discussed in
fuller context later.

IV. MEROMORPHIC SPECTRAL
DECOMPOSITION

The preceding gave an overview of the relationship be-
tween alternative functional calculi and their trade-o↵s,
highlighting the advantages of the meromorphic func-
tional calculus. This section leverages these advantages
and employs a partial fraction expansion of the resolvent
to give a general spectral decomposition of almost any
function of any operator. Then, since it plays a key role
in applications, we apply the functional calculus to inves-
tigate the negative-one power of singular operators—thus
deriving, what is otherwise an operator defined axiomat-
ically, the Drazin inverse from first principles.

A. Partial fraction expansion of the resolvent

The elements of A’s resolvent are proper rational func-
tions that contain all of A’s spectral information. (Recall
that a proper rational function r(z) is a ratio of polyno-
mials in z whose numerator has degree strictly less than
the degree of the denominator.) In particular, the re-
solvent’s poles coincide with A’s eigenvalues since, for

z /2 ⇤
A

:

R(z; A) = (zI � A)�1

=
C>

det(zI � A)

=
C>

Q
�2⇤A

(z � �)a�
, (8)

where a
�

is the algebraic multiplicity of eigenvalue � and
C is the matrix of cofactors of zI �A. That is, C’s trans-
pose C> is the adjugate of zI � A:

C> = adj(zI � A) ,

whose elements will be polynomial functions of z of de-
gree less than

P
�2⇤A

a
�

.
Recall that the partial fraction expansion of a proper

rational function r(z) with poles in ⇤ allows a unique
decomposition into a sum of constant numerators divided
by monomials in z � � up to degree a

�

, when a
�

is the
order of the pole of r(z) at � 2 ⇤ [23]. Equation (8) thus
makes it clear that the resolvent has the unique partial
fraction expansion:

R(z; A) =
X

�2⇤A

a��1X

m=0

1

(z � �)m+1

A
�,m

, (9)

where {A
�,m

} is the set of matrices with constant entries
(not functions of z) uniquely determined elementwise by
the partial fraction expansion. However, R(z; A)’s poles
are not necessarily of the same order as the algebraic mul-
tiplicity of the corresponding eigenvalues since the entries
of C, and thus of C>, may have zeros at A’s eigenvalues.
This has the potential to render A

�,m

equal to the zero
matrix 0.

The Cauchy integral formula indicates that the con-
stant matrices {A

�,m

} of Eq. (9) can be obtained by the
residues:

A
�,m

=
1

2⇡i

I

C�

(z � �)mR(z; A)dz , (10)

where the residues are calculated elementwise. The pro-
jection operators A

�

associated with each eigenvalue �

were already referenced in §II, but can now be properly
introduced as the A

�,0

matrices:

A
�

= A
�,0

(11)

=
1

2⇡i

I

C�

R(z; A)dz . (12)

Since R(z; A)’s elements are rational functions, as we
just showed, it is analytic except at a finite number of
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isolated singularities—at A’s eigenvalues. In light of the
residue theorem, this motivates the Cauchy-integral-like
formula that serves as the starting point for the mero-
morphic functional calculus:

f(A) =
X

�2⇤A

1

2⇡i

I

C�

f(z)R(z; A)dz . (13)

Let’s now consider several immediate consequences.

B. Decomposing the identity

Even the simplest applications of Eq. (13) yield insight.
Consider the identity as the operator function f(A) =
A0 = I that corresponds to the scalar function f(z) =
z0 = 1. Then, Eq. (13) implies:

I =
X

�2⇤A

1

2⇡i

I

C�

R(z; A)dz

=
X

�2⇤A

A
�

.

This shows that the projection operators are, in fact, a
decomposition of the identity, as anticipated in Eq. (2).

C. Dunford decomposition, decomposed

For f(A) = A, Eqs. (13) and (10) imply that:

A =
X

�2⇤A

1

2⇡i

I

C�

zR(z; A)dz

=
X

�2⇤A


� 1

2⇡i

I

C�

R(z; A)dz + 1

2⇡i

I

C�

(z � �)R(z; A)dz

�

=
X

�2⇤A

(�A
�,0

+ A
�,1

) . (14)

We denote the important set of nilpotent matrices A
�,1

that project onto the generalized eigenspaces by relabel-
ing them:

N
�

⌘ A
�,1

(15)

=
1

2⇡i

I

C�

(z � �)R(z; A)dz . (16)

Equation (14) is the unique Dunford decomposi-

tion [16]: A = D + N , where D ⌘
P

�2⇤A
�A

�

is di-
agonalizable, N ⌘

P
�2⇤A

N
�

is nilpotent, and D and N

commute: [D, N ] = 0. This is also known as the Jordan–

Chevalley decomposition.
The special case where A is diagonalizable implies that

N = 0. And so, Eq. (14) simplifies to:

A =
X

�2⇤A

�A
�

.

D. The resolvent, resolved

As shown in Ref. [14] and can be derived from Eqs. (12)
and (16):

A
�

A
⇣

= �
�,⇣

A
�

and

A
�

N
⇣

= �
�,⇣

N
�

.

Due to these, our spectral decomposition of the Dunford
decomposition implies that:

N
�

= A
�

⇣
A �

X

⇣2⇤A

⇣A
⇣

⌘

= A
�

�
A � �A

�

�

= A
�

�
A � �I

�
. (17)

Moreover:

A
�,m

= A
�

�
A � �I

�
m

. (18)

It turns out that for m > 0: A
�,m

= Nm

�

. (See also
Ref. [14, p. 483].) This leads to a generalization of the
projection operator orthonormality relations of Eq. (1).
Most generally, the operators of {A

�,m

} are mutually re-
lated by:

A
�,m

A
⇣,n

= �
�,⇣

A
�,m+n

. (19)

Finally, if we recall that the index ⌫
�

is the dimension of
the largest associated subspace, we find that the index
of � characterizes the nilpotency of N

�

: Nm

�

= 0 for
m � ⌫

�

. That is:

A
�,m

= 0 for m � ⌫
�

. (20)

Returning to Eq. (9), we see that all A
�,m

with m � ⌫
�

are zero-matrices and so do not contribute to the sum.
Thus, we can rewrite Eq. (9) as:

R(z; A) =
X

�2⇤A

⌫��1X

m=0

1

(z � �)m+1

A
�,m

(21)

or:

R(z; A) =
X

�2⇤A

⌫��1X

m=0

1

(z � �)m+1

A
�

�
A � �I

�
m

, (22)
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for z /2 ⇤
A

.
The following sections sometimes use A

�,m

in place of
A

�

�
A � �I

�
m

. This is helpful both for conciseness and
when applying Eq. (19). Nonetheless, the equality in
Eq. (18) is a useful one to keep in mind.

E. Meromorphic functional calculus

In light of Eq. (13), Eq. (21) together with Eq. (18)
allow us to express any function of an operator simply
and solely in terms of its spectrum (i.e., its eigenvalues
for the finite dimensional case), its projection operators,
and itself:

f(A) =
X

�2⇤A

⌫��1X

m=0

A
�,m

1

2⇡i

I

C�

f(z)

(z � �)m+1

dz . (23)

In obtaining Eq. (23) we finally derived Eq. (7), as
promised earlier in § III C. E↵ectively, by modulating the
modes associated with the resolvent’s singularities, the
scalar function f(·) is mapped to the operator domain,
where its action is expressed in each of A’s independent
subspaces.

F. Evaluating the residues

Interpretation aside, how does one use this result?
Equation (23) says that the spectral decomposition of
f(A) reduces to the evaluation of several residues, where:

Res
�
g(z), z ! �

�
=

1

2⇡i

I

C�

g(z) dz .

So, to make progress with Eq. (23), we must evaluate
function-dependent residues of the form:

Res
�
f(z)/(z � �)m+1, z ! �

�
.

If f(z) were holomorphic at each �, then the order of

the pole would simply be the power of the denomina-
tor. We could then use Cauchy’s di↵erential formula for
holomorphic functions:

f (n)(a) =
n!

2⇡i

I

Ca

f(z)

(z � a)n+1

dz , (24)

for f(z) holomorphic at a. And, the meromorphic cal-
culus would reduce to the holomorphic calculus. Often,
f(z) will be holomorphic at least at some of A’s eigenval-
ues. And so, Eq. (24) is still locally a useful simplification
in those special cases.

In general, though, f(z) introduces poles and zeros at
� 2 ⇤

A

that change their orders. This is exactly the im-
petus for the generalized functional calculus. The residue
of a complex-valued function g(z) around its isolated pole
� of order n + 1 can be calculated from:

Res
�
g(z), z ! �

�
=

1

n!
lim
z!�

dn

dzn
⇥
(z � �)n+1g(z)

⇤
.

G. Decomposing A

L

Equation (23) says that we can explicitly derive the
spectral decomposition of powers of the operator A. Of
course, we already did this for the special cases of A0 and
A1. The goal, though, is to do this in general.

For f(A) = AL ! f(z) = zL, z = 0 can be either a
zero or a pole of f(z), depending on the value of L. In
either case, an eigenvalue of � = 0 will distinguish itself
in the residue calculation of AL via its unique ability to
change the order of the pole (or zero) at z = 0. For
example, at this special value of � and for integer L > 0,
� = 0 induces poles that cancel with the zeros of f(z) =
zL, since zL has a zero at z = 0 of order L. For integer
L < 0, an eigenvalue of � = 0 increases the order of the
z = 0 pole of f(z) = zL. For all other eigenvalues, the
residues will be as expected. Hence, from Eq. (23) and
inserting f(z) = zL, for any L 2 C:

AL =

"
X

�2⇤A
� 6=0

⌫��1X

m=0

A
�

�
A � �I

�
m

=

1
m! limz!�

dm

dzm z

L
=

�L�m

m!

Qm
n=1(L�n+1)

z }| {✓
1

2⇡i

I

C�

zL

(z � �)m+1

dz

◆ #
+ [0 2 ⇤

A

]
⌫0�1X

m=0

A
0

Am

✓
1

2⇡i

I

C0

zL�m�1 dz

◆

| {z }
=�L,m

=

"
X

�2⇤A
� 6=0

⌫��1X

m=0

✓
L

m

◆
�L�mA

�

�
A � �I

�
m

#
+ [0 2 ⇤

A

]
⌫0�1X

m=0

�
L,m

A
0

Am , (25)
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where
�
L

m

�
is the generalized binomial coe�cient:

✓
L

m

◆
=

1

m!

mY

n=1

(L � n + 1) with

✓
L

0

◆
= 1 , (26)

and [0 2 ⇤
A

] is the Iverson bracket which takes on value
1 if zero is an eigenvalue of A and 0 if not. A

�,m

was
replaced by A

�

(A � �I)m to suggest the more explicit
calculations involved with evaluating any AL. Equation
(25) applies to any linear operator with only isolated sin-
gularities in its resolvent.

If L is a nonnegative integer such that L � ⌫
�

� 1 for
all � 2 ⇤

A

, then:

AL =
X

�2⇤A
� 6=0

⌫��1X

m=0

✓
L

m

◆
�L�mA

�,m

, (27)

where
�
L

m

�
is now reduced to the traditional binomial

coe�cient L!/(m!(L � m)!).

H. Drazin inverse

If L is any negative integer, then
��|L|

m

�
can be writ-

ten as a traditional binomial coe�cient (�1)m
�|L|+m�1

m

�
,

yielding:

A�|L| =
X

�2⇤A
� 6=0

⌫��1X

m=0

(�1)m
�|L|+m�1

m

�
��|L|�mA

�,m

, (28)

for � |L| 2 {�1, �2, �3, . . . }.
Thus, negative powers of an operator can be consis-

tently defined even for noninvertible operators. In light
of Eqs. (25) and (28), it appears that the zero eigen-
value does not even contribute to the function. It is well
known, in contrast, that it wreaks havoc on the naive,
oft-quoted definition of a matrix’s negative power:

A�1

?

=
adj(A)

det(A)
=

adj(A)Q
�2⇤A

�a�
,

since this would imply dividing by zero. If we can accept
large positive powers of singular matrices—for which the
zero eigenvalue does not contribute—it seems fair to also
accept negative powers that likewise involve no contribu-
tion from the zero eigenvalue.

Editorializing aside, we note that extending the defi-
nition of A�1 to the domain including singular operators

via Eqs. (25) and (28) implies that:

A|L|A�|`| = A�|`|A|L|

= A|L|�|`| for |L| � |`| + ⌫
0

,

which is a very sensible and desirable condition. More-
over, we find that AA�1 = I � A

0

.
Specifically, the negative-one power of any square ma-

trix is in general not the same as the matrix inverse since
inv(A) need not exist. However, it is consistently defined
via Eq. (28) to be:

A�1 =
X

�2⇤A\{0}

⌫��1X

m=0

(�1)m��1�mA
�,m

. (29)

This is the Drazin inverse AD of A. Note that it is not

the same as the Moore–Penrose pseudo-inverse [28, 29].
Although the Drazin inverse is usually defined ax-

iomatically to satisfy certain criteria [30], it is naturally
derived as the negative one power of a singular oper-
ator in the meromorphic functional calculus. We can
check that it indeed satisfies the axiomatic criteria for
the Drazin inverse, enumerated according to historical
precedent:

(1⌫0) A⌫0ADA = A⌫0

(2) ADAAD = AD

(5) [A, AD] = 0 ,

which gives rise to the Drazin inverse’s moniker as the
{1⌫0 , 2, 5}-inverse [30].

While A�1 always exists, the resolvent is nonanalytic
at z = 0 for a singular matrix. E↵ectively, the mero-
morphic functional calculus removes the nonanalyticity
of the resolvent in evaluating A�1. As a result, as we
can see from Eq. (29), the Drazin inverse inverts what is
invertible; the remainder is zeroed out.

Of course, whenever A is invertible, A�1 is equal to
inv(A). However, we should not confuse this coincidence
with equivalence. Moreover, despite historic notation
there is no reason that the negative-one power should
in general be equivalent to the inverse. Especially, if an
operator is not invertible! To avoid confusing A�1 with
inv(A), we use the notation AD for the Drazin inverse of
A. Still, AD = inv(A), whenever 0 /2 ⇤

A

.
Amusingly, this extension of previous calculi lets us

resolve an elementary but fundamental question: What
is 0�1? It is certainly not infinity. Indeed, it is just as
close to negative infinity! Rather: 0�1 = 0 6= inv(0).

Although Eq. (29) is a constructive way to build the
Drazin inverse, it imposes more work than is actually
necessary. Using the meromorphic functional calculus,
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we can derive a new, simple construction of the Drazin
inverse that requires only the original operator and the
eigenvalue-0 projector.

First, assume that � is an isolated singularity of
R(z; A) with finite separation at least ✏ distance from
the nearest neighboring singularity. And, consider the
operator-valued function f ✏

�

defined via the RHS of:

A
�

= f ✏

�

(A)

= 1

2⇡i

I

�+✏e

i�

(⇣I � A)�1 d⇣ ,

with �+✏ei� defining an ✏-radius circular contour around
�. Then we see that:

f ✏

�

(z) = 1

2⇡i

I

�+✏e

i�

(⇣ � z)�1 d⇣

=
⇥
z 2 C : |z � �| < ✏

⇤
, (30)

where [z 2 C : |z � �| < ✏] is the Iverson bracket that
takes on value 1 if z is within ✏-distance of � and 0 if not.

Second, we use this to find that, for any c 2 C \ {0}:

(A + cA
0

)�1 =
X

�2⇤A

⌫��1X

m=0

A
�,m

1

2⇡i

I

C�

�
z + cf ✏

0

(z)
��1

(z � �)m+1

dz

= AD +
⌫0�1X

m=0

A
0

Am

1

2⇡i

I

C0

(z + c)�1

zm+1

= AD +
⌫0�1X

m=0

A
0

Am(�1)m/cm+1 , (31)

where we asserted that the contour C
0

exists within the
finite ✏-ball about the origin.

Third, we note that A + cA
0

is invertible for all c 6= 0;
this can be proven by multiplying each side of Eq. (31)
by A + cA

0

. Hence, (A + cA
0

)�1 = inv(A + cA
0

) for all
c 6= 0.

Finally, multiplying each side of Eq. (31) by I � A
0

,
and recalling that A

0,0

A
0,m

= A
0,m

, we find a useful
expression for calculating the Drazin inverse of any linear
operator A, given only A and A

0

. Specifically:

AD = (I � A
0

)(A + cA
0

)�1 . (32)

which is valid for any c 2 C \ {0}. Eq. (32) generalizes
the result found specifically for c = �1 in Ref. [31].

For the special case of c = �1, it is worthwhile to
also consider the alternative construction of the Drazin
inverse implied by Eq. (31):

AD = (A � A
0

)�1 + A
0

⇣⌫0�1X

m=0

Am

⌘
. (33)

By a spectral mapping (� ! 1 � �, for � 2 ⇤
T

), the
Perron–Frobenius theorem and Eq. (31) yield an im-
portant consequence for any stochastic matrix T . The
Perron–Frobenius theorem guarantees that T ’s eigenval-
ues along the unit circle are associated with a diagonal-
izable subspace. In particular, ⌫

1

= 1. Spectral mapping
of this result means that T ’s eigenvalue 1 maps to the
eigenvalue 0 of I � T and T

1

= (I � T )
0

. Moreover:

[(I � T ) + T
1

]�1 = (I � T )D + T
1

,

since ⌫
0

= 1. This corollary of Eq. (31) (with c = 1)
corresponds to a number of important and well known
results in the theory of Markov processes. Indeed, Z ⌘
(I � T + T

1

)�1 is called the fundamental matrix in that
setting [32].

I. Consequences and generalizations

For an infinite-rank operator A with a continuous spec-
trum, the meromorphic functional calculus has the nat-
ural generalization:

f(A) =
1

2⇡i

I

C⇤A

f(z)(zI � A)�1 dz , (34)

where the contour C
⇤A encloses the (possibly continu-

ous) spectrum of A without including any unbounded
contributions from f(z) outside of C

⇤A . The function
f(z) is expected to be meromorphic within C

⇤A . This
again deviates from the holomorphic approach, since the
holomorphic functional calculus requires that f(z) is an-
alytic in a neighborhood around the spectrum; see § VII
of Ref. [33].

In either the finite- or infinite-rank case, whenever f(z)
is analytic in a neighborhood around the spectrum, the
meromorphic functional calculus agrees with the holo-
morphic. Whenever f(z) is not analytic in a neighbor-
hood around the spectrum, the function is undefined in
the holomorphic approach. In contrast, the meromorphic
approach extends the function to the operator-valued do-
main, and does so with novel consequences.

In particular, when f(z) is not analytic in a neigh-

borhood around the spectrum—say f(z) is nonanalytic
within A’s spectrum at ⌅

f

⇢ ⇤
A

—then we expect to lose
both homomorphism and spectral mapping properties:

• Loss of homomorphism: f
1

(A)f
2

(A) 6= (f
1

�f
2

)(A);

• Loss of naive spectral mapping: f(⇤
A

\ ⌅
f

) ⇢
⇤
f(A)

.

A simple example of both losses arises with the Drazin
inverse, above. There, f

1

(z) = z�1. Taking this and
f
2

(z) = z combined with singular operator A leads to
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the loss of homomorphism: ADA 6= I. As for the second
property, the spectral mapping can be altered for the
candidate spectra at ⌅

f

via pole–pole or pole–zero inter-
actions in the complex contour integral. For f(A) = A�1,
how does A’s eigenvalue of 0 get mapped into the new
spectrum of AD? A naive application of the spectral
mapping theorem might seem to yield an undefined quan-
tity. But, using the meromorphic functional calculus self-
consistently maps the eigenvalue as 0�1 = 0. It remains
to be explored whether the full spectral mapping is pre-
served for any function f(A) under the meromorphic in-
terpretation of f(�).

It should now be apparent that extending functions
via the meromorphic functional calculus allows one to
express novel mathematical properties, some likely capa-
ble of describing new physical phenomena. At the same
time, extra care is necessary. The situation is reminiscent
of the loss of commutativity in non-Abelian operator al-
gebra: not all of the old rules apply, but the gain in
nuance allows for mathematical description of important
phenomena.

We chose to focus primarily on the finite-rank case
here since it is su�cient to demonstrate the utility of
the general projection-operator formalism. Indeed, there
are ample nontrivial applications in the finite-rank set-
ting that deserve attention. To appreciate these, we now
turn to address the construction and properties of general
eigenprojectors.

V. CONSTRUCTING DECOMPOSITIONS

At this point, we see that projection operators are fun-
damental to functions of an operator. This prompts the
practical question of how to actually calculate them. The
next several sections address this by deriving expressions
with both theoretical and applied use. We first address
the projection operators associated with index-one eigen-
values. We then explicate the relationship between eigen-
vectors, generalized eigenvectors, and projection oper-
ators for normal, diagonalizable, and general matrices.
Finally, we address how the general results specialize in
several common cases of interest. After these, we turn to
examples and applications.

A. Projection operators of index-one eigenvalues

To obtain the projection operators associated with
each index-one eigenvalue � 2 {⇣ 2 ⇤

A

: ⌫
⇣

= 1}, we
apply the meromorphic calculus to an appropriately cho-

sen function of A, finding:

Y

⇣2⇤A
⇣ 6=�

(A � ⇣I)⌫⇣ =
X

⇠2⇤A

⌫⇠�1X

m=0

A
⇠,m

2⇡i

I

C⇠

Q
⇣2⇤A
⇣ 6=�

(z � ⇣)⌫⇣

(z � ⇠)m+1

dz

= A
�

1

2⇡i

I

C�

Q
⇣2⇤A
⇣ 6=�

(z � ⇣)⌫⇣

z � �
dz

= A
�

Y

⇣2⇤A
⇣ 6=�

(� � ⇣)⌫⇣ .

Therefore, if ⌫
�

= 1:

A
�

=
Y

⇣2⇤A
⇣ 6=�

✓
A � ⇣I

� � ⇣

◆
⌫⇣

. (35)

As convenience dictates in our computations, we let ⌫
⇣

!
a
⇣

�g
⇣

+1 or even ⌫
⇣

! a
⇣

in Eq. (35), since multiplying
A

�

by (A � ⇣I)/(� � ⇣) has no e↵ect for ⇣ 2 ⇤
A

\ {�} if
⌫
�

= 1.
Equation (35) generalizes a well known result that ap-

plies when the index of all eigenvalues is one. That is,
when the operator is diagonalizable, we have:

A
�

=
Y

⇣2⇤A
⇣ 6=�

A � ⇣I

� � ⇣
.

To the best of our knowledge, Eq. (35) is original.
Since eigenvalues can have index larger than one, not

all projection operators of a nondiagonalizable operator
can be found directly from Eq. (35). Even so, it serves
three useful purposes. First, it gives a practical reduction
of the eigen-analysis by finding all projection operators of
index-one eigenvalues. Second, if there is only one eigen-
value that has index larger than one—what we call the
almost diagonalizable case—then Eq. (35), together with
the fact that the projection operators must sum to the
identity, does give a full solution to the set of projection
operators. Third, Eq. (35) is a powerful theoretical tool
that we can use directly to spectrally decompose func-
tions, for example, of a stochastic matrix whose eigen-
values on the unit circle are guaranteed to be index-one
by the Perron–Frobenius theorem.

Although index-one expressions have some utility, we
need a more general procedure to obtain all projection
operators of any linear operator. Recall that, with full
generality, projection operators can also be calculated
directly via residues, as in Eq. (12).

An alternative procedure—one that extends a method
familiar at least in quantum mechanics—is to obtain the
projection operators via eigenvectors. However, quan-
tum mechanics always concerns itself with a subset of
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diagonalizable operators. What is the necessary gener-
alization? For one, left and right eigenvectors are no
longer simply conjugate transposes of each other. More
severely, a full set of spanning eigenvectors is no longer
guaranteed and we must resort to generalized eigenvec-
tors. Since the relationships among eigenvectors, gener-
alized eigenvectors, and projection operators are critical
to the practical calculation of many physical observables
of complex systems, we collect these results in the next
section.

B. Eigenvectors, generalized eigenvectors, and
projection operators

Two common questions regarding projection operators
are: Why not just use eigenvectors? And, why not use
the Jordan canonical form? First, the eigenvectors of
a defective matrix do not form a complete basis with
which to expand an arbitrary vector. One needs general-
ized eigenvectors for this. Second, some functions of an
operator require removing, or otherwise altering, the con-
tribution from select eigenspaces. This is most adroitly
handled with the projection operator formalism where
di↵erent eigenspaces (correlates of Jordan blocks) can ef-
fectively be treated separately. Moreover, even for simple
cases where eigenvectors su�ce, the projection operator
formalism simply can be more calculationally or mathe-
matically convenient.

That said, it is useful to understand the relationship
between projection operators and generalized eigenvec-
tors. For example, it is often useful to create projection
operators from generalized eigenvectors. This section
clarifies their connection using the language of matrices.
In the most general case, we show that the projection
operator formalism is usefully concise.

1. Normal matrices

Unitary, Hermitian, skew-Hermitian, orthogonal, sym-
metric, and skew-symmetric matrices are all special cases
of normal matrices. As noted, normal matrices are those
that commute with their Hermitian adjoint (complex-
conjugate transpose): AA† = A†A. Moreover, a matrix is
normal if and only if it can be diagonalized by a unitary
transformation: A = U⇤U †, where the columns of the
unitary matrix U are the orthonormal right eigenvectors
of A corresponding to the eigenvalues ordered along the
diagonal matrix ⇤. For an M -by-M matrix A, the eigen-
values in ⇤

A

are ordered and enumerated according to
the possibly degenerate M -tuple (⇤

A

) = (�
1

, . . . , �
M

).
Since an eigenvalue � 2 ⇤

A

has algebraic multiplicity

a
�

� 1, � appears a
�

times in the ordered tuple.
Assuming A is normal, each projection operator A

�

can be constructed as the sum of all ket–bra pairs of right-
eigenvectors corresponding to � composed with their con-
jugate transpose. We later introduce bras and kets more
generally via generalized eigenvectors of the operator A

and its dual A>. However, since the complex-conjugate
transposition rule between dual spaces is only applicable
to a ket basis derived from a normal operator, we put o↵
using the bra-ket notation for now so as not to confuse
the more familiar “normal” case with the general case.

To explicitly demonstrate this relationship between
projection operators, eigenvectors, and their Hermitian
adjoints in the case of normality, observe that:

A = U⇤U†

=
⇥
~u
1

~u
2

· · · ~u
M

⇤

2

6664

�
1

0 · · · 0
0 �

2

· · · 0
...

...
. . .

...
0 0 · · · �

M

3

7775

2

66664

~u†
1

~u†
2

...

~u†
M

3

77775

=
⇥
�
1

~u
1

�
2

~u
2

· · · �
M

~u
M

⇤

2

66664

~u†
1

~u†
2

...

~u†
M

3

77775

=
MX

j=1

�
j

~u
j

~u†
j

=
X

�2⇤A

�A
�

.

Evidently, for normal matrices A:

A
�

=
MX

j=1

�
�,�j~uj

~u†
j

.

And, since ~u†
i

~u
j

= �
i,j

, we have an orthogonal set
{A

�

}
�2⇤A with the property that:

A
⇣

A
�

=
MX

i=1

MX

j=1

�
⇣,�i��,�j~ui

~u†
i

~u
j

~u†
j

=
MX

i=1

MX

j=1

�
⇣,�i��,�j~ui

�
i,j

~u†
j

=
MX

i=1

�
⇣,�i��,�i~ui

~u†
i

= �
⇣,�

A
�

.
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Moreover:

X

�2⇤A

A
�

=
MX

j=1

~u
j

~u†
j

= UU†

= I ,

and so on. All of the expected properties of projection
operators can be established again in this restricted set-
ting.

The rows of U�1 = U† are A’s left-eigenvectors. In this
case, they are simply the conjugate transpose of the right-
eigenvector. Note that conjugate transposition is the fa-
miliar transformation rule between ket and bra spaces in
quantum mechanics (see e.g., Ref. [34])—a consequence
of the restriction to normal operators, as we will show.
Importantly, a more general formulation of quantum me-
chanics would not have this same restricted correspon-
dence between the dual ket and bra spaces.

To elaborate on this point, recall that vector spaces
admit dual spaces and dual bases. However, there is no
sense of a dual correspondence of a single ket or bra with-
out reference to a full basis [15]. Implicitly in quantum
mechanics, the basis is taken to be the basis of eigenstates
of any Hermitian operator, nominally since observables
are self-adjoint.

To allude to an alternative, we note that ~u†
j

~u
j

is not
only the Hermitian form of inner product h~u

j

, ~u
j

i (where
h·, ·i denotes the inner product) of the right eigenvec-
tor ~u

j

with itself, but importantly also the simple dot-
product of the left eigenvector ~u†

j

and the right eigen-

vector ~u
j

, where ~u†
j

acts as a linear functional on ~u
j

.
Contrary to the substantial e↵ort devoted to the inner-
product-centric theory of Hilbert spaces, this latter in-
terpretation of ~u†

j

~u
j

—in terms of linear functionals and a
left-eigenvector basis for linear functionals—is what gen-
eralizes to a consistent and constructive framework for
the spectral theory beyond normal operators, as we will
see shortly.

2. Diagonalizable matrices

By definition, diagonalizable matrices can be diagonal-
ized, but not necessarily via a unitary transformation.
All diagonalizable matrices can nevertheless be diagonal-
ized via the transformation: A = P⇤P�1, where the
columns of the square matrix P are the not-necessarily-
orthogonal right eigenvectors of A corresponding to the
eigenvalues ordered along the diagonal matrix ⇤ and
where the rows of P�1 are A’s left eigenvectors. Impor-
tantly, the left eigenvectors need not be the Hermitian

adjoint of the right eigenvectors. As a particular exam-
ple, this more general setting is required for almost any
transition dynamic of a Markov chain. In other words,
the transition dynamic of any interesting complex net-
work with irreversible processes serves as an example of
a nonnormal operator.

Given the M -tuple of possibly-degenerate eigen-
values (⇤

A

) = (�
1

, �
2

, . . . , �
M

), there is a cor-
responding M -tuple of linearly-independent right-
eigenvectors (|�

1

i , |�
2

i , . . . , |�
M

i) and a correspond-
ing M -tuple of linearly-independent left-eigenvectors
(h�

1

| , h�
2

| , . . . , h�
M

|) such that:

A |�
j

i = �
j

|�
j

i

and:

h�
j

| A = �
j

h�
j

|

with the orthonormality condition that:

h�
i

|�
j

i = �
i,j

.

To avoid misinterpretation, we stress that the bras and
kets that appear above are the left and right eigenvectors,
respectively, and typically do not correspond to complex-
conjugate transposition.

With these definitions in place, the projection opera-
tors for a diagonalizable matrix can be written:

A
�

=
MX

j=1

�
�,�j |�

j

i h�
j

| .

Then:

A =
X

�2⇤A

�A
�

=
MX

j=1

�
j

|�
j

i h�
j

|

=
⇥
�
1

|�
1

i �
2

|�
2

i · · · �
M

|�
M

i
⇤

2

6664

h�
1

|
h�

2

|
...

h�
M

|

3

7775

=
⇥
|�

1

i |�
2

i · · · |�
M

i
⇤

2

6664

�
1

0 · · · 0
0 �

2

· · · 0
...

...
. . .

...
0 0 · · · �

M

3

7775

2

6664

h�
1

|
h�

2

|
...

h�
M

|

3

7775

= P⇤P�1 .

So, we see that the projection operators introduced ear-
lier in a coordinate-free manner have a concrete repre-
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sentation in terms of left and right eigenvectors when
the operator is diagonalizable.

3. Any matrix

Not all matrices can be diagonalized, but all square
matrices can be put into Jordan canonical form via the
transformation: A = Y JY �1 [17]. Here, the columns
of the square matrix Y are the linearly independent
right eigenvectors and generalized right eigenvectors cor-
responding to the Jordan blocks ordered along the diag-
onal of the block-diagonal matrix J . And, the rows of
Y �1 are the corresponding left eigenvectors and gener-
alized left eigenvectors, but reverse-ordered within each
block, as we will show.

Let there be n Jordan blocks forming the n-tuple
(J

1

, J
2

, . . . , J
n

), with 1  n  M . The kth Jordan
block J

k

has dimension m
k

-by-m
k

:

J
k

=

2

6666666664

�
k

1 0 · · · 0 0 0
0 �

k

1 0 0
0 �

k

0
...

. . .
. . .

...
0 �

k

1 0
0 0 0 �

k

1
0 0 0 · · · 0 �

k

3

7777777775

9
>>>>>>>>>=

>>>>>>>>>;
| {z }

mk columns

m
k

rows

such that:

nX

k=1

m
k

= M .

Note that eigenvalue � 2 ⇤
A

corresponds to g
�

di↵er-
ent Jordan blocks, where g

�

is the geometric multiplicity
of the eigenvalue �. Indeed:

n =
X

�2⇤A

g
�

.

Moreover, the index ⌫
�

of the eigenvalue � is defined as
the size of the largest Jordan block corresponding to �.
So, we write this in the current notation as:

⌫
�

= max{�
�,�km

k

}n
k=1

.

If the index of any eigenvalue is greater than one,
then the conventional eigenvectors do not span the M -
dimensional vector space. However, the set of M gen-
eralized eigenvectors does form a basis for the vector
space [35].

Given the n-tuple of possibly-degenerate eigenvalues
(⇤

A

) = (�
1

, �
2

, . . . , �
n

), there is a corresponding n-

tuple of m
k

-tuples of linearly-independent generalized
right-eigenvectors:

⇣
(|�(m)

1

i)m1
m=1

, (|�(m)

2

i)m2
m=1

, . . . , (|�(m)

n

i)mn
m=1

⌘
,

where:

(|�(m)

k

i)mk
m=1

⌘
⇣
|�(1)

k

i , |�(2)

k

i , . . . , |�(mk)

k

i
⌘

and a corresponding n-tuple of m
k

-tuples of linearly-
independent generalized left-eigenvectors:

⇣
(h�(m)

1

|)m1
m=1

, (h�(m)

2

|)m2
m=1

, . . . , (h�(m)

n

|)mn
m=1

⌘
,

where:

(h�(m)

k

|)mk
m=1

⌘
⇣
h�(1)

k

| , h�(2)

k

| , . . . , h�(mk)

k

|
⌘

such that:

(A � �
k

I) |�(m+1)

k

i = |�(m)

k

i (36)

and:

h�(m+1)

k

| (A � �
k

I) = h�(m)

k

| , (37)

for 0  m  m
k

� 1, where |�(0)

j

i = ~0 and h�(0)

j

| = ~0.

Specifically, |�(1)

k

i and h�(1)

k

| are conventional right and
left eigenvectors, respectively.

Most directly, the generalized right and left eigenvec-
tors can be found as the nontrivial solutions to:

(A � �
k

I)m |�(m)

k

i = ~0

and:

h�(m)

k

| (A � �
k

I)m = ~0 ,

respectively.
It should be clear from Eq. (36) and Eq. (37) that:

h�(m)

k

|(A � �
k

I)`|�(n)

k

i = h�(m�`)

k

|�(n)

k

i

= h�(m)

k

|�(n�`)

k

i ,

for m, n, 2 {0, 1, . . . , m
k

} and ` � 0. At the same time,
it is then easy to show that:

h�(m)

k

|�(n)

k

i = h�(m+n)

k

|�(0)

k

i = 0, if m + n  m
k

,

where m, n 2 {0, 1, . . . , m
k

}. Imposing appropriate nor-
malization, we find that:

h�(m)

j

|�(n)

k

i = �
j,k

�
m+n,mk+1

. (38)
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Hence, we see that the left eigenvectors and generalized
eigenvectors are a dual basis to the right eigenvectors and
generalized eigenvectors. Interestingly though, within
each Jordan subspace, the most generalized left eigenvec-

tors are dual to the least generalized right eigenvectors,
and vice versa.

(To be clear, in this terminology “least generalized”
eigenvectors are the standard eigenvectors. For exam-
ple, the h�(1)

k

| satisfying the standard eigenvector re-

lation h�(1)

k

| A = �
k

h�(1)

k

| is the least generalized left
eigenvector of subspace k. By way of comparison, the
“most generalized”’ right eigenvector of subspace k is
|�(mk)

k

i satisfying the most generalized eigenvector rela-

tion (A � �
k

I) |�(mk)

k

i = |�(mk�1)

k

i for subspace k. The
orthonormality relation shows that the two are dual cor-
respondents: h�(1)

k

|�(mk)

k

i = 1, while all other eigen-bra–
eigen-ket closures utilizing these objects are null.)

With these details worked out, we find that the pro-
jection operators for a nondiagonalizable matrix can be
written as:

A
�

=
nX

k=1

mkX

m=1

�
�,�k |�(m)

k

i h�(mk+1�m)

k

| . (39)

And, we see that a projection operator includes all of its
left and right eigenvectors and all of its left and right
generalized eigenvectors. This implies that the identity
operator must also have a decomposition in terms of both
eigenvectors and generalized eigenvectors:

I =
X

�2⇤A

A
�

=
nX

k=1

mkX

m=1

|�(m)

k

i h�(mk+1�m)

k

| .

Let
⇥
|�(m)

k

i
⇤
mk

m=1

denote the column vector:

⇥
|�(m)

k

i
⇤
mk

m=1

=

2

664

|�(1)

k

i
...

|�(mk)

k

i

3

775 ,

and let
⇥
h�(mk+1�m)

k

|
⇤
mk

m=1

denote the column vector:

⇥
h�(mk+1�m)

k

|
⇤
mk

m=1

=

2

664

h�(mk)

k

|
...

h�(1)

k

|

3

775 .

Then, using the above results, and the fact that Eq. (37)

implies that h�(m+1)

k

| A = �
k

h�(m+1)

k

|+ h�(m)

k

|, we derive
the explicit generalized-eigenvector decomposition of the

nondiagonalizable operator A:

A =
� X

�2⇤A

A
�

�
A

=
nX

k=1

mkX

m=1

|�(m)

k

i h�(mk+1�m)

k

| A

=
nX

k=1

mkX

m=1

|�(m)

k

i
⇣
�
k

h�(mk+1�m)

k

| + h�(mk�m)

k

|
⌘

=

2

66664

⇥
|�(m)

1

i
⇤
m1

m=1⇥
|�(m)

2

i
⇤
m2

m=1

...⇥
|�(m)

n

i
⇤
mn

m=1

3

77775

>2

6664

J
1

0 · · · 0
0 J

2

· · · 0
...

...
. . .

...
0 0 · · · J

n

3

7775

2

66664

⇥
h�(m1+1�m)

1

|
⇤
m1

m=1⇥
h�(m2+1�m)

2

|
⇤
m2

m=1

...⇥
h�(mn+1�m)

n

|
⇤
mn

m=1

3

77775

= Y JY �1 ,

where, defining Y as:

Y =

2

66664

⇥
|�(m)

1

i
⇤
m1

m=1⇥
|�(m)

2

i
⇤
m2

m=1

...⇥
|�(m)

n

i
⇤
mn

m=1

3

77775

>

,

we are forced by Eq. (38) to recognize that:

Y �1 =

2

66664

⇥
h�(m1+1�m)

1

|
⇤
m1

m=1⇥
h�(m2+1�m)

2

|
⇤
m2

m=1

...⇥
h�(mn+1�m)

n

|
⇤
mn

m=1

3

77775

since then Y �1Y = I, and we recall that the inverse is
guaranteed to be unique.

The above demonstrates an explicit construction for
the Jordan canonical form. One advantage we learn from
this explicit decomposition is that the complete set of left
eigenvectors and left generalized eigenvectors (encapsu-
lated in Y �1) can be obtained from the inverse of the
matrix of the complete set of right eigenvectors and gen-
eralized right eigenvectors (encoded in Y ) and vice versa.
One unexpected lesson, though, is that the generalized
left eigenvectors appear in reverse order within each Jor-
dan block.

Using Eqs. (39) and (18) with Eq. (37), we see that
the nilpotent operators A

�,m

with m > 0 further link the
various generalized eigenvectors within each subspace k.
Said more suggestively, generalized modes of a nondiag-
onalizable subspace are necessarily cooperative.

It is worth noting that the left eigenvectors and gen-
eralized left eigenvectors form a basis for all linear func-
tionals of the vector space spanned by the right eigen-
vectors and generalized right eigenvectors. Moreover, the
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left eigenvectors and generalized left eigenvectors are ex-
actly the dual basis to the right eigenvectors and gener-
alized right eigenvectors by their orthonormality proper-
ties. However, neither the left nor right eigen-basis is a
priori more fundamental to the operator. Sympatheti-
cally, the right eigenvectors and generalized eigenvectors
form a (dual) basis for all linear functionals of the vector
space spanned by the left eigenvectors and generalized
eigenvectors.

4. Simplified calculi for special cases

In special cases, the meromorphic functional calculus
reduces the general expressions above to markedly sim-
pler forms. And, this can greatly expedite practical cal-
culations and provide physical intuition. Here, we show
which reductions can be used under which assumptions.

For functions of operators with a countable spectrum,
recall that the general form of the meromorphic func-
tional calculus is:

f(A) =
X

�2⇤A

⌫��1X

m=0

A
�,m

1

2⇡i

I

C�

f(z)

(z � �)m+1

dz . (40)

Equations (18) and (39) gave the method to calculate
A

�,m

in terms of eigenvectors and generalized eigenvec-
tors.

When the operator is diagonalizable (not necessarily
normal), this reduces to:

f(A) =
X

�2⇤A

A
�

1

2⇡i

I

C�

f(z)

(z � �)
dz , (41)

where A
�

can now be constructed from conventional right
and left eigenvectors, although h�

j

| is not necessarily the
conjugate transpose of |�

j

i.
When the function is analytic on the spectrum of the

(not necessarily diagonalizable) operator, then our func-
tional calculus reduces to the holomorphic functional cal-
culus:

f(A) =
X

�2⇤A

⌫��1X

m=0

f (m)(�)

m!
A

�,m

. (42)

When the function is analytic on the spectrum of a
diagonalizable (not necessarily normal) operator this re-
duces yet again to:

f(A) =
X

�2⇤A

f(�)A
�

. (43)

When the function is analytic on the spectrum of a
diagonalizable (not necessarily normal) operator with no

degeneracy this reduces even further to:

f(A) =
X

�2⇤A

f(�)
|�i h�|
h�|�i . (44)

Finally, recall that an operator is normal when it com-
mutes with its conjugate transpose. If the function is
analytic on the spectrum of a normal operator, then we
recover the simple form enabled by the spectral theo-
rem of normal operators familiar in physics. That is,
Eq. (43) is applicable, but now we have the extra sim-
plification that h�

j

| is simply the conjugate transpose of

|�
j

i: h�
j

| = |�
j

i†.

VI. EXAMPLES AND APPLICATIONS

To illustrate the use and power of the meromorphic
functional calculus, we now adapt it to analyze a suite of
applications from quite distinct domains. First, we point
to a set of example calculations for finite-dimensional op-
erators of stochastic processes. Second, we show that
the familiar Poisson process is intrinsically nondiagonal-
izable, and hint that nondiagonalizability may be com-
mon more generally in semi-Markov processes. Third,
we illustrate how commonly the Drazin inverse arises
in nonequilibrium thermodynamics, giving a roadmap to
developing closed-from expressions for a number of key
observables. Fourth, we turn to signal analysis and com-
ment on power spectra of processes generated by non-
diagonalizable operators. Finally, we round out the ap-
plications with a general discussion of Ruelle–Frobenius–
Perron and Koopman operators for nonlinear dynamical
systems.

A. Spectra of stochastic transition operators

The preceding employed the notation that A represents
a general linear operator. In the following examples, we
reserve the symbol T for the operator of a stochastic tran-
sition dynamic. If the state-space is finite and has a sta-
tionary distribution, then T has a representation that is
a nonnegative row-stochastic—all rows sum to unity—
transition matrix.

The transition matrix’s nonnegativity guarantees that
for each � 2 ⇤

T

its complex conjugate � is also in ⇤
T

.
Moreover, the projection operator associated with the
complex conjugate of � is the complex conjugate of T

�

:
T
�

= T
�

.
If the dynamic induced by T has a stationary distribu-

tion over the state space, then the spectral radius of T is
unity and all of T ’s eigenvalues lie on or within the unit
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circle in the complex plane. The maximal eigenvalues
have unity magnitude and 1 2 ⇤

T

. Moreover, an exten-
sion of the Perron–Frobenius theorem guarantees that
eigenvalues on the unit circle have algebraic multiplicity
equal to their geometric multiplicity. And, so, ⌫

⇣

= 1 for
all ⇣ 2 {� 2 ⇤

T

: |�| = 1}.
T ’s index-one eigenvalue of � = 1 is associated with

stationarity of the associated Markov process. T ’s other
eigenvalues on the unit circle are roots of unity and cor-
respond to deterministic periodicities within the process.

All of these results carry over from discrete to contin-
uous time. In continuous time, where etG = T

t0!t0+t

,
T ’s stationary eigenvalue of unity maps to G’s station-
ary eigenvalue of zero. If the dynamic has a stationary
distribution over the state space, then the rate matrix G

is row-sum zero rather than row-stochastic. T ’s eigenval-
ues, on or within the unit circle, map to G’s eigenvalues
with nonpositive real part in the left-hand side of the
complex plane.

To reduce ambiguity in the presence of multiple oper-
ators, functions of operators, and spectral mapping, we
occasionally denote eigenvectors with subscripted opera-
tors on the eigenvalues within the bra or ket. For exam-
ple, |0

G

i = |1
T

i 6= |0Gi = |1T i 6= |0
T

i disambiguates the
identification of |0i when we have operators G, T , G, and
T with T = e⌧G, T = e⌧G , and 0 2 ⇤

G

, ⇤G , ⇤
T

.

B. Randomness and memory in correlated
processes

The generalized spectral theory developed here has
recently been applied to give the first closed-form ex-
pressions for many measures of complexity for stochastic
processes that can be generated by probabilistic finite
automata [21]. Rather than belabor the Kolmogorov–
Chaitin notion of complexity which is inherently uncom-
putable [36], the new analytic framework infuses compu-

tational mechanics [37] with a means to compute very
practical answers about an observed system’s organiza-
tion and the challenges of prediction.

For example, we can now answer the obvious questions
regarding prediction: How random is a process? How
much information is shared between the past and the fu-
ture? How far into the past must we look to predict what
is predictable about the future? How much about the
observed history must be remembered to predict what is
predictable about the future? And so on. The Supple-
mentary Materials of Ref. [21] exploit the meromorphic
functional calculus to answer these (and more) questions
for the symbolic dynamics of a chaotic map, the space-
time domain for an elementary cellular automata, and
the chaotic crystallographic structure of a close-packed

polytypic material as determined from experimental X-
ray di↵ractograms.

In the context of the current exposition, the most no-
table feature of the analyses across these many domains is
that our imposed questions, which entail tracking an ob-
server’s state of knowledge about a process, necessarily
induce a nondiagonalizable metadynamic that becomes
the central object of analysis in each case. (This meta-
dynamic is the so-called mixed-state presentation of Refs.
[38, 39].)

This theme, and the inherent nondiagonalizability of
prediction, is explored in greater depth elsewhere [40].
We also found that another nondiagonalizable dynamic
is induced even in the context of quantum communica-
tion when determining how much memory reduction can
be achieved if we generate a classical stochastic process
using quantum mechanics [22].

We mention the above nondiagonalizable metadynam-
ics primarily as a pointer to concrete worked-out exam-
ples where the meromorphic functional calculus has been
employed to analyze finitary hidden Markov processes via
explicitly calculated, generalized eigenvectors and projec-
tion operators. We now return to a more self-contained
discussion, where we show that nondiagonalizability can
be induced by the simple act of counting. Moreover,
the theory developed is then applied to deliver quick and
powerful results.

C. Poisson processes

The meromorphic functional calculus leads naturally
to a novel perspective on the familiar Poisson counting
process—a familiar stochastic process class used widely
across physics and other quantitative sciences to describe
“completely random” event durations that occur over a
continuous domain [41–44]. The calculus shows that the
Poisson distribution arises as the signature of a simple
nondiagonalizable dynamic. More to the point, we de-
rive the Poisson distribution directly, without requiring
the limit of the discrete-time binomial distribution, as
conventionally done [24].

Consider all possible counts, up to some arbitrarily
large integer N . The dynamics among these first N + 1
counter states constitute what can be called the trun-

cated Poisson dynamic; cf. Refs. [45–47]. We recover
the full Poisson process as N ! 1. A Markov chain for
the truncated Poisson dynamic is shown in Fig. 1. The
corresponding rate matrix G, for any arbitrarily large
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FIG. 1: Explicit Markov-chain representation of the
continuous-time truncated Poisson dynamic, giving
interstate transition rates r among the first N + 1

counter-states. Taking the limit of N ! 1 recovers the
full Poisson counting process. The process can either be

time-homogeneous (transition-rate parameter r is
time-independent) or time-inhomogeneous (parameter r

is time-dependent). The associated rate matrix G is
nondiagonalizable due to the isolated eigenvalue of �r

with index ⌫�r

= N + 1.

truncation N of the possible count, is:

G =

2

666664

�r r

�r r
. . .

. . .

�r r

�r

3

777775
,

where G
ij

is the rate of transitioning from state (count)
i to state (count) j, given that the system is in state i.
Elements not on either the main diagonal or first super-
diagonal are zero. This can be rewritten succinctly as:

G = �rI + rD
1

,

where I is the identity operator in N -dimensions and
D

1

is the upshift-by-1 matrix in N -dimensions, with
zeros everywhere, except 1s along the first superdiag-
onal. Let us also define the upshift-by-m matrix D

m

with zeros everywhere except 1s along the mth super-
diagonal, such that D

m

= Dm

1

and Dn

m

= D
m·n, with

D
0

= I. Operationally, if h�
`

| is the probability distribu-
tion over counter states that is peaked solely at state `,
then h�

`

| D
m

= h�
`+m

|.
For any arbitrarily large N , G’s eigenvalues are given

by det(G � �I) = (�r � �)N+1 = 0, from which we see
that its spectrum is the singleton: ⇤

G

= {�r}. More-
over, since it has algebraic multiplicity a�r

= N + 1 and
geometric multiplicity g�r

= 1, the index of the �r eigen-
value is ⌫�r

= N + 1. Since �r is the only eigenvalue,
and all projection operators must sum to the identity, we
must have the eigenprojection: G�r

= I.
The lesson is that the Poisson process is highly nondi-

agonalizable.

1. Homogeneous Poisson processes

When the transition rate r between counter states is
constant in time, the net counter state-to-state transition
operator from initial time 0 to later time t is given simply
by:

T (t) = etG .

The functional calculus allows us to directly evaluate
etG for the Poisson nondiagonalizable transition-rate op-
erator G; we find:

T (t) = etG

=
X

�2⇤G

⌫��1X

m=0

G
�

(G � �I)m
⇣

1

2⇡i

I

C�

etz

(z � �)m
dz
⌘

= lim
N!1

NX

m=0

I(G + rI)m
1

m!
lim

z!�r

dm

dzm
etz

| {z }
t

m
e

�rt

=
1X

m=0

(rD
1

)m
tme�rt

m!

=
1X

m=0

D
m

(rt)me�rt

m!
.

Consider the orthonormality relation h�
i

|�
j

i = �
i,j

be-
tween counter states, where |�

j

i is represented by 0s ev-
erywhere except for a 1 at counter-state j. It e↵ectively
measures the occupation probability of counter-state j.
Employing the result for T (t), we find the simple conse-
quence that:

h�
0

| T (t) |�
n

i =
(rt)ne�rt

n!
= h�

m

| T (t) |�
m+n

i .

That is, the probability that the counter is incremented
by n in a time interval t is independent of the initial count
and given by: (rt)ne�rt/n!.

Let us emphasize that these steps derived the Poisson
distribution directly, rather than as the typical limit of
the binomial distribution. Our derivation depended crit-
ically on spectral manipulations of a highly nondiagonal-
izable operator. Moreover, our result for the transition
dynamic T (t) allows a direct analysis of how distributions

over counts evolve in time, as would be necessary, say, in
a Bayesian setting with unknown prior count. This type
of calculus can immediately be applied to the analysis
of more sophisticated processes, for which we can gen-
erally expect nondiagonalizability to play an important
functional role.
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2. Inhomogeneous Poisson processes

Let us now generalize to time-inhomogeneous Pois-
son processes, where the transition rate r between count
events is instantaneously uniform, but varies in time as
r(t). Conveniently, the associated rate matrices at dif-
ferent times commute with each other. Specifically, with
G

a

= �aI + aD
1

and G
b

= �bI + bD
1

, we see that:

[G
a

, G
b

] = 0 .

Therefore, the net counter state-to-state transition oper-
ator from time t

0

to time t
f

is given by:

T
t0,tf = e

R tf
t0

G(t) dt

= e

⇣R tf
t0

r(t) dt

⌘
(�I+D1)

= ehri(�t)(�I+D1)

= e(�t)Ghri , (45)

where �t = t
f

� t
0

is the time elapsed and:

hri = 1

�t

Z
tf

t0

r(t) dt

is the average rate during that time. Given Eq. (45),
the functional calculus proceeds just as in the time-
homogeneous case to give the analogous net transition
dynamic:

T
t0,tf =

1X

m=0

D
m

�
hri �t

�
m

e�hri�t

m!
.

The probability that the count is incremented by n dur-
ing the time interval �t follows directly:

h�
m

| T
t0,tf |�

m+n

i =

�
hri �t

�
n

e�hri�t

n!
.

With relative ease, our calculus allowed us to derive
an important result for stochastic process theory that is
nontrivial to derive by other means. Perhaps surprisingly,
we see that the probability distribution over final counts
induced by any rate trajectory r(t) is the same as if the
transition rate were held fixed at mean hri throughout
the duration. Moreover, we can directly analyze the net
evolution of distributions over counts using the derived
transition operator T

t0,tf .
Note that the nondiagonalizability of the Poisson dy-

namic is robust in a physical sense. That is, even varying
the rate parameter in time in an erratic way, the inher-
ent structure of counting imposes a fundamental nondi-
agonalizable nature. That nondiagonalizability can be

robust in a physical sense is significant, since one might
otherwise be tempted to argue that nondiagonalizabil-
ity is extremely fragile due to numerical perturbations
within any matrix representation of the operator. This
is simply not the case since such perturbations are phys-
ically forbidden. Rather, this simple example challenges
us with the fact that some processes, even those famil-
iar and widely used, are intrinsically nondiagonalizable.
On the positive side, it appears that spectral methods
can now be applied to analyze them. And, this will be
particularly important in more complex, memoryful pro-
cesses, including the hidden semi-Markov processes [41]
that are, roughly speaking, the cross-product of hidden
finite-state Markov chains and renewal processes.

D. Stochastic thermodynamics

The previous simple examples started to demonstrate
the methods of the meromorphic functional calculus.
Next, we show a novel application of the meromorphic
functional calculus to environmentally driven mesoscopic
dynamical systems, selected to give a new set of results
within nonequilibrium thermodynamics. In particular,
we analyze functions of singular transition-rate opera-
tors. Notably, we show that the Drazin inverse arises nat-
urally in the general solution of Green–Kubo relations.
We mention that it also arises when analyzing moments
of the excess heat produced in the driven transitions atop
either equilibrium steady states or nonequilibrium steady
states [48].

1. Dynamics in independent eigenspaces

An important feature of the functional calculus is its
ability to address particular eigenspaces independently
when necessary. This feature is often taken for granted
in the case of normal operators; say, in physical dynam-
ical systems when analyzing stationary distributions or
dominant decay modes. Consider a singular operator L
that is not necessarily normal and not necessarily diago-
nalizable and evaluate the simple yet ubiquitous integralR
⌧

0

etL dt. Via the meromorphic functional calculus we
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find:

Z
⌧

0

etL dt =
X

�2⇤L

⌫��1X

m=0

L
�,m

1

2⇡i

I

C�

R
⌧

0

etz dt

(z � �)m+1

dz

=
⇣⌫0�1X

m=0

L
0,m

1

2⇡i

I

C0

z�1(e⌧z � 1)

zm+1

dz
⌘

+
X

�2⇤L\0

⌫��1X

m=0

L
�,m

1

2⇡i

I

C�

z�1(e⌧z � 1)

(z � �)m+1

dz

=
⇣⌫0�1X

m=0

⌧

m+1

(m+1)!

L
0,m

⌘
+ LD �

e⌧L � I
�

, (46)

where LD is the Drazin inverse of L, discussed earlier.
The pole–pole interaction (z�1 with z�m�1) at z =

0 distinguished the 0-eigenspace in the calculations and
required the meromorphic functional calculus for direct
analysis. The given solution to this integral will be useful
in the following.

Next, we consider the case where L is the transition-
rate operator among the states of a structured stochas-
tic dynamical system. This leads to several novel conse-
quence within stochastic thermodynamics.

2. Green–Kubo relations

Let us reconsider the above integral in the case when
the singular operator L—let us call it G—is a transition-
rate operator that exhibits a single stationary distribu-
tion. By the spectral mapping ln ⇤

e

G of the eigenvalue
1 2 ⇤

e

G addressed in the Perron–Frobenius theorem, G’s
zero eigenmode is diagonalizable. And, by assuming a
single attracting stationary distribution, the zero eigen-
value has algebraic multiplicity a

0

= 1. Equation (46)
then simplifies to:

Z
⌧

0

etG dt = ⌧ |0
G

i h0
G

| + GD �
e⌧G � I

�
. (47)

Since G is a transition-rate operator, the above integral
corresponds to integrated time evolution. The Drazin in-
verse GD concentrates on the transient contribution be-
yond the persistent stationary background. In Eq. (47),
the subscript within the left and right eigenvectors explic-
itly links the eigenvectors to the operator G, to reduce
ambiguity. Specifically, the projector |0

G

i h0
G

| maps any
distribution to the stationary distribution.

Green–Kubo-type relations [49, 50] connect the out-
of-steady-state transport coe�cients to the time integral
of steady-state autocorrelation functions. They are thus
very useful for understanding out-of-steady-state dissi-
pation due to steady-state fluctuations. (Steady state

here refers to either equilibrium or nonequilibrium steady
state.) Specifically, the Green–Kubo relation for a trans-
port coe�cient,  say, is typically of the form:

 =

Z 1

0

�
hA(0)A(t)i

s.s.

� hAi2
s.s.

�
dt ,

where A(0) and A(t) are some observable of the station-
ary stochastic dynamical system at time 0 and time t,
respectively, and the subscript h·i

s.s.

emphasizes that the
expectation value is to be taken according to the steady-
state distribution.

Using:

hA(0)A(t)i
s.s.

= tr
�
|0

G

i h0
G

| A etGA
�

= h0
G

| A etGA |0
G

i ,

the transport coe�cient  can be written more explicitly
in terms of the relevant transition-rate operator G for the
stochastic dynamics:

 = lim
⌧!1

Z
⌧

0

h0
G

| A etGA |0
G

i dt � ⌧ h0
G

| A |0
G

i2

= lim
⌧!1

h0
G

| A
⇣Z ⌧

0

etG dt
⌘
A |0

G

i � ⌧ h0
G

| A |0
G

i2

= lim
⌧!1

h0
G

| A GD�e⌧G � I
�
A |0

G

i

= � hA GDAi
s.s.

. (48)

Thus, we learn that relations of Green–Kubo form are
direct signatures of the Drazin inverse of the transition-
rate operator for the stochastic dynamic.

The result of Eq. (48) holds quite generally. For ex-
ample, if the steady state has some number of periodic
flows, the result of Eq. (48) remains valid. Alternatively,
in the case of nonperiodic chaotic flows—where G will be
the logarithm of the Ruelle–Frobenius–Perron operator,
as described later in § VI F 1—|0

G

i h0
G

| still induces the
average over the steady-state trajectories.

In the special case where the transition-rate operator
is diagonalizable, � hA GDAi

s.s.

is simply the integrated
contribution from a weighted sum of decaying exponen-
tials. Transport coe�cients then have a solution of the
simple form:

 = �
X

�2⇤G\0

1

�
h0

G

| A G
�

A |0
G

i . (49)

Note that the minus sign keeps  positive since Re(�) < 0
for � 2 ⇤

G

\ {0}. Also, recall that G’s eigenvalues
with nonzero imaginary part occur in complex-conjugate
pairs and G

�

= G
�

. Moreover, if G
i,j

is the classical
transition-rate from state i to state j (to disambiguate
from the transposed possibility), then h0

G

| is the station-
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ary distribution. (The latter is sometimes denoted h⇡| in
the Markov process literature.) And, |0

G

i is a column
vector of all ones (sometimes denoted |1i) which acts to
integrate contributions throughout the state space.

A relationship of the form of Eq. (48), between the
Drazin inverse of a classical transition-rate operator and
a particular Green–Kubo relation was recently found
in Ref. [51] for the friction tensor for smoothly-driven
transitions atop nonequilibrium steady states. Subse-
quently, a truncation of the eigen-expansion of the form
of Eq. (49) was recently used in a similar context to
bound a universal tradeo↵ between power, precision, and
speed [52]. Equation (48) shows that a fundamental rela-
tionship between a physical property and a Drazin inverse
is to be expected more generally whenever the property
can be related to integrated correlation.

Notably, if a Green–Kubo-like relation integrates a
cross-correlation, say between A(t) and B(t) rather than
an autocorrelation, then we have only the slight modifi-
cation:
Z 1

0

�
hA(0)B(t)i

s.s.

� hAi
s.s.

hBi
s.s.

�
dt = � hA GDBi

s.s.

.

(50)

The foregoing analysis bears on both classical and
quantum dynamics. G may be a so-called linear super-

operator in the quantum regime [53]; for example, the
Lindblad superoperator [54, 55] that operates on density
operators. A Liouville-space representation [56] of the
superoperator, though, exposes the superficiality of the
distinction between superoperator and operator. At an
abstract level, time evolution can be discussed uniformly
across subfields and reinterpretations of Eq. (50) will be
found in each associated physical theory.

Reference [48] presents additional constructive results
that emphasize the ubiquity of integrated correlation
and Drazin inverses in the transitions between steady
states [57], relevant to the fluctuations within any phys-
ical dynamic. Overall, these results support the broader
notion that dissipation depends on the structure of cor-
relation.

Frequency-dependent generalizations of integrated cor-
relation have a corresponding general solution. To be
slightly less abstract, later on we give novel representa-
tive formulae for a particular application: the general
solution to power spectra of a process generated by any
countable-state hidden Markov chain.

E. Power spectra

A signal’s power spectrum quantifies how its power is
distributed across frequency [58]. For a discrete-domain
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FIG. 2: Bayes network for a state-emitting hidden
Markov model graphically depicts the structure of

conditional independence among random variables for
the latent state {S

n

}
n2Z at each time n and the random

variables {X
n

}
n2Z for the observation at each time n.

process it is:

P (!) = lim
N!1

1

N

*���
NX

n=1

X
n

e�i!n

���
2

+
, (51)

where ! is the angular frequency and X
n

is the ran-
dom variable for the observation at time n. For a wide-
sense stationary stochastic process, the power spectrum
is also determined from the signal’s autocorrelation func-
tion �(⌧):

P (!) = lim
N!1

1

N

NX

⌧=�N

�
N � |⌧ |

�
�(⌧)e�i!⌧ , (52)

where the autocorrelation function for a wide-sense sta-
tionary stochastic process is defined:

�(⌧) =
⌦
X

n

X
n+⌧

↵
n

.

The windowing function N � |⌧ | appearing in Eq. (52)
is a direct consequence of Eq. (51). It is not imposed
externally, as is common practice in signal analysis. This
is important to subsequent derivations.

The question we address is how to calculate the cor-
relation function and power spectrum given a model of
the signal’s generator. To this end, we briefly introduce
hidden Markov models as signal generators and then use
the meromorphic calculus to calculate their autocorre-
lation and power spectra in closed-form. This leads to
several lessons. First, we see that the power spectrum
is a direct fingerprint of the resolvent of the genera-
tor’s time-evolution operator, analyzed along the unit cir-
cle. Second, spectrally decomposing the not-necessarily-
diagonalizable time evolution operator, we derive the
most general qualitative behavior of the autocorrelation
function and power spectra. Third, contributions from
eigenvalues on the unit circle must be extracted and
dealt with separately. Contributions from eigenvalues
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FIG. 3: Simple 3-state state-emitting HMM that
generates a stochastic process according to the

state-to-state transition dynamic T and the probability
density functions (pdfs) {p(x|s)}

s2S associated with
each state. Theorem 1 asserts that its power spectrum

will be the same (with only constant o↵set) as the
power spectrum generated from the alternative process
where the pdfs in each state are solely concentrated at
the Platonic average value hxi

ps(x)
of the former pdf

associated with the state.

on the unit circle correspond to Dirac delta functions—
the analog of Bragg peaks in di↵raction. Whereas,
eigen-contributions from inside the unit circle correspond
to di↵use peaks, which become sharper for eigenvalues
closer to the unit circle. Finally, nondiagonalizable eigen-
modes yield qualitatively di↵erent line profiles than their
diagonalizable counterparts. In short, when applied to
signal analysis our generalized spectral decomposition
has directly measurable consequences. This has been
key to analyzing low-dimensional disordered materials,
for example, when adapted to X-ray di↵raction spectra

[19, 20, 59].
Let the 4-tuple M =

�
S, A, P, T

�
be some discrete-

time state-emitting hidden Markov model (HMM)
that generates the stationary stochastic process
. . . X�2

X�1

X
0

X
1

X
2

. . . according to the following. S
is the (finite) set of latent states of the hidden Markov
chain and A ✓ C is the observable alphabet. S

t

is the
random variable for the hidden state at time t that
takes on values s 2 S. X

t

is the random variable for the
observation at time t that takes on values x 2 A. Given
the latent state at time t, the possible observations
are distributed according to the conditional probability
density functions: P =

�
p(X

t

= x|S
t

= s)
 
s2S . For

each s 2 S, p(X
t

= x|S
t

= s) may be abbreviated as
p(x|s) since the probability density function in each
state is assumed not to change over t. Finally, the
latent-state-to-state stochastic transition matrix T has
elements T

i,j

= Pr(S
t+1

= s
j

|S
t

= s
i

), which give the
probability of transitioning from latent state s

i

to s
j

given that the system is in state s
i

, where s
i

, s
j

2 S.
It is important for the subsequent derivation that we
use Pr(·) to denote a probability in contrast to p(·)
which denotes a probability density. The Bayes network
diagram of Fig. 2 depicts the structure of conditional
independence among the random variables.

1. Continuous-value, discrete-state and -time processes

Figure 3 gives a particular HMM with continuous ob-
servable alphabet A = R distributed according to the
probability density function shown within each latent
state. Processes generated as the observation of a func-
tion of a Markov chain can be of either finite or infi-
nite Markov order. (They are, in fact, typically infinite
Markov order in the space of processes [60].)

Directly calculating, one finds that the autocorrelation function, for ⌧ > 0, for any such HMM is:

�(⌧) =
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X

n

X
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↵
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s2S

X
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02S
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s
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s
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s
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s
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02A
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⌘
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where:

p(X
0

= x, X
⌧

= x0, S
0

= s, S
⌧

= s0) = Pr(S
0

= s, S
⌧

= s0)p(X
0

= x, X
⌧

= x0|S
0

= s, S
⌧

= s0)

holds by definition of conditional probability. The decomposition of:

p(X
0

= x, X
⌧

= x0|S
0

= s, S
⌧

= s0) = p(X
0

= x|S
0

= s)p(X
⌧

= x0|S
⌧

= s0)

for ⌧ 6= 0 follows from the conditional independence in the relevant Bayesian network shown in Fig. 2. Moreover, the
equality:

Pr(S
0

= s, S
⌧

= s0) = h⇡|�
s

i h�
s

| T ⌧ |�
s

0i h�
s

0 |1i

can be derived by marginalizing over all possible intervening state sequences. Note that |�
s

i is the column vector of
all 0s except for a 1 at the index corresponding to state s and h�

s

| is simply its transpose. Recall that h⇡| = h1
T

| is
the stationary distribution induced by T over latent states and |1i = |1

T

i is a column vector of all ones. Note also
that h⇡|�

s

i = Pr(s) and h�
s

0 |1i = 1.

Since the autocorrelation function is symmetric in ⌧

and:

�(0) =
⌦
|x|2

↵
p(x)

= h⇡|
X

s2S

⌦
|x|2

↵
p(x|s) |�

s

i ,

we find the full autocorrelation function is given by:

�(⌧) =

(⌦
|x|2

↵
if ⌧ = 0

h⇡| ⌦ T |⌧ |�1⌦ |1i if |⌧ | � 1
,

where ⌦ is the |S|-by-|S| matrix defined by:

⌦ =
X

s2S
hxi

p(x|s) |�
s

i h�
s

| T . (53)

The power spectrum is then calculated via Eq. (52) us-
ing the meromorphic calculus. In particular, the power
spectrum decomposes naturally into a discrete part and
a continuous part. Full details will be given elsewhere,
but the derivation is similar to that given in Ref. [19] for
the special case of di↵raction patterns from HMMs. We
note that it is important to treat individual eigenspaces
separately, as our generalized calculus naturally accom-
modates. The end result, for the continuous part of the
power spectrum, is:

P
c

(!) =
⌦
|x|2

↵
+ 2 Re h⇡| ⌦

�
ei!I � T

��1

⌦ |1i . (54)

All of the !-dependence is in the resolvent. Using the
spectral expansion of the resolvent given by Eq. (21) al-
lows us to better understand the qualitative possibilities

for the shape of the power spectrum:

P
c

(!) =
⌦
|x|2

↵
+

X

�2⇤T

⌫��1X

m=0

2 Re
h⇡| ⌦ T

�,m

⌦ |1i
(ei! � �)m+1

. (55)

Note that h⇡| ⌦ T
�,m

⌦ |1i is a complex-valued scalar and
all of the frequency dependence now handily resides in
the denominator.

The discrete portion (delta functions) of the power
spectrum is:

P
d

(!) =
1X

k=�1

X

�2⇤T
|�|=1

2⇡ �(! � !
�

+ 2⇡k)

⇥ Re
�
��1 h⇡| ⌦ T

�

⌦ |1i
�

, (56)

where !
�

is related to � by � = ei!� . An extension of the
Perron–Frobenius theorem guarantees that the eigenval-
ues of T on the unit circle have index ⌫

�

= 1.
When plotted as a function of the angular frequency !

around the unit circle, the power spectrum suggestively
appears to emanate from the eigenvalues � 2 ⇤

T

of the
hidden linear dynamic. See Fig. 4 for the analysis of an
example parametrized process and the last two panels for
this display mode for the power spectra.

Eigenvalues of T on the unit circle yield Dirac delta
functions in the power spectrum. Eigenvalues of T within

the unit circle yield more di↵use line profiles, increasingly
di↵use as the magnitude of the eigenvalues retreats to-
ward the origin. Moreover, the integrated magnitude of
each contribution is determined by projecting pairwise
observation operators onto the eigenspace emanating the
contribution. Finally, we note that nondiagonalizable
eigen-modes yield qualitatively di↵erent line profiles.

Remarkably, the power spectrum generated by such
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(a) A b-parametrized HMM
with mean values of each

state’s pdf hxip(x|s) indicated
as the number inside each

state.

(b) Eigenvalue evolution for all
� 2 ⇤

T

sweeping transition
parameter b from 1 to 0.

(c) Power spectrum and
eigenvalues at b = 3/4.

(d) Power spectrum and
eigenvalues at b = 1/4.

FIG. 4: Parametrized HMM generator of a stochastic process, its eigenvalue evolution, and two coronal
spectrograms showing power spectra emanating from eigen-spectra.

process is the same as the that generated by a poten-
tially much simpler one—a process that is a function
of the same underlying Markov chain but instead emits
the state-dependent expectation value of the observable
within each state:

Theorem 1. Let P =
�
p
s

(x)
 
s2S be any set of proba-

bility distribution functions over the domain A ✓ C. Let

B =
�
hxi

ps(x)

 
s2S and let Q =

�
�(x � hxi

ps(x)
)
 
s2S .

Then, the power spectrum generated by any hidden

Markov model M =
�
S, A, P, T

�
di↵ers at most by a

constant o↵set from the power spectrum generated by the

hidden Markov model M0 =
�
S, B, Q, T

�
that has the

same latent Markov chain but in any state s 2 S emits,

with probability one, the average value hxi
ps(x)

of the

state-conditioned probability density function p
s

(x) 2 P
of M.

Proof. From Eqs. (54) and (56), we see that Pc(!) +
Pd(!) �

⌦
|x|2

↵
depends only on T and

�
hxip(x|s)}s2S .

This shows that all HMMs that share the same T and�
hxip(x|s)}s2S have the same power spectrum P (!) =

Pc(!) + Pd(!) besides a constant o↵set determined by

di↵erences in
⌦
|x|2

↵
.

One immediate consequence is that any hidden Markov

chain with any arbitrary set of zero-mean distributions

attached to each state, i.e.:

P 2
�
{p(x|s)}

s2S : hxi
p(x|s) = 0 for all s 2 S

 
,

generates a flat power spectrum with the appearance of

white noise. On the one hand, this strongly suggests
to data analysts to look beyond power spectra when at-
tempting to extract a process’ full architecture. On the
other, whenever a process’s power spectrum is struc-
tured, it is a direct fingerprint of the resolvent of the

hidden linear dynamic. In short, the power spectrum is
a filtered image of the resolvent along the unit circle.

The power spectrum of a particular stochastic process
is shown in Fig. 4 and using coronal spectrograms, intro-
duced in Ref. [19], it illustrates how the observed spec-
trum can be thought of as emanating from the spectrum
of the hidden linear dynamic, as all power spectra must.
Figure 4a shows the state-emitting HMM with state-to-
state transition probabilities parametrized by b; the mean
values hxi

p(x|s) of each state’s pdf p(x|s) are indicated as
the blue number inside each state. The process generated
depends on the actual pdfs and the transition parameter
b although, and this is our point, the power spectrum is
ignorant to the details of the pdfs.

The evolution of the eigenvalues ⇤
T

of the transition
dynamic among latent states is shown from thick blue to
thin red markers in Fig. 4b, as we sweep the transition
parameter b from 1 to 0. A subset of the eigenvalues pass
continuously but very quickly through the origin of the
complex plane as b passes through 1/2. The continuity of
this is not immediately apparent numerically, but can be
revealed with a finer increment of b near b ⇡ 1/2. Notice
the persistent eigenvalue of �

T

= 1, which is guaranteed
by the Perron–Frobenius theorem.

In Fig. 4c and again, at another parameter setting,
in Fig. 4d, we show the continuous part of the power

spectrum P
c

(!) (plotted around the unit circle in solid
blue) and the eigen-spectrum (plotted as red dots on
and within the unit circle) of the state-to-state transition
matrix for the 11-state hidden Markov chain (leftmost
panel) that generates it. There is also a �-function con-
tribution to the power spectrum at ! = 0 (corresponding
to �

T

= 1). This is not shown. These coronal spectro-
grams illustrate how the power spectrum emanates from
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the HMM’s eigen-spectrum, with sharper peaks when the
eigenvalues are closer to the unit circle. This observation
is fully explained by Eq. (55). The integrated magnitude
of each peak depends on h⇡| ⌦ |�i h�| ⌦ |1i.

Interestingly, the apparent continuous spectrum com-
ponent is the shadow of the discrete spectrum of nonuni-
tary dynamics. This suggests that resonances in various
physics domains concerned with a continuous spectrum
can be modeled as simple consequences of nonunitary dy-
namics. Indeed, hints of this appear in the literature [61–
63].

2. Continuous-time processes

We close this exploration of conventional signal analy-
sis methods using the meromorphic calculus by comment-
ing on continuous-time processes. Analogous formulae
can be derived with similar methods for continuous-time
hidden Markov jump processes and continuous-time de-
terministic (possibly chaotic) dynamics in terms of the
generator G of time evolution. For example, the continu-
ous part P

c

(!) of the power spectrum from a continuous-
time deterministic dynamic has the form:

P
c

(!) = 2 Re h⇡| ⌦
�
i!I � G

��1

⌦ |1i .

Appealing to the resolvent’s spectral expansion again al-
lows us to better understand the possible shapes of their
power spectrum:

P
c

(!) =
X

�2⇤G

⌫��1X

m=0

2 Re
h⇡| ⌦ G

�,m

⌦ |1i
(i! � �)m+1

. (57)

Since all of the frequency-dependence has been isolated
in the denominator and h⇡| ⌦ G

�,m

⌦ |1i is a frequency-
independent complex-valued constant, peaks in P

c

(!)
can only arise via contributions of the form Re c

(i!��)

n

for c 2 C, ! 2 R, � 2 ⇤
G

, and n 2 Z
+

. This provides a
rich starting point for application and further theoretical
investigation. For example, Eq. (57) helps explain the
shapes of power spectra of nonlinear dynamical systems,
as have appeared, e.g., in Ref. [64]. Furthermore, it sug-
gests an approach to the inverse problem of inferring the
spectrum of the hidden linear dynamic via power spectra.
In the next section, however, we develop a more general
proposal for inferring eigenvalues from a time series. Fur-
ther developments will appear elsewhere.

F. Operators for chaotic dynamics

Since trajectories in state-space can be generated in-
dependently of each other, any nonlinear dynamic cor-
responds to a linear operation on an infinite-dimensional
vector-space of complex-valued distributions (in the sense
of generalized functions) over the original state-space.
For example, the well known Lorenz ordinary di↵erential
equations [65] are nonlinear over its three given state-
space variables—x, y, and z. Nevertheless, the dynamic
is linear in the infinite-dimensional vector space D(R3)
of distributions over R3. Although D(R3) is an unwieldy
state-space, the dynamics there might be well approxi-
mated by a finite truncation of its modes.

1. Ruelle–Frobenius–Perron and Koopman operators

The preceding operator formalism applies, in princi-
ple at least. The question, of course, is, Is it practi-
cal and does it lead to constructive consequences? Let’s
see. The right eigenvector is either |0

G

i or |1
T

i with
T = e⌧G as the Ruelle–Frobenius–Perron transition op-
erator [66, 67]. Equivalently, it is also ⇡, the stationary
distribution, with support on attracting subsets of R3 in
the case of the Lorenz dynamic. The corresponding left-
eigenvector 1, either h0

G

| or h1
T

|, is uniform over the
space. Other modes of the operator’s action, according
to the eigenvalues and left and right eigenvectors and
generalized eigenvectors, capture the decay of arbitrary
distributions on R3.

The meromorphic spectral methods developed above
give a view of the Koopman operator and Koopman
modes of nominally nonlinear dynamical systems [4] that
is complementary to the Ruelle–Frobenius–Perron op-
erator. The Koopman operator K is the adjoint—in
the sense of vector spaces, not inner product spaces—of
the Ruelle–Frobenius–Perron operator T : e↵ectively the
transpose K = T>. Moreover, it has the same spectrum
with only right and left swapping of the eigenvectors and
generalized eigenvectors.

The Ruelle–Frobenius–Perron operator T is usually as-
sociated with the evolution of probability density, while
the Koopman operator K is usually associated with
the evolution of linear functionals of probability den-
sity. The duality of perspectives is associative in na-
ture: hf |

�
Tn |⇢

0

i
�

corresponds to the Ruelle–Frobenius–
Perron perspective with T acting on the density ⇢ and�
hf | Tn

�
|⇢

0

i corresponds to the Koopman operator T> =
K acting on the observation function f . Allowing an ob-
servation vector ~f = [f

1

, f
2

, . . . f
m

] of linear functionals,
and inspecting the most general form of Kn given by
Eq. (25) together with the generalized eigenvector decom-
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position of the projection operators of Eq. (39), yields the
most general form of the dynamics in terms of Koopman
modes. Each Koopman mode is a length-m vector-valued
functional of a Ruelle–Frobenius–Perron right eigenvec-
tor or generalized eigenvector.

Both approaches su↵er when their operators are defec-
tive. Given the meromorphic calculus’ ability to work
around a wide class of such defects, adapting it the
Ruelle–Frobenius–Perron and Koopman operators sug-
gests that it may lift their decades-long restriction to
only analyzing highly idealized (e.g., hyperbolic) chaotic
systems.

2. Eigenvalues from a time series

Let’s explore an additional benefit of this view of the
Ruelle–Frobenius–Perron and Koopman operators, by
proposing a novel method to extract the eigenvalues of
a nominally nonlinear dynamic. Let O

N

(f, z) be (z�1

times) the z-transform [68, pp. 257–262] of a length-N
sequence of ⌧ -spaced type-f observations of a dynamical
system:

O
N

(f, z) ⌘ z�1

NX

n=0

z�n hf |Tn|⇢
0

i

!
N!1 hf |(zI � T )�1|⇢

0

i

=
X

�2⇤T

⌫��1X

m=0

hf | T
�,m

|⇢
0

i
(rei! � �)m+1

,

as N ! 1 for |z| = r > 1. Note that hf |Tn|⇢
0

i is simply
the f -observation of the system at time n⌧ , when the
system started in state ⇢

0

. We see that this z-transform
of observations automatically induces the resolvent of the
hidden linear dynamic. If the process is continuous-time,
then T = e⌧G implies �

T

= e⌧�G , so that the eigenvalues
should shift along the unit circle if ⌧ changes; but the
eigenvalues should be invariant to ⌧ in the appropriate
⌧ -dependent conformal mapping of the inside of the unit
circle of the complex plane to the left half complex plane.
Specifically, for any experimentally accessible choice of
inter-measurement temporal spacing ⌧ , the fundamental
set of continuous time eigenvalues ⇤

G

can be obtained
from �

G

= 1

⌧

ln �
T

, where each �
T

2 ⇤
T

is extrapolated
from c/(rei! � �

T

)n curves fit to O
N

(f, rei!) for c 2 C,
large N , and fixed r.

The square magnitude of O
N

(f, z) is related to the
power spectrum generated by f -type observations of the
system. Indeed, the power spectrum generated by any
type of observation of a nominally nonlinear system is a
direct fingerprint of the eigenspectrum and resolvent of
the hidden linear dynamic. This suggests many opportu-

nities for inferring eigenvalues and projection operators
from frequency-domain transformations of a time series.

VII. CONCLUSION

The original, abstract spectral theory of normal opera-
tors rose to central importance when, in the early devel-
opment of quantum mechanics, the eigenvalues of Her-
mitian operators were detected experimentally in the op-
tical spectra of energetic transitions of excited electrons.
We extended this powerful theory by introducing the
meromorphic functional calculus, providing the spectral
theory of nonnormal operators. Our straightforward ex-
amples suggest that the spectral properties of these gen-
eral operators should also be experimentally accessible
in the behavior of complex—open, strongly interacting—
systems. We see a direct parallel with the success of the
original spectral theory of normal operators as it made
accessible the phenomena of the quantum mechanics of
closed systems. This turns on nondiagonalizability and
appreciating how ubiquitous it is.

Nondiagonalizability has consequences for settings as
simple as counting, as shown in § VI C. Moreover, there
we found that nondiagonalizability can be robust. The
Drazin inverse, the negative-one power in the meromor-
phic functional calculus, is quite common in the nonequi-
librium thermodynamics of open systems, as we showed
in § VI D. Finally, we showed that the spectral charac-
ter of nonnormal and nondiagonalizable operators mani-
fests itself physically, as illustrated by Figs. 4c and 4d of
§ VI E.

From the perspective of functional calculus, nonuni-
tary time evolution, open systems, and non-Hermitian
generators are closely related concepts since they all rely
on the manipulation of nonnormal operators. More-
over, each domain is gaining traction. Nonnormal opera-
tors have recently drawn attention, from the nonequilib-
rium thermodynamics of nanoscale systems [69] to large-
scale cosmological evolution [70]. In another arena en-
tirely, complex directed networks [71] correspond to non-
normal and not-necessarily-diagonalizable weighted di-
graphs. There are even hints that nondiagonalizable net-
work structures can be optimal for implementing cer-
tain dynamical functionality [72]. The opportunity here
should be contrasted with the well established field of
spectral graph theory [73] that typically considers con-
sequences of the spectral theorem for normal operators
applied to the symmetric (and thus normal) adjacency
matrices and Laplacian matrices. It seems that the
meromorphic calculus and its generalized spectral the-
ory will enable a spectral weighted digraph theory beyond
the purview of current spectral graph theory.
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Even if the underlying dynamic is diagonalizable, par-
ticular questions or particular choices of observable often
induce a nondiagonalizable hidden linear dynamic. The
examples already showed this arising from the simple im-
position of counting or assuming a Poissonian dynamic.
In more sophisticated examples, we recently found non-
diagonalizable dynamic structures in quantum memory
reduction [22] and classical complexity measures [21].

Our goal has been to develop tractable, exact analyti-
cal techniques for nondiagonalizable systems. We did not
discuss numerical implementation of algorithms that nat-
urally accompany its practical application. Nevertheless,
the theory does suggest new algorithms—for the Drazin
inverse, projection operators, power spectra, and more.
Guided by the meromorphic calculus, such algorithms
can be made robust despite the common knowledge that
numerics with nondiagonalizable matrices is sensitive in
certain ways.

The meromorphic calculus complements attempts to
address nondiagonalizability, e.g., via pseudospectra [74,
75]. It also extends and simplifies previously known re-
sults, especially as developed by Dunford [16]. Just as
the spectral theorem for normal operators enabled much
theoretical progress in physics, we hope that our general-
ized and tractable analytic framework yields rigorous un-
derstanding for much broader classes of complex system.
Importantly, the analytic framework should enable new
theory of complex systems beyond the limited purview of
numerical investigations.

While the infinite-dimensional theory is in princi-
ple readily adaptable from the present framework, spe-
cial care must be taken to guarantee a similar level of
tractability and generality. Nevertheless, even the finite-
dimensional theory enables a new level of tractability
for analyzing not-necessarily-diagonalizable systems, in-
cluding nonnormal dynamics. Future work will take full
advantage of the operator theory, with more emphasis
on infinite-dimensional systems. Another direction for-
ward is to develop creation and annihilation operators
within nondiagonalizable dynamics. In the study of com-
plex stochastic information processing, for example, this
would allow analytic study of infinite-memory processes
generated by, say, stochastic pushdown and counter au-
tomata [47, 76–78]. In a physical context, such operators
may aid in the study of open quantum field theories. One
might finally speculate that the Drazin inverse will help
to tame the divergences that arise there.
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