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Thermodynamic cost due to changing the initial distribution over states

Artemy Kolchinsky and David H. Wolpert
Santa Fe Institute, Santa Fe, NM

We consider nonequilibrium systems that obey local detailed balance and are driven by an external
system such that no work is dissipated for some initial distribution over states x 2 X, q(X). We
show that in general work is dissipated under that driving if instead the initial distribution is some
r(X) 6= q(X), calculating that amount of dissipated work. We then use this result to investigate
the thermodynamics of computation. Specifically, we suppose a Markov partition of X into a set
of coarse-grained “computational states” labelled by v 2 V , and identify the dynamics over those
computational states as a (possibly noisy) “computation” that runs on the system. We identify the
initial distribution over computational states as the distribution over inputs to the computer. We
calculate the work that such a computer dissipates, if it is designed to dissipate no work for some
input distribution q(V ) but is instead used with a different input distribution r(V ). This dissipated
work is an extra thermodynamic cost of computation, in addition to the well-known Landauer’s
cost. We also calculate the extra expected dissipated work if there is a probability distribution over
the possible input distributions rather than a single one.

Introduction.—Recent research has made great
progress in understanding the statistical physics of
systems far from equilibrium [1–6]. This has resulted in
many novel predictions, some of which are now being
experimentally confirmed [7–9].

Much of this recent research is based on a modern for-
mulation of the second law of thermodynamics [10, 11].
To present this modern formulation, first define the non-

equilibrium free energy of any Hamiltonian H and distri-
bution p as

F (H, p) := hHi
p

� kTS (p)

where S(.) indicates Shannon entropy (measured in
nats). Consider a system with microstates x 2 X whose
Hamiltonian depends on an evolving external parameter
�(t) for t 2 [0, 1]. While its Hamiltonian evolves, the sys-
tem is connected to a heat bath at temperature T . The
system moves between states according to a sequence of
transition matrices that all obey local detailed balance
for the associated Hamiltonian [12–15]. We refer to such
a sequence of Hamiltonians and transition matrices as a
thermodynamic process operating on the system.

As shorthand write H
t

⌘ H(�(t)). Suppose that the
system starts with microstate distribution p0, and that
the thermodynamic process sends the initial Hamiltonian
H0 to H1 and transforms p0 to p1. (In this paper we take
the units of time to be arbitrary, so time intervals can
be arbitrarily long.) Then the modern statement of the
second law is

hW i � �F := F (H1, p1)� F (H0, p0) (1)

where hW i is the expected work on the system between
t = 0 and t = 1. Importantly, Eq. 1 holds even if both p0
and p1 are far from equilibrium for the associated Hamil-
tonians, H0 and H1, respectively.

The dissipated work (which we call dissipation) is

W
d

:= hW i ��F

This is the work done on a system that cannot be ther-
modynamically recovered. (It should not be confused
with the dissipated heat, which is the total energy trans-
ferred to the heat bath). Dissipation is zero iff the pro-
cess is thermodynamically reversible. In principle, it is
always possible to construct such a thermodynamically
reversible process transforming any given p0, H0 to any
p1, H1. For instance, this can be done via an appropriate
“quench-and-relax” process [11, 16, 17].

However, as we show in this paper, in general any
thermodynamic process P that is thermodynamically re-
versible when run with one initial distribution will not be
thermodynamically reversible for a different initial distri-
bution. More precisely, let the random variable X

t

indi-
cate the state of the system at time t, and assume that
P is thermodynamically reversible for some initial distri-
bution over states q(X0), which we call the prior distri-
bution. Define q(X1) as the associated distribution over
states produced after running P on the system. Suppose
though that the initial states are drawn from some en-

vironment distribution r(X0) 6= q(X0), and define r(X1)

as the associated distribution produced after running P
on the system.

Our first result is that the dissipation in this scenario
is given by

W
d

= kT [D (r(X0)kq(X0))�D (r(X1)kq(X1))] (2)

where k is Boltzmann’s constant and D(·||·) is the
Kullback-Leibler divergence [18]. We refer to W

d

as the
incorrect prior dissipation. Intuitively, it reflects the con-
traction between the environment and prior distributions
under the action of P [19, 20]. Note that this con-
traction depends only on r(X0), q(X0), r(X1) and q(X1).
All physical details of how P manages to transform
q(X0) ! q(X1) and r(X0) ! r(X1) are irrelevant.

In many situations there is not a single, fixed environ-
ment distribution. Rather there is a distribution p(✓)
where each ✓ labels a different environment distribution,
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and the actual environment distribution is formed by ran-
domly sampling p. As we show below, this increases the
expected dissipation, by the (non-negative) amount that
the mutual information between the environment ✓ and
the microstate x drops as the system evolves from t = 0

to t = 1.
These results have important consequences for our

understanding of the thermodynamics of computation.
Ever since the pioneering analyses of Landauer and Ben-
nett [21, 22], a computer has been defined as any physical
system with microstates x 2 X undergoing a thermody-
namic process P as described above, together with a
coarse-graining of X into a set of Computational States
(CSs) with labels v 2 V (sometimes called “information
bearing degrees of freedom” [23]). P induces a stochas-
tic dynamics over X, and the computation is identified
with the associated stochastic dynamics over CSs. We
write this dynamics as ⇡(v1|v0), and say that it maps
inputs v0 to outputs v1. Here we add the requirement
that the computer be time-translation-invariant, in that
for any CS v 2 V , the conditional distribution P (x

t

|v
t

)

is the same at the end of an iteration of the computer
(t = 1) and the beginning (t = 0). (This can be viewed
as requiring that each iteration of a computer completes
a full thermodynamic cycle over the set of states within
each CS, only modifying the distribution over those CSs.)
The canonical example of a computer is a laptop, with
the computation it runs being the firmware modifying bit
patterns in its memory [23].

The early work by Landauer et al. focused on bit-

erasure. This is the simplest type of computation; a 2-to-
1 map that sends the two initial inputs of a binary space
V to a single output. Using semi-formal reasoning, early
researchers argued that any thermodynamic process P
that implements bit-erasure has a thermodynamic cost
of at least kT ln 2, a result known as Landauer’s bound.

Recent research has significantly clarified and ex-
panded this early work [10–14, 24–31]. For instance, early
work equated logical irreversibility (such as bit-erasure)
with thermodynamic irreversibility (dissipation), sug-
gesting that the kT ln 2 cost of bit-erasure reflects dis-
sipated work. It is now known that logically irre-
versible processes can be carried out thermodynamically
reversibly [11, 32]. Rather than concern dissipation, it is
now known that Landauer’s bound is the minimal work
needed by any thermodynamically reversible process that
implements bit-erasure, when the distribution over in-
puts is uniform.

Bit-erasure is an example of a computation in which
the outputs do not depend on input values. Most of the
recent research on the thermodynamics of computation
has been concerned with such input-independent compu-
tations. However this excludes most computations of in-
terest. Other recent research allows the output to depend
on the input [33, 34], but imposes other strong restric-
tions on the kind of computations being modeled [16].

We recently analyzed the thermodynamics of arbitrary
computations taking inputs to outputs, in particular in-
cluding those in which the outputs depend on the inputs
[16, 17]. We showed how, given any desired computa-
tion ⇡(v1|v0) and input distribution q(V0), to construct
a computer C that computes ⇡ and that results in no
dissipation when inputs are drawn from q(V0). However
in general this computer C would dissipate work if ap-
plied with some different input distribution. It was not
known if such dissipation arising due to changing the in-
put distribution is peculiar to the kinds of computers we
constructed, or would apply to any computer.

Below we answer this question, proving that no matter
how the computer is constructed, it is subject to incorrect
prior dissipation over its computational states. Precisely,
consider a computer running a computation ⇡(v1|v0) that
results in no dissipation when input values are drawn
from prior distribution q(V0). Suppose that we instead
run the computer with inputs drawn from some r(V0).
(We will sometimes refer to this as a user distribution.)
Then the same formula as Eq. 2 again applies, if we sub-
stitute distributions over computational states for distri-
butions over microstates. Moreover, as for the case of
general thermodynamic processes discussed above, when
there is a probability distribution P over user distribu-
tions, the computer’s expected dissipation will equal the
drop in the mutual information between the user and the
computational state as the computation proceeds.

This formula for the dissipation of a computer depends
only on q0, r0 and ⇡. It is independent of how the com-
puter works, holding for laptops, ratchet-based informa-
tion processing systems [33, 34], any physical instantia-
tion of a “Maxwell’s demon” [35] like a Szilard engine,
systems that evolve semi-statically, etc.

As an example, suppose user Alice wishes to repeat-
edly run some computation ⇡, with inputs drawn from a
distribution q(V0). It is possible to construct a computer
C
Alice

that implements ⇡ without any dissipation, as long
as its inputs are truly sampled from q(V0). However in
general, that same computer would dissipate work if it
were instead run with its inputs selected by user Bob
according to some distribution r(V0). The total work
required by Bob when using computer C

Alice

to run the
computation ⇡ is the sum of this dissipated work and the
work required to run ⇡ with no dissipation on input dis-
tribution r(V0) (given by the nonequilibrium free energy
difference between starting and ending distributons).

Dissipation due to incorrect priors is a novel thermo-
dynamic cost of computation, over and above the cost
given by Landauer’s bound. Indeed, in its modern, full
formulation, the Landauer bound is the drop in non-
equilibrium free energy in an iteration of the computer.
This can be negative for some user distributions and
(noisy) computations [21, 22]. In contrast, incorrect prior
dissipation is a true cost, in the sense that it is always
non-negative. Another difference is that while the Lan-
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dauer bound reflects loss of information about input val-
ues during the course of a computation, incorrect prior
dissipation reflects uncertainty at the time when one con-
structs the computer, about what the computer’s input
distribution will be.

Note that if a computation ⇡ is an invertible deter-
ministic map, then the drop in KL divergence given by
Eq. 2 is always zero, regardless of r and q. In other
words, if the computation is logically reversible, and C is
thermodynamically reversible for some user distribution
q, then dissipation (reflecting irreversible work due to de-
signing the computer for the wrong user distribution) is
zero for all user distributions. Having a distribution over
users makes no difference. (Similarly, the Landauer cost,
reflecting reversible work, is zero for such situations.)

In the following sections we first introduce notation,
and then derive Eq. 2 for thermodynamic processes. Next
we analyze the dissipation when there is a distribution
over environment distributions. We end by deriving our
results for computers. Supplementary Material (SM) [36]
contains miscellaneous proofs, along with an analysis of
incorrect prior dissipation for feedback processes [11].

Background and notation.—We use lower case letters
(e.g., z) to indicate an outcome of a random variable, and
upper case letters (e.g., Z) to indicate either a random
variable, or the set of possible outcomes, depending on
the context. We also use bold italics z and Z to refer to
outcomes / variables that correspond to trajectories of
states rather than to (single-instant) states. Typically p,
q, and r refer to probability distributions. We sometimes
refer to a conditional distribution p(b|a) as a “map” if it
defines a single-valued function from a to b.

As discussed above, we consider both thermodynamic
processes over a space of microstates X, and also com-
puters, consisting of the pair of such a thermodynamic
process and a coarse-graining of X into computational
states V . The random variables X

t

and V
t

will be used
to indicate the microstate and computational state of the
computer at time t. We will sometimes use notation like
p0 to indicate the distribution p(X0) or p(V0), as will be
clear from context (and similarly for p1).

Following [37], we refer to the thermodynamic pro-
cess’s sequence of Hamiltonians {H0, . . . , H1} as the for-

ward protocol. When the system is started from initial
microstate x0, the process stochastically produces a tra-
jectory of states x0..1 := {x0, . . . , x1} with conditional
probability p (x0..1|x0). We refer to this conditional prob-
ability as the (forward) driven dynamics.

We define the reverse protocol as the aforementioned
sequence of Hamiltonians taken in reverse order. For no-
tational convenience, we indicate that reverse sequence of
Hamiltonians by ˜H

t

for 0  t  1 with ˜H
t

:= H1�t

. We
also write the reverse of a trajectory x0..1 = {x0, . . . , x1}
as ˜

x1..0 := {x1, . . . , x0}. We write the conditional proba-
bility of observing the trajectory ˜

x1..0 under the reverse
protocol as p̃ (˜x1..0|x1).

Crooks [37] derived a relation between the work done
to implement the trajectory x0..1 under the forward pro-
tocol, indicated by W (x0..1), the conditional probability
of that trajectory under the forward protocol, and the
conditional probability of its reverse under the reverse
protocol:

exp (� (W (x0..1)��H)) =

p (x0..1|x0)

p̃ (˜x1..0|x1)
(3)

where � =

1
kT

and �H := H1 (x1)�H0 (x0).
Dissipation due to incorrect priors.—Eq. 3 only in-

volves conditional probabilities, leaving us free to choose
any initial distribution of the reverse protocol, p̃(x1). We
set it to be the same as the final distribution of the for-
ward protocol, writing p̃ (x1) = p (x1). So for any ini-
tial distribution p(x0), the (non-conditional) probabil-
ities of the trajectories under the forward and reverse
protocols are p (x0..1) = p (x0) p (x0..1|x0) and p̃ (˜x1..0) =

p̃ (x1) p̃ (˜x1..0|x1) = p (x1) p̃ (˜x1..0|x1), and so

D
⇣
p (X0..1) kp̃

⇣
˜

X1..0

⌘⌘
=

*
ln

p (X0) p (X0..1|X0)

p̃ (X1) p̃
⇣
˜

X1..0|X1

⌘
+

=

⌧
ln

p (X0)

p̃ (X1)
+ � (W (X0..1)��H)

�

= S (p (X1))� S (p (X0)) + � (hW (X0..1)i � h�Hi)
= � (hW (X0..1)i ��F)

= �W
d

(p) (4)

where angle-brackets indicate expectations under
p (X0..1), and W

d

(p) is the average work dissipated
under the forward protocol when initial states are drawn
from p (X0) (see also [15, 38]).

KL divergence – and hence dissipation – is always non-
negative [39]. Furthermore, KL divergence is zero iff its
two arguments are equal. So dissipation is 0 iff the proba-
bility of every forward trajectory x0..1 under the forward
protocol is the same as the probability of ˜

x1..0 under the
reverse protocol. Loosely speaking, no work is dissipated
iff it is impossible to tell if one is “watching a movie of
the system evolving forward in time” or instead “watching
the movie in reverse”.

As discussed in the introduction, we hypothesize that
there is some prior initial distribution q (X0) that the
protocol is “designed for”, in the sense that there is zero
dissipation when that distribution evolves according to
the driven dynamics p (x0..1|x0) (the reason for calling q
a ‘prior’ is given below). However we allow the protocol
to be used instead with an initial distribution r (X0).

Define the t = 1 distributions for the reverse pro-
tocol as q̃ (x1) = q (x1) and r̃ (x1) = r (x1) as above.
Since the process is dissipationless for q by hypothesis,
p (x0..1|x0) q(x0) = p̃ (˜x1..0|x1) q̃(x1) for all trajectories.
However, by Eq. 4, when the dynamics are started with
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initial distribution r0,

�W
d

(r) = D
⇣
r (X0..1) kr̃

⇣
˜

X1..0

⌘⌘

=

*
ln

r (X0) p (X0..1|X0)

r̃ (X1) p̃
⇣
˜

X1..0|X1

⌘
+

r(X0..1)

=

⌧
ln

r (X0) q̃ (X1)

r̃ (X1) q (X0)

�

r(X0..1)

= D (r (X0) kq (X0))�D (r (X1) kq (X1)) (5)

So the dissipation equals the drop in our ability to distin-
guish whether the initial distribution was q(X0) or r(X0),
as the system evolves from that initial distribution.

By the KL data processing inequality [40, Lemma
3.11], this drop is non-negative. It achieves its minimum
value of 0 if the driven dynamics p (x1|x0) form an in-
vertible map, regardless of the prior q(X). Moreover, in
the special case that q(X) has full support, there is a
always some environment distribution r(X) with strictly
positive dissipation iff the driven dynamics are not an
invertible map (proof in SM [36]). Furthermore, if the
dynamics over X obeys the strong data processing in-
equality for KL divergence [41], then dissipation will al-
ways be strictly positive whenever r 6= q. Concretely,
if we design a physical device to implement such a dy-
namics p (x0..1|x0) with no dissipation for initial distri-
bution q(x0), then there will be dissipation if the device
is instead run in an environment with initial distribution
r(x0) 6= q(x0). In this sense, it is typically the case that
there is at most one environment that will result in no
dissipation for any given device.

For another perspective on Eq. 5, note that by the
chain rule for KL divergence [39, Eq. 2.67],

D (r (X0, X1) kq (X0, X1))

= D (r (X0) kq (X0)) +D (r (X1|X0) kq (X1|X0))

= D (r (X1) kq (X1)) +D (r (X0|X1) kq (X0|X1)) (6)

However, since r (x1|x0) = q (x1|x0) = p (x1|x0),
D (r (X1|X0) kq (X1|X0)) = 0. So by Eq. 5,

�W
d

= D (r (X0|X1) kq (X0|X1))

(See also [17].) In this expression r (x0|x1) and q (x0|x1)

are Bayesian posterior probabilities of the initial state
conditioned on the final state, for the assumed priors
r (X0) and q (X0) respectively, and the shared likelihood
function p (x1|x0).

Dissipation due to an uncertain environ-

ment.—Suppose we have a set of identical copies
of a physical device which all implement the dynamics
p (x0..1|x0), and are all dissipationless for the prior
q (X0). Suppose we also have a set of different environ-
ments, indicated by the set ⇥. Each environment ✓ 2 ⇥

gets one of the identical copies of our device, and then

runs the process p (x0..1|x0) with an environment-specific
initial distribution, indicated by r(X0|✓).

Running the copy of the device in each environment
will result in an associated amount of dissipation, deter-
mined by that environment’s initial state distribution. So
a probability distribution w(✓) over environments speci-
fies an expected amount of dissipation, given by

� hW
d

i =
X

✓

w (✓) [D (r (X0|✓) kq (X0))�D (r (X1|✓) kq (X1))]

= D (r (X0|⇥) kq (X0))�D (r (X1|⇥) kq (X1)) (7)

In SM [36], we provide a lower bound on this expected
dissipation,

� hW
d

i � I (X0;⇥)� I (X1;⇥) (8)

where I is the mutual information. The RHS is the drop
in the mutual information between the environment and
the system microstate from t = 0 to t = 1. It reflects loss
of information in the system state about what the envi-
ronment is under the action of the stochastic dynamics
(see also [17]). These two mutual informations equal the
initial and final Jensen-Shannon divergences of the dis-
tribution over environments [42]. So the RHS can also be
interpreted as the degree to which all environment distri-
butions become indistinguishable as the system unfolds.

One way that the bound in Eq. 8 is reached is if the
prior distribution q (x0) equals the expected environment
distribution,

P
✓

w (✓) r (x0|✓). It is also reached for cer-
tain thermodynamic processes no matter what the initial
distribution is. For example, if p (x1|x0) is an invertible
single-valued function, the lower bound is always 0 and
is reached even if q(x0) 6=

P
✓

w (✓) r (x0|✓).
There is an important subtlety in this analysis, involv-

ing the ways expectations are formed. The calculation
of Eq. 8 concerns a scenario where each environment
gets its own thermodynamic process (i.e., its own phys-
ical system with state space X, its own external system
acting on X, and its own heat bath). It just so hap-
pens that all those thermodynamical processes are math-
ematically (though not physically) identical. The aver-
age dissipation in this scenario is the expectation, over
environments ✓, of the gap between the average work re-
quired to run those copies of the same process with an
x0 sampled from r(x0|✓), and the associated change in
non-equilibrium free energy.

As an example of this scenario, suppose that the ther-
modynamic process, P, performs bit-erasure over a bi-
nary X, not dissipating any work if the initial distribu-
tion over X is uniform. So the prior for this P is the
distribution q(x0 = 0) = q(x0 = 1) = 1/2. Suppose
as well that there are two environments, ✓1 and ✓2, and
take r(x0 = 0|✓1) = 1 while r(x0 = 0|✓2) = 0. Then for a
uniform w(✓), the expected dissipated work is kT ln[2].
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In contrast, consider the closely related scenario where
we use a single thermodynamic process P, whose ini-
tial states are generated by first sampling w(✓) and then
sampling r(X0|✓). If the prior distribution for P isP

✓

w(✓)r(x0|✓), there is no dissipation in this scenario,
even though there is dissipation in the first scenario. In
particular, for the same P, X, w(✓) and pair of environ-
ment distributions as in our example of the first scenario,
which results in dissipation of kT ln[2] in that scenario,
no work is dissipated in this second scenario.

Ultimately, the reason for this distinction in the
amount of dissipation in the two scenarios is that in the
first scenario there are multiple physical systems but in
the second scenario there is only one. In the first sce-
nario, the dissipated work for each instance of ✓ is the
difference between the amount of work used to drive that
environment’s system and the minimal amount of work
that could have been used if we had used a different sys-
tem, optimized for that environment’s input distribution.
In the second scenario, there is no such difference, since
there is only a single device, and it is optimized for the
distribution of inputs that it receives.

A new thermodynamic cost of computation.—Recall
from the introduction that we define a computer that
runs ⇡ as any combination of a thermodynamic process
over X and coarse-graining of X into CSs V with several
extra conditions. We write those conditions as follows:

1) We overload notation to write the initial distribu-
tion over macrostates (sometimes called the user or input

distribution) as q(v0);
2) We write the initial distribution over microstates

x0 given any initial CS v0 as the distribution s, i.e., as
s(x = x0|v = v0);

3) The microstate dynamics p (x1|x0) implements ⇡ in
the sense that for any v0, v1,

X

x0,x1

p (x1|x0) s (x0|v0) = ⇡ (v1|v0)

As a result the output distribution at t = 1 is given by
q (v1) =

P
v0

q (v0)⇡ (v1|v0);
4) The process is cyclic, i.e., for all v1,

q (x1|v1) = s (x = x1|v = v1) (9)

(This is slightly stronger than requiring that the coarse-
graining be a Markov partition.)

In previous work [17], we showed that for any given ⇡
and q (v0), a computer can be designed that implements
⇡ with zero dissipation for user distribution q (v0). In
analogy with the case of dynamics over X, we say that
such a q is the prior for the computer. To calculate
how much work is dissipated if the initial macrostate of
a computer with prior q(x0) is formed by sampling a

different user distribution r(x0), use Eq. 5 to write

�W
d

= D (r (X0) kq (X0))�D (r (X1) kq (X1))

=D (r (V0, X0) kq (V0, X0))�D (r (V1, X1) kq (V1, X1))

=D (r (V0) kq (V0))�D (r (V1) kq (V1))

+D (r (X0|V0) kq (X0|V0))�D (r (X1|V1) kq (X1|V1))

where the second line follows because v0 and v1 are deter-
ministic functions of x0 and x1, and the third line from
the chain rule for KL divergence.

Due to condition 2 in the definition of com-
puters, r (x0|v0) = s (x0|v0) = q (x0|v0). So
D (r (X0|V0) kq (X0|V0)) = 0. Similarly, requirement 4
gives D (r (X1|V1) kq (X1|V1)) = 0. Therefore

�W
d

= D (r (V0) kq (V0))�D (r (V1) kq (V1)) (10)

This minimal dissipation arises no matter how the
computer operates, and in particular even if the driving
protocol is different from that analyzed in [17]. Recall
that the Landauer bound is the work required to run the
computer without any dissipation. The dissipation given
by Eq. 10 is an extra thermodynamic computation cost,
over and above that minimal work given by the Lan-
dauer bound, that arises by running a computer with
the “wrong prior” for the user. Note though that just as
with dynamics over X, incorrect prior dissipation does
not occur with all computations. For instance, computa-
tions that implement invertible maps have no incorrect
prior dissipation.

Similarly to the analysis that led to Eq. 8, suppose
we have multiple copies of the same computer, each of
which is paired with a different user. If each user u 2 U
is selected with probability w (u) and has an associated
input distribution r (v0|u), then expected dissipation is
bounded by (see SM [36]):

� hW
d

i � I (V0;U)� I (V1;U) (11)

This bound is reached when the prior of the computer is
q (v0) =

P
u

r (v0|u)w (u).
Discussion.—In this paper we consider driven non-

equilibrium systems with states x 2 X that are coupled
to a heat bath. We show that if such a process dissipates
no work when run with an initial distribution q(x0), then
in general if will dissipate work if run with a different
distribution r(x0) 6= q(x0), providing equations for the
precise amount of such dissipated work.

We then extend our analysis to apply to computers by
introducing a coarse-graining of the microstate space X
into a set of computational states (CSs). In its mod-
ern formulation, Landauer’s bound gives the minimal
work needed to implement a given dynamics over the
CSs (i.e., a given computation). This bound is reached
with a thermodynamically reversible process which is de-

signed for an assumed distribution over the initial values

of the CSs. We add the requirement that the computer
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execute a complete thermodynamic cycle over the mi-
crostates within each CS, and show that as a result, if
the computer is used with any initial distribution over
the CSs other than the one it is designed for, then in
general it will dissipate work. (Similar results hold if
we relax the requirement that the computer execute a
thermodynamic cycle within each CS.) Physically, if you
design a computer to achieve the Landauer bound when
it is used by user Alice, in general it will no longer achieve
that bound, instead dissipating work, if used by user Bob.
This is a new kind of thermodynamic cost of information
processing, over and above the cost of Landauer’s bound.

There are several relatively straight-forward extensions
of these analyses. For example, rather than assume that
the computational states comprise a partition of X, we
could assume that there is some noise relating microstates
and macrostates, i.e., allow a distribution p(v|x) that is
nonzero for multiple v’s for any given x. As another ex-
ample, there has been interest in the literature in what
are sometimes called “feedback processes” [11] (which dif-
fer somewhat from what is meant by the term in the con-
trol theory literature). Our analyses can also be extended
to such processes (see SM).
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SUPPLEMENTARY MATERIAL

A. Proof: Strictly positive dissipation for non-invertible maps

Suppose the driven dynamics p (X1|X0) is a stochastic map from X ! X that results in no dissipation for some
prior q(X0). By Eq. 5 in the main text, if the environment distribution is instead r(X0), then

�W
d

(r) = D (r (X0)kq (X0))�D (r (X1)kq (X1))

= D (r (X0|X1)kq (X0|X1)) (12)

We provide necessary and sufficient conditions for no dissipation:

Theorem 1. Suppose that the prior distribution q(X0) has full support. Then, there exists r (X0) for which W
d

(r) > 0

iff p (X1|X0) is not an invertible map.

Proof. KL divergence is invariant under invertible transformations. Therefore, if p (X1|X0) is an invertible map, then
D (r (X0) kq (X0)) = D (r (X1) kq (X1)) for all possible r (X0). Hence, W

d

(r) = 0 8r.
We now prove that if p (X1|X0) is not an invertible map, then there exists r (X0) such that W

d

(r) > 0. For
simplicity, write the dynamics p (X1|X0) as the right stochastic matrix M . Because M is a right stochastic matrix,
it has a right (column) eigenvector 1T

= (1, . . . , 1)T with eigenvalue 1. Since p (X1|X0) is not an invertible map, M
also has a non-zero left eigenvector s with eigenvalue |�| < 1 such that s1T

= 0. We use s (x) to refer to elements
of s indexed by x 2 X. Without loss of generality, assume s is scaled such that max

x

|s (x)| = min

x0 q (x0) (which is
greater than 0, by assumption that q(X0) has full support).

We now define r (X0) as:

r (x0) := q (x0) + s (x0)

Due to the scaling of s and because s1T

= 0, r (X0) is a valid probability distribution.
We use the notation s (x1) :=

P
x0

s (x0) p (x1|x0) and r (x1) :=
P

x0
r (x0) p (x1|x0) = q (x1) + s (x1). We also use

the notation C := supp r (X1). The fact that q (X0) has full support also means that C ✓ supp q (X1).
The proof proceeds by contradiction. Assume that W

d

(r) = 0. Using Eq. 12 and due to properties of KL divergence,
this means that for each x0 2 X and x1 2 C:

q (x0|x1) = r (x0|x1)

q (x0) p (x1|x0)

q (x1)
=

r (x0) p (x1|x0)

r (x1)

r (x1)

q (x1)
p (x1|x0) =

r (x0)

q (x0)
p (x1|x0)

q (x1) + s (x1)

q (x1)
p (x1|x0) =

q (x0) + s (x0)

q (x0)
p (x1|x0)

s (x1)

q (x1)
p (x1|x0) =

s (x0)

q (x0)
p (x1|x0)

s (x1) q (x0|x1) = s (x0) p (x1|x0)

Taking absolute value of both sides gives:

|s (x1)| q (x0|x1) = |s (x0)| p (x1|x0)

Summing over x0 2 X and x1 2 C:
X

x12C

X

x02X

|s (x1)| q (x0|x1) =

X

x12C

X

x02X

|s (x0)| p (x1|x0)

X

x12X

|s (x1)|�
X

x1 /2C

|s (x1)| =
X

x12X

X

x02X

|s (x0)| p (x1|x0)�
X

x1 /2C

X

x02X

|s (x0)| p (x1|x0) (13)

Note that for all x1 /2 C, r (x1) = 0, meaning that s (x1) = �q (x1). Thus,
X

x1 /2C

|s (x1)| =
X

x1 /2C

q (x1)
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Furthermore, for all x1 /2 C, r (x1) =
P

x0
r (x0) p (x1|x0) = 0. Thus, for all x0 2 X where p (x1|x0) > 0 for some

x1 /2 C, r (x0) = 0, meaning s (x0) = �q (x0). This allows us to rewrite the last term in Eq. 13 as:
X

x1 /2C

X

x02X

|s (x0)| p (x1|x0) =

X

x1 /2C

X

x0:p(x1|x0)>0

|s (x0)| p (x1|x0) =

X

x1 /2C

X

x0:p(x1|x0)>0

q (x0) p (x1|x0) =

X

x1 /2C

q (x1)

Cancelling terms that equal
P

x1 /2C q (x1) from both sides of Eq. 13, we rewrite:
X

x1

|s (x1)| =
X

x1

X

x0

|s (x0)| p (x1|x0) =

X

x0

|s (x0)| (14)

In matrix notation, Eq. 14 states that:

ksMk1 = ksk1 (15)

where k·k1 indicates the vector `1 norm. However, by definition sM = �s. Hence:

ksMk1 = k�sk1 = |�| ksk1 < ksk1

meaning that Eq. 15 cannot be true and the original assumption W
d

(r) = 0 is incorrect. We have shown that for
non-invertible maps, there exists r (X0) for which W

d

(r) > 0.

B. Proof: Dissipation in different environments

Assume some non-equilibrium thermodynamic process which maps initial states x0 to final states x1 according to
probability distribution p (x1|x0), and that this process is dissipationless for some initial distribution q (x0). This
process is evaluated across a set of “environments” ⇥, with each environment ✓ 2 ⇥ initializing the process with initial
state distribution r (x0|✓). Each environment ✓ occurs with probability w (✓).

The expected dissipation across the set of environments is

� hW
d

i = D (r (X0|⇥) kq (X0))�D (r (X1|⇥) kq (X1)) (16)

Theorem 2. � hW
d

i � I (X0; ✓)� I (X1; ✓). This bound is achieved if q (x0) =
P

✓

w (✓) r (x0|✓).

Proof. Let r (x0) :=

P
✓

w (✓) r (x0|✓), r (x0, x1|✓) := p (x1|x0) r (x0|✓), r (x1) :=

P
✓,x0

w (✓) r (x0, x1|✓), and
q (x0, x1) := p (x1|x0) q (x0). We also use r (x0|x1, ✓) :=

r(x0,x1|✓)P

x

0
0

r

(

x

0
0,x1|✓)

, q (x0|x1) :=
q(x0,x1)P

x

0
0

q

(

x

0
0,x1)

.

Using chain rule for KL divergence, we write:

D (r (X0, X1|⇥) kq (X0, X1)) =D (r (X0|⇥) kq (X0)) +D (r (X1|X0,⇥) kq (X1|X0))

=D (r (X1|⇥) kq (X1)) +D (r (X0|X1,⇥) kq (X0|X1))

Note that for all ✓, r (x1|x0, ✓) = q (x1|x0) = p (x1|x0) for any distribution q. Thus:

D (r (X1|X0,⇥) kq (X1|X0)) = 0 (17)

Expected dissipation (Eq. 16) can then be rewritten as:

� hW
d

i = D (r (X0|X1,⇥) kq (X0|X1))

= D (r (X0|X1,⇥) kr (X0|X1)) +D (r (X0|X1) kq (X0|X1)) (18)

where

r (x0|x1) :=

P
✓

w (✓) r (x0|✓) p (x1|x0)P
✓,x

0
0
w (✓) r (x0

0|✓) p (x1|x0
0)

=

r (x0) p (x1|x0)P
x

0
0
r (x0

0) p (x1|x0
0)

(19)

We seek the q (x0) which minimizes expected dissipation. In Eq. 18, the first KL term is independent of q. The
second term reaches its minimum value of 0 when q (x0|x1) = r (x0|x1), since KL divergence is minimized when both
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of its arguments are equal. From Eq. 19, it is clear that q (x0|x1) = r (x0|x1) if q (x0) = r (x0). Note, however, that
this may also be true for other q, depending on p(x1|x0). For instance, it is true for all q if p(x1|x0) is an invertible
map.

Again using the chain rule for KL divergence, we write:

� hW
d

i � D (r (X0|X1,⇥) kr (X0|X1))

= D (r (X0, X1|⇥) kr (X0, X1))�D (r (X1|⇥) kr (X1))

= D (r (X0|⇥) kr (X0))�D (r (X1|⇥) kr (X1)) +D (r (X1|X0,⇥) kr (X1|X0))

= D (r (X0|⇥) kr (X0))�D (r (X1|⇥) kr (X1))

= I (X0;⇥)� I (X1;⇥)

where we used Eq. 17 and the standard definition of I (mutual information) in terms of KL divergence.

C. Dissipation for feedback processes

Here we analyze dissipation due to incorrect priors in feedback processes. Feedback processes [44–49] assume two
subsystems coupled to a heat bath, with state spaces X and M (for ‘memory’). A feedback process involves two
stages:

First, the state x 2 X is held fixed while the memory system performs a measurement and updates its state
according to some p (M |x). Assuming that this stage completes by time t = 0, and that x is initially distributed
according to some q (X0), the joint distribution at t = 0 is q (x0,m0) = q (x0) p (m0|x0).

In the second ‘control’ stage, the memory m 2 M is held fixed while an m-dependent driving protocol is applied
to x. At the end of this driving protocol at time 1, x is statistically independent of m. We assume that X is
distributed according to some probability distribution p? (x1) that does not depend on starting conditions or the state
of M . The joint distribution at t = 1 is q (x1,m) = p? (x1) q (M), where q (m) is the marginalized distribution of M :
q (m) :=

P
x0

q (x0) p (m|x0). Analyses of feedback processes usually assume that the joint Hamiltonian is decoupled
at t = 0 and t = 1, having the form H

t

(X,M) = H
t

(X) +H
t

(M) [11].
It is possible to use Eq. 1 in the main text to compute the work necessary for the control stage. This gives the

second law for feedback processes [11]:

hW i � �F
X

� kT · I (X0;M) (20)

where �F
X

is the non-equilibrium free energy change in subsystem X. This result shows that correlations between
X and M created during measurement stage reduce the work required during the control stage. The bound in Eq.
20 can be met by designing an ‘optimal’ feedback process [11, 47].

The optimality of the feedback process depends on knowledge of the distribution q (x0). Here we evaluate what
occurs when a feedback process optimized for q (x0) is instead evaluated with initial distribution r (x0). In this case,
the joint distribution at t = 0 will be r (x0,m) = r (x0) p (m|x0), while at t = 1 it will be r (x1,m) = p? (x1) r (m),
where r (m) :=

P
x0

r (x0) p (m|x0). Inserting these distributions into Eq. 5 in the main text gives:

�W
d

=D (r (X0,M) kq (X0,M))�D (r (X1,M) kq (X1,M))

=D (r (X0) kq (X0))�D (r (M) kq (M)) +D (p (M |X0) kp (M |X0))�D (p? (X1) kp? (X1))

=D (r (X0) kq (X0))�D (r (M) kq (M))

By the data processing inequality for KL, this dissipation is non-negative. As can be seen, memory can minimize
dissipation by preserving information about initial states: in fact, dissipation reaches its minimum of 0 when the
memory has a perfect copy of the initial condition x0. It is important to note, however, that resetting (i.e. erasing)
the memory after the control stage – necessary, for instance, for the feedback controller to operate in a cyclical manner
– will dissipate ��1D (r (M) kq (M)) work. Thus, total dissipation for control and reset stages will equal

W
d

= ��1D (r (X0) kq (X0))


