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Stochastic market efficiency

“Neither a borrower nor a lender be”
Hamlet, Act 1, Scene 3, 75

Ole Petersa,b, Alexander Adamoua

aLondon Mathematical Laboratory, 14 Buckingham Street, London WC2N 6DF, UK
bSanta Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Abstract

In (Peters, 2011a) it was shown that the time-average growth rate of a leveraged
investment defines an objectively optimal leverage. It was speculated that this op-
timal leverage should be close to 1, implying that the simple strategy of leveraging
or deleveraging an investment in the market portfolio cannot outperform the market
in the long run. This places a strong constraint on the possible stochastic proper-
ties of the market, which we call “stochastic market efficiency.” Market conditions
that deviate significantly from stochastic efficiency are unstable and may lead to
leverage-driven bubbles. Historical data confirm the hypothesis. This also resolves
the so-called “equity premium puzzle” (Mehra and Prescott, 1985).

Keywords: market efficiency, leverage, stability, bubble, equity premium
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In Sec. 1 we summarize a few key properties of geometric Brownian motion that
were pointed out in (Peters, 2011a). We indicate the main elements of the analogy
that is often drawn between this and the dynamics of markets. Section 2 introduces
the concept of stochastic efficiency, namely the hypothesis that the properties of
price fluctuations in real markets are strongly constrained by stability and efficiency
arguments so as to make investments of leverage 1 optimal. This hypothesis is
motivated by the considerations in Sec. 1 but goes beyond the simple model discussed
there. Section 3 constitutes the main body of the study, where the hypothesis is
tested empirically using data from American stock markets. The arguments leading
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to the hypothesis are neither specific to the mathematical model nor to American
stock markets. We choose the model because it is analytically tractable and American
stock markets because they have been well observed for a sufficiently long time. The
arguments are robust enough to yield insights into other assets, such as housing or
indeed national economies or the global economy. Section 4 summarizes the rationale
and main results of the study.

1. Mathematical background

Notation: The present study uses three different levels of realism. To avoid te-
dious nomenclature and confusion between these, we use three different superscripts:

1. superscript m refers to the mathematical toy model used to motivate and guide
our investigations;

2. superscript s refers to simulations performed using market data to test our
main hypothesis; and

3. superscript r refers to corresponding quantities in the context of real people’s
behavior.

Toy model: The variable x(t) is said to undergo geometric Brownian motion if

dx(t) = x(t)(µmdt+ σmdW ), (1)

where W is a Wiener process. Owing to the analogy with market dynamics, where
x(t) is likened to the price of an asset or the value of a market index, we call µm the
expected return (see below) and σm the volatility.

Equation (1) is non-stationary in the sense that the distribution of x(t), repre-
sented by its density function Px(x, t), does not converge to a probability distribution
in the limit t → ∞. Rather, limt→∞ Px(x, t) = 0 for any value of x. This implies
that the process is non-ergodic in the sense of (Grimmett and Stirzaker, 2001) Ch. 9.
Therefore, even if both quantities are meaningful, the time average of an observable
arising from this process need not be identical to the ensemble average of the same
observable.

Following (Peters, 2011a) it is possible to compute the ensemble average, 〈g〉, and
the time average, denoted by g, of the exponential growth rate of x(t) using the
estimator

ĝm(T,N) ≡ 1

T
ln

(
1

N

N∑
i

(∫ T
0
dxi(t)

xi(0)

))
, (2)

where i indexes realizations of the process described by (Eq. 1). Taking the limit
N → ∞ for finite T defines the ensemble average, while taking the limit T → ∞
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for finite N defines the time average (Peters and Klein, 2013). This procedure yields
clear interpretations of two well-known characteristics of geometric Brownian motion:

〈gm〉 ≡ lim
N→∞

ĝm(T,N) = µm (3)

shows that the ensemble-average growth rate is equal to the expected return; and

gm ≡ lim
T→∞

ĝm(T,N) = µm − (σm)2

2
=
d 〈ln(x)〉

dt
(4)

shows that the time-average growth rate is equal to the rate of change of the ensemble
average of ln(x(t)), which is obtained by applying Itô’s formula to (Eq. 1).

The non-ergodicity of the process is manifest in the non-commutativity of the two
different limits,

lim
N→∞

lim
T→∞

ĝm(T,N) 6= lim
T→∞

lim
N→∞

ĝm(T,N). (5)

Referring to the analogy with stock markets, it was pointed out in (Peters, 2011a)
that an investor should be more concerned about the time average of a single re-
alization of the process (his investment) than the average over many realizations
(conceptually equivalent to multiple copies of his investment in parallel universes).

We introduce another parameter, lm, to (Eq. 1) in order to extend the market
analogy to leveraged investments. We split the expected return into a so-called
“riskless” part, µm

riskless, (to represent an asset with zero volatility) and a so-called
“excess” part, µm

excess, which, together with the fluctuations, is added in proportion
to the leverage. Thus (Eq. 1) becomes

dxl = xl((µ
m
riskless + lmµm

excess)dt+ lmσmdW ). (6)

The case lm = 0 results in exponential growth with rate µm
riskless, and the case lm = 1

is equivalent to (Eq. 1), where µm = µm
riskless + µm

excess.
Leverage lm < 0 reflects short-selling; 0 ≤ lm ≤ 1 reflects part of the investor’s

equity being invested in the market and part kept safe paying a return of µm
riskless; and

lm > 1 reflects what is commonly referred to as leveraging, i.e. an investment in the
market that exceeds the investor’s equity and includes borrowed funds. The volatility
in xl(t), reflecting the investor’s equity, is lmσm, proportional to the leverage, and
the expected return of xl(t) is µm

riskless + lmµm
excess, reflecting a safe interest rate and

the excess expected return of the market added in proportion to the leverage. Thus
leveraging causes both the excess return and the fluctuations to increase linearly.

Equation (6) has the leveraged ensemble-average growth rate

〈gml 〉 = µm
riskless + lmµm

excess (7)
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and the leveraged time-average growth rate

gml = µm
riskless + lmµm

excess −
(lmσm)2

2
. (8)

Crucially (Eq. 8), unlike (Eq. 7), is non-monotonic in lm and establishes the existence
of an objectively optimal leverage,

lmopt =
µm
excess

(σm)2
, (9)

which maximizes gml .
Equation (9) implies that, unless lmopt = µm

excess/(σ
m)2 = 1, it is possible to choose

lm in (Eq. 6) such that xl(t) (reflecting the dynamics of equity in a leveraged invest-
ment) consistently outperforms x(t) of (Eq. 1) (reflecting the market portfolio). For
example, due to the non-linear effects of fluctuations in the multiplicative process,
(Eq. 1) or (Eq. 6), it is possible to outperform a rising market by keeping a fraction
of one’s equity in a savings account.

In reality, the outcome of an investment held for some time is given by the time-
average growth of the investment over that time period. The ensemble-average
growth rate is a priori irrelevant in practice; it is a means of conceptualizing ran-
domness (Peters, 2011b; Gell-Mann and Hartle, 2007; Gell-Mann and Lloyd, 2004;
Ehrenfest and Ehrenfest, 1912; Whitworth, 1870). Attempting to optimize (Eq. 7)
leads to the recommendation of maximizing lm (or −lm). But (Eq. 8) shows that
this would lead to a negatively diverging time-average growth rate. Thus, if (Eq. 7)
is falsely believed to reflect the quantity an investor should optimize, and lm is in-
terpreted as the leverage used in the investment, the investor will be led to exceed
(positively or negatively) the leverage that would truly be most beneficial. Worse,
this excess is likely to ruin the investor.

There is a long history of the struggle to make sense of the misleading recommen-
dations derived from (Eq. 7), starting with N. Bernoulli, see (Montmort, 1713), and
carrying on to (Markowitz, 1952, 1991), see (Peters, 2011b). The optimal leverage
for (Eq. 6) was identified at least as early as (Kelly Jr., 1956), albeit in a somewhat
different context and form, and in the form of (Eq. 9) by (Merton, 1969). The present
study is concerned with the dynamic properties of the optimal simulated leverage
derived from time series of real markets.

2. Stochastic Efficiency

The efficient market hypothesis (Bachelier, 1900; Fama, 1965) claims that the price
of an asset traded in an efficient market reflects all the information publicly available
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about the asset. The corollary is that it is impossible for a market participant,
without access to privileged (“insider”) information, consistently to achieve returns
exceeding the time-average growth rate of the market (“to beat the market”) by
choosing the price at which he buys and sells an asset. We shall refer to this concept
as “ordinary efficiency”.

We propose a different, fluctuations-based, kind of market efficiency, which we call
“stochastic efficiency”: it is impossible for a market participant without privileged
information to beat the market by choosing the amount he invests in an asset or
portfolio of assets, i.e. by choosing his leverage. Simple strategies such as borrowing
money to invest, lr > 1, or keeping some money in the bank, lr < 1, should not
yield consistent market outperformance (“no leverage-arbitrage”). This reasoning
was used in (Peters, 2011a) to hypothesize that real markets self-organize such that

lropt = 1 (10)

is an attractive point for their stochastic properties (represented by µm
riskless, µ

m
excess

and σm in the model).
The hypothesis we are about to test is motivated by the model (Eq. 6) and its

properties (Eq. 7), (Eq. 8) and (Eq. 9) in the sense that this model motivates the ex-
istence of an optimal leverage. But it is by no means derived from the model, as the
hypothesis requires the dynamic adjustment, or self-organization, of the stochastic
properties of the system, which, in the model, are represented by fixed parameters.
One would have to think of µm

riskless, µ
m
excess and σm as slowly-varying (compared to

the fluctuations) functions of time, related to one another as well as to lm through
a dynamic which has lmopt = µm

excess/(σ
m)2 = 1 as an attractor. We do not devise a

quantitative model of this here, but discuss qualitative features which such a model
may require. The reader is referred to work by others who have proposed and in-
vestigated quantitative models, see (Geanakoplos, 2010; Thurner et al., 2012) and
references therein.

Although inspired by a mathematical toy model, the hypothesis in (Eq. 10) does
not rest on model-specific properties. Crucial for it are the identification of the
time-average growth rate as the practically relevant measure for deciding levels of
investment and the consequent establishment of an optimal leverage, about which
economic arguments may be framed.

Stochastic efficiency is a tantalizing concept. It posits that the market has a dif-
ferent quality of knowledge than implied by price efficiency. Ordinary efficiency is
essentially a static concept, as it states that prices coincide with some form of value.
Stochastic efficiency, on the other hand, constrains price dynamics and predicts prop-
erties of fluctuations.
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To argue convincingly for stochastic efficiency we have to elucidate those aspects of
the dynamics that enforce it. For stochastic efficiency to manifest itself, there needs
to be negative feedback similar to the familiar feedback between prices and supply-
demand imbalances. In addition to the “no leverage-arbitrage” argument above, the
following dynamic arguments show that both lropt = 1 and lropt = 0 are particularly
attractive values, and that the interval 0 ≤ lropt ≤ 1 constitutes a potentially stable
regime, whereas values outside it are unstable:

1. Leverage feedbacks:
(a) If lropt > 1, investors will eventually borrow money to invest. Highly lever-

aged investments are liable to margin calls and tend to increase volatility
(Geanakoplos, 2010). In addition, demand for risky assets will lead to
price increases and (through an outflow from deposit accounts) to an in-
crease in yields on safe bonds µr

riskless. Both effects reduce µr
excess. Both

the rise in σr and the fall in µr
excess imply that lropt decreases.

(b) If 0 < lropt < 1, there can be no margin calls on optimally leveraged
investments, leading to lower volatility, and as lr decreases (coming from
case (a)), i.e. investors withdraw from the market, prices fall, yields on
safe bonds decrease, and µr

excess increases. Thus the pressures from case
(a) for lr to decrease are relaxed and lr is free to increase.

(c) If lropt < 0 investors will eventually borrow stock to short-sell. Highly
negatively leveraged investments are liable to margin calls and tend to
increase volatility. High negative leverage will lead to price decreases and
(through an inflow into deposit accounts) to a decrease in yields on safe
bonds µr

riskless, making µr
excess less negative. Both the rise in σr and the

increase in µr
excess imply that lropt becomes less negative.

2. Global stability: It is difficult to envisage globally stable economies existing
with optimal leverage outside the interval 0 ≤ lropt ≤ 1 because:
(a) If lropt > 1 everyone should invest in the market more than he owns. This

is not possible because the funds to be invested must be provided by
someone.

(b) If lropt < 0 everyone should sell more market shares than he owns. This is
not possible because the assets to be sold must be provided by someone.

Thus the range 0 ≤ lropt ≤ 1 is special in not being globally unstable.

We believe the above to be the main drivers behind stochastic efficiency. There are
additional effects, however, which reinforce it.

1. Economic paralysis: In an economy with lropt ≤ 0 there is no incentive to
invest, which may result in no productive economic activity.
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2. Covered short-selling: An investment with lr < 0 is punished by the costs
of borrowing stock to short-sell, i.e. covered as opposed to naked short-selling,
which makes lropt = 0 special.

3. Risk premiums: The interest received by a depositor is typically less than the
interest paid by a borrower. Therefore, an investment with lr < 1 is punished
by low deposit interest rates and an investment with lr > 1 is punished by high
borrowing costs. This reinforces lropt = 1 as an attractive point.

4. Transaction costs: The costs of buying and selling assets (fees, market
spreads, etc.) punish any strategy that requires trading. Holding an invest-
ment of constant leverage generally requires trading to rebalance the ratio of
assets to equity. The two exceptions are investments with lr = 0 and lr = 1.

Following these considerations we arrive at a refined hypothesis: on sufficiently
long time scales lropt = 1 is a strong attractor (which we refer to as “strong” stochastic
efficiency). Deviations from this attractor are likely to be confined to the interval
0 ≤ lropt ≤ 1 (“weak”), whose end points are sticky. In the following we submit this
hypothesis to an empirical test using market data.

3. Tests of stochastic efficiency in historical data

We test the stochastic efficiency hypothesis by simulating leveraged investments in
the Standard & Poor’s index of 500 leading U.S. companies (S&P500) using historical
data of the daily returns of the index over the last 58 years.

3.1. Data sets

The data used in this study are publicly available from the Federal Reserve Eco-
nomic Data (FRED) website, hosted by the Federal Reserve Bank of St. Louis at
http://research.stlouisfed.org/fred2. We use the daily closing prices, adjusted for div-
idends and stock splits, of the S&P500 (FRED time series: SP500) from 4thAugust
1955 to 21st May 2013. Additionally we use the daily effective federal funds rate
(FRED time series: DFF) and the daily bank prime loan rate (FRED time series:
DPRIME) over the same period. The estimate of optimal leverage using these data
is generous, as the S&P500 represents a well diversified portfolio of large and suc-
cessful companies, and – since bankrupt companies (such as Enron) are replaced –
is positively affected by survivorship bias. All studies were repeated for Dow Jones
Industrial Average and NASDAQ data with essentially identical results (not shown).
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3.2. Simulations

An investment of constant leverage over a given time period, or “window,” is
simulated as follows. At the start of the first day we assume unit equity, comprising
holdings of ls in the risky asset (S&P500) and cash deposits of 1 − ls. At the end
of the day the values of these holdings and deposits are updated according to the
historical market returns and interest rates, after which the portfolio is rebalanced,
i.e. the holdings in the risky asset are adjusted so that their ratio to the total equity
remains ls. On non-trading days the return of the market is zero, whereas deposits
continue to return interest payments, which leads to an unrealistic but negligible
rebalancing on those days. The investment proceeds in this fashion until the final
day of the window, at which point the final equity is recorded. If at any time the total
equity falls below zero, the investment is declared bankrupt and the simulation stops,
i.e. we do not allow recovery from negative equity. The procedure is then repeated
for different leverages, and the optimal simulated leverage, lsopt, is the leverage for
which the final equity is maximized. This is found using a golden section search
algorithm (Press et al., 2002), Chap. 9.

Figure 1 shows, as a function of leverage, the simulated returns for an investment
over the largest possible window, namely the entire time series. The four curves in
the figure correspond to four sets of assumptions about interest rates and transaction
costs, mentioned as additional effects in Sec. 2. We list these in order of increasing
complexity and resemblance to actual conditions and practices in financial markets:

• Simulation 1 (red line in Fig. 1) is the simple case, where the effective federal
funds rate is applied to all cash, whether deposited or borrowed. No costs are
incurred for short-selling (ls < 0), akin to naked short-selling, wherefore mar-
ket returns apply to negative stock holdings exactly as they apply to positive
holdings. Transaction costs are neglected. This results in a smooth curve.

• Simulation 2 (yellow line) is like the first case, but federal interest rates
are paid on short positions, corresponding to fees for borrowed stock. This
penalization of negative holdings in the market introduces a discontinuity in
the derivative, or kink, at ls = 0.

• Simulation 3 (green line) is like the second case, but now federal interest rates
are received on cash deposits, whereas prime interest rates are paid on borrowed
funds or stock. This resembles the effect of risk premiums and introduces a
kink at ls = 1.

• Simulation 4 (blue line), the complex case, is like the third case, but whenever
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Figure 1: Total return from a constant-leverage investment in the S&P500, starting 4th August
1955 and ending 21st May 2013, as a function of leverage. For descriptions of the simulations, see
text.
Red line: Simulation 1.
Yellow line: Simulation 2.
Green line: Simulation 3.
Blue line: Simulation 4.

the portfolio is rebalanced a loss in equity of 0.2% of the value of the assets
traded is incurred. This resembles transaction costs.

As discussed in Sec. 2, risk premiums, covered short-selling and transaction costs
tend to penalize investments with leverages other than 0 or 1. This is reflected in
the simulation results by the kinks described above and visible in Fig. 1.

For many time windows the discontinuity in the derivative of the return-leverage
curve is accompanied by a change in sign of the derivative, making the point a global
maximum and fixing lsopt. Certainly, this corresponds to a real effect observed in real
markets. However, even without these effects, the red line shows that lsopt ≈ 1. This,
being the simplest case with the fewest assumptions and approximations provides
the strongest support for our hypothesis.
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3.3. The entire time series

The return-leverage curve for an investment window spanning the entire time
series over the last 58 years shows an optimal leverage of lsopt = 0.97 for the simple
case (simulation 1) and lsopt = 1.00 for the complex case (simulation 4). We will
discuss in Sec. 3.4 in how far this confirms the hypothesis.

The time-average growth rate (Eq. 8) of the specific model (Eq. 6) is parabolic in
lm. We show in Fig. 2 the simulated time-average growth rate for the simple case,
which is the logarithm of the simulated return, shown in Fig. 1, divided by the window
length. Given the known deficiencies of the geometric Brownian motion model,
the quality of a parabolic fit (black dashed line) is remarkable. The parameters of
the fitted parabola are a fit of the model (Eq. 8) and can be taken as meaningful
definitions in the simulations of the riskless return, µs

riskless, the excess return, µs
excess,

and the volatility, σs, for the S&P500 over the last 58 years. A least-squares fit
estimates these parameters as µs

riskless = 5.2% p.a., µs
excess = 2.4% p.a., and σs =

15.9% per square root of one year. We performed a one-parameter fit, first fixing
the co-ordinates of the maximum, and then fitting on the range −7 ≤ ls ≤ 3.
The ensemble-average outperformance of the S&P500 over federal deposits over this
period amounts to a mere 2.4% p.a.. Due to the wealth-depleting effect of the
volatility, which manifests itself in the model as the −(lmσm)2/2 term in (Eq. 8),
this small excess is just insufficient for a full investment (ls = 1) to be optimal. Full
investment does outperform federal deposits, albeit by a modest 1.2% p.a..

3.4. Shorter time scales

Over the full time series our simulations yield an optimal leverage between zero
and one. How significant a corroboration of our hypothesis is this? Does it rule
out lropt = 1? Even assuming that lropt is attracted to a particular value, we expect
random deviations from it to increase as the investment window gets shorter, since
returns over shorter windows are more heavily influenced by noise. To take an ex-
treme example, in the simple simulation of a daily rebalanced portfolio, the observed
optimal leverage over a window of one day can take one of two values: lsopt = +∞
if the market beats the federal funds rate on that day, lsopt = −∞ if federal funds
beat the market. Indeed, the magnitude of the observed optimal leverage will be
infinite for any window over which the daily returns are either all greater than, or
all less than, the federal funds rate. This is unlikely for windows of months or years
but occurs commonly over windows of days or weeks. The longest run of consecutive
up-moves relative to the federal funds rate in the S&P500 was 14 trading days from
26th March 1971 to 15th April 1971, and the longest draw-down relative to the fed-
eral funds rate was 12 trading days from 22nd April 1966 to 9th May 1966 and from
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Figure 2: Computed time-average growth rates closely follow a parabola as a function of leverage.
The deviation from parabolic form for extreme leverages is due to crashes and sudden recoveries.
A 20.47% daily drop as occurred on 19 October 1987 leads to bankruptcy (an infinitely negative
return) in our simulations for leverage ls >= 4.89, and a 11.58% rise as occurred on 13 October
2008 leads to bankruptcy for ls < −8.64, showing the well-known asymmetry between negative and
positive extreme events.
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10th November 1969 to 25th November 1969. Even without this divergence, shorter
windows are more likely to result in larger positive and negative optimal leverages
because relative fluctuations are larger over shorter time scales.

We quantify this idea in the mode. Solving (Eq. 6) yields the following estimate
for the time-average growth rate after a finite time, T :

gml (T,N = 1) = µm
riskless + lmµm

excess −
(lmσm)2

2
+
lmσmW (T )

T
. (11)

Maximizing this generates an estimate for the optimal leverage over a window of
length T ,

l̂mopt(T,N = 1) = lmopt +
W (T )

σmT
. (12)

Thus, in the model, optimal leverage for finite-time windows is normally distributed
with mean lmopt and standard deviation

stdev(l̂mopt(T,N = 1)) =
1

σmT 1/2
. (13)

To assess the significance of our finding lsopt = 0.97 (or 1.00 for the complex simula-

tion), we estimate the time scale at which the standard deviation of l̂sopt is 1. Only
for time windows on this scale or larger can the assertion that lsopt is confined to a
range of size one be significantly corroborated by a single measurement (the window
of the entire record). Substituting the computed volatility σs = 15.9% per square-
root of one year, as estimated in Sec. 3.3, for the model volatility σm would fix this
time scale at around 40 years. Since we do not trust the specific form of the model,
however, we empirically test the relation suggested by (Eq. 13).

Likening l̂mopt(T,N = 1) to observed optimal leverage over a window of size T ,
we investigate how well the model predicts the fluctuations in lsopt(T ). We compile
histograms of lsopt(T ) by moving windows of size T across the record and compare the
standard deviation of lsopt(T ) found in these histograms to the standard deviation of

l̂mopt(T,N = 1). For windows considerably shorter than the entire record (months or
a few years), the standard deviations of the corresponding histograms are considered
meaningful, and the relation (Eq. 13) can be tested.

Figure 3 shows, on double-logarithmic scales, the standard deviation of lsopt against
the window length for the simple case. Remarkable agreement is found with the
model-specific prediction in (Eq. 13). We note that, for shorter time scales, the
standard deviation is slightly higher than predicted. For longer time scales, the
standard deviation drops below the prediction. This is because for window lengths
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Figure 3: The standard deviation of lsopt in the simple case (symbols) as a function of window length
can be predicted based on the specific model (Eq. 1) (straight line), using the parameters found
in Sec. 3.3. Prediction and observations yield an estimate of the window length necessary to make
meaningful statements of the type “0 ≤ lsopt ≤ 1.”
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Figure 4: Daily optimal leverages for an expanding window, starting on 4th August 1955. Also
shown are the one- and two-standard deviation envelopes about lsopt = 1, based on the estimate
σs = 15.9% per square-root of one year in Sec. 3.3.

approaching the entire period under study, the number of independent windows in
the sample is small, and hence the standard deviation of the sample is depressed.

In Fig. 4 the diminishing fluctuations in lsopt are illustrated as follows: for every
day the optimal leverage is computed for the longest available window (the window
starting on 4th August 1955) for the simple and complex cases. As time passes
and the statistics improve, the optimal leverage is seen to be consistent with an
approach to lsopt = 1. About 1/3 of the measurements lie outside the one-standard
deviation band, as would be the case in the model. No measurements lie outside
the two-standard deviations band, whereas this would occur about 5% of the time
in the model. Of course the period investigated could be atypical, but we attribute
the lack of large deviations to the inadequacy of the the model (Eq. 1): the largest
fluctuations in daily closing prices, whose likelihoods are underestimated by (Eq. 1),
prohibit very large values of lsopt.

Figure 4 illustrates the convergence of lsopt → 1 over time, but provides no infor-
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mation regarding the typicality of the time series. Further insight into the dynamics
of lsopt can be gained by examining time series for fixed window lengths. Figure 5 (a)
shows lsopt for the simple case for windows ranging from 5 years to 40 years as a
function of the end date of the window. Figure 5 (b) shows the same for the com-
plex case, which we claim is a more realistic simulation of market conditions and
practices. From the strong fluctuations over short time scales emerges attractive
behavior consistent with both the strong and weak forms of the stochastic efficiency
hypothesis. The effects of the stickiness of the points lsopt = 0 and lsopt = 1 in the
complex model are clearly visible and lend additional support to both forms of the
hypothesis as it applies to real markets. In particular, over the last decade or so
optimal leverage for the 20- and 40-year periods remained close to unity. This may
be seen as an evolution of the market system towards strong stochastic efficiency
over the course of the last half century.

4. Discussion

Nothing in nature, including Brown’s pollen (Mazo, 2002), can truly follow Brow-
nian motion, whether geometric or not. Nor is anything in nature knowably faithfully
described by any mathematical expression (Rényi, 1967). However, just as the dy-
namics of Brown’s pollen, in the appropriate regime, have some properties in common
with a Wiener noise, so the dynamics of share prices have some properties in common
with geometric Brownian motion. Specifically, the daily excess returns for the mar-
kets investigated – like the returns in geometric Brownian motion – are sometimes
positive and sometimes negative. For any time-window that includes both positive
and negative daily excess returns, regardless of their distribution, a well-defined op-
timal leverage exists in our simulations, Sec. 3.2. We have empirically investigated
the properties of such optimal leverages.

Stability arguments, which do not depend on the specific form of the distribution
of returns and go beyond the model of geometric Brownian motion, led us to the
quantitative prediction that on sufficiently long time scales real optimal leverage will
be between 0 ≤ lropt ≤ 1.

We used specific properties of geometric Brownian motion to estimate the time
necessary to obtain a meaningful empirical test of this prediction. Over short time
scales the fluctuations in lsopt are too large for us to have confidence, to the required
precision of order 1, in a single measurement of lsopt. The model predicts a required
observation time scale of 1

(σm)2
≈ 40 years and we confirmed this estimate in the

scaling of the standard deviation of lsopt in Fig. 3. We therefore consider our main
finding lsopt = 0.97 (complex case: 1.00) for the longest possible window of 58 years a
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Figure 5: (a) In simulation 1, see text, observed optimal leverage fluctuates strongly on short time
scales but appears to converge to lsopt = 1 on long time scales, which constitutes the central result
of the study.
(b) In simulation 4, see text, the kinks in Fig. 1 ensure that lsopt = 0 and lsopt = 1 are often found
exactly. The 40-year simulation supports the strong stochastic efficiency hypothesis, lropt = 1, with
a dip to lsopt = 0 only during the credit crunch of 2008.
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significant corroboration of both strong (lropt = 1) and weak (0 ≤ lropt ≤ 1) hypothe-
ses. Both ends 0 and 1 are clearly special due to the kinks in Fig. 1. The economic
paralysis argument suggests that lropt = 1 is a stronger attractor than lropt = 0, and
our observations support this argument, especially the 40-year window in Fig. 5 (a)
and (b) .

The existence of optimal leverage is important conceptually and its value and
the stability arguments associated with it are of practical significance. While these
arguments do not preclude special conditions under which it is optimal to invest more
than one’s equity or to short-sell an asset, they give a fundamental scale to leverage
in general. In other words, if it appears that optimal leverage is outside the band 0 ≤
lropt ≤ 1, then a special reason – such as insider knowledge or a tax incentive – for this
violation of stochastic efficiency must exist. Artificially maintaining such conditions
will lead to instabilities. Consider housing: many societies consider it desirable for
an individual to be able to purchase a home whose price exceeds his equity without
having to take reckless risks. Without carefully designed restrictions on speculative
home purchases, policies which aim to achieve the corresponding market conditions,
i.e. lropt > 1, will defeat their purpose and create an investment bubble followed by a
crash.

Stochastic efficiency is “accountable” in the sense of the word used by Popper
(1982) Chap. I.2, who demanded that a “theory will have to account for the impreci-
sion of the prediction”.1 Stochastic efficiency predicts its own imprecision, (Eq. 13),
and the degree of its validity can be meaningfully and objectively tested. This is
particularly important given the complexity of the systems involved.

We emphasize that our work is in no way meant to advocate or evaluate constant-
leverage or any other investment strategies. Stochastic efficiency is a fundamental
organizing principle for the stochastic properties of markets. The simulations in this
study are an empirical test of this fundamental principle.

It has been argued that central banks, focusing their attention on interest rates,
pay insufficient attention to leverage (Geanakoplos, 2010). Arguing in the context of
the model, a strong link between the two is (Eq. 9): reducing the risk-free interest
rate µm

riskless (something we liken to the rate at which governments lend) increases
optimal leverage because, assuming that overall expected returns µm do not change,
it implicitly increases µm

excess by creating an incentive to invest rather than save, which
tends to lead to an eventual increase in real leverage. We agree with the criticism

1Popper does not refer to stochastic theories in this discussion. To apply his arguments to our
case, we replace “precision in the initial conditions” in his Chap. I.3 by “window length”. Both
concepts quantify the information available about the system.
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in (Geanakoplos, 2010). Effecting an increase (decrease) in real leverage through
a decrease (increase) in µr

riskless is rather indirect. This appears problematic given
how sensitive lmopt is to µm

riskless – an increase of µm
riskless by µm

excess (estimated at about
2.4% p.a. over the last 58 years) sets lmopt to zero, removing any incentive to invest.
Conversely, a decrease of µm

riskless by µm
excess doubles lmopt.

Our results are relevant to the so-called “equity premium puzzle” (Mehra and
Prescott, 1985). The equity premium, in the model, is simply µm

excess, whose value we
estimate in historical data as µs

excess = 2.4%. This is significantly lower than previous
estimates of the equity premium – a value of around 6% has become established in
the literature. However, our estimation of the equity premium is conceptually differ-
ent and involves fewer steps. We make use of the ensemble average and time average
growth rates, whose difference is clearly illustrated in the simple non-ergodic model
of geometric Brownian motion. Inflation has no effect on the equity premium as it
reduces the risky and riskless returns equally. No assumptions are made about util-
ity or consumption, with the result that we find the equity premium to be precisely
in line with our prediction: given the fluctuations in stock returns and short-term
government bond returns the equity premium is such that optimal leverage con-
verges to 1 in the long run. From this perspective, only an equity premium which
violated stochastic market efficiency would constitute a “puzzle” requiring further
explanation.

On a global scale one might argue that real leverage must be exactly 1. This
reflects the fact that there is nothing outside the global economy, or that the economy
is fully invested in itself. Supposing this is the case and reversing the argument, what
would be the optimal behavior? In other words, we ask: given that we are forced to
use a certain leverage as a global community (namely lr = 1), what kinds of risks
should we take to make this the optimal leverage? As a global community, no action
should be taken for which (σr)2 > µr

excess, as this would imply lropt < 1. A caricature
interpretation of this statement is the following: if the risks we create through, for
example, allowing global warming or nuclear proliferation are so great that we should
all partly move to another (safe) planet, then we should not take those risks.

We do not consider our arguments specific to financial markets. They are rele-
vant also to other regularly traded assets and commodities, related even to such basic
needs as food and shelter, such as the price of wheat or apartments in Manhattan.
They are relevant to macroeconomic decisions. Indeed, the same type of dynamics
– multiplicative growth with fluctuations – is at work in many other systems. Equa-
tion (1) is commonly used to describe the growth of populations in ecology (Lewontin
and Cohen, 1969) or the early spread of a disease in epidemiology (Daley and Gani,
1999).
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We have argued that 0 ≤ lropt ≤ 1 is a natural attractor for an economic or market
system, with the end points of the interval being sticky. Worryingly, in the aftermath
of the financial crisis of 2008, we note that a sticky lropt = 0 may correspond to a
Depression: in this case there is no incentive to invest and to take risks. The aim
of economic policy may be viewed as creating conditions where lropt for the entire
economy is within 0 ≤ lropt ≤ 1 and close to the upper bound.
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