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Evaluating gambles using dynamics
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Abstract

The classic decision-theory problem of evaluating a gamble is treated from a modern
perspective using dynamics. Linear and logarithmic utility functions appear not as
expressions for the value of money but as mappings that result in ergodic observables
for purely additive and purely multiplicative dynamics, the most natural stochastic
processes to model wealth. This perspective is at odds with the boundedness require-
ment for utility functions in the dominant formalism of decision theory. We highlight
conceptual and mathematical inconsistencies throughout the development of decision
theory, whose correction clarifies that the modern perspective is legitimate and that
boundedness of utility functions is not required.

Keywords: Decision theory, unbounded utility, ergodicity

1. Preliminaries

Decision theory studies mathematical models of situations that create an internal
conflict and necessitate a decision. For instance we may wish to model the decision
whether to buy a lottery ticket. The conflict is between the unpleasant certainty
that we have to pay for the ticket, and the pleasant possibility that we may win the
jackpot.

We will be dealing with mathematical models but use a common suggestive
nomenclature. In this section we write in small capitals those terms of every-
day language that in the following will refer to mathematical objects and operations.

A gamble is a set of possible changes in monetary wealth ∆W (n) with
associated probabilities pn(n), where n are integers designating events. For con-
venience, we order events such that ∆W (n+ 1) > ∆W (n). Different gambles are
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compared, the decision being which to subject one’s wealth to, and more generally
to what extent.

Gambles are versatile models, useful to describe a number of real-world prospects.
An insurance contract may be modeled as a gamble, as may an investment. Lot-
teries are important in the historical development of decision theory. Here, possi-
ble payouts D(n) are purchased for a ticket price, P , leading to changes in
monetary wealth, ∆W (n) = D(n)− P , that are negative up to some value of n
and then positive. This creates a decision problem, when comparing to the option of
doing nothing: the certain unpleasant prospect of losing the ticket price has
to be weighed against the uncertain prospect of winning one of the nmax possible
payouts.

2. Outline

Section 3 is a modern treatment of the problem, using dynamics. The two
most commonly considered quantities are the expected rate of change in wealth,
1

∆t
〈∆W 〉, for additive dynamics, and the expected exponential growth rate of wealth,

1
∆t
〈∆ ln(W )〉, for multiplicative dynamics.
Both quantities were suggested as criteria to evaluate a gamble, 1

∆t
〈∆W 〉 by

Huygens (1657), and 1
∆t
〈∆ ln(W )〉 by Laplace (1814), although time scales ∆t were

usually omitted and implicitly set to 1.
Section 4 discusses the complicated historical development of these two criteria,

which we now briefly summarize. It is necessary to re-tell the history of the prob-
lem because of an important misconception that forbids the modern perspective.
Bernoulli (1738) suggested a quantity similar to the exponential growth rate and
called it a “moral expectation,” interpreting the logarithm in the exponential growth
rate as a psychological re-weighting that humans apply to monetary amounts. This
presented a very simple criterion – maximizing the expected exponential growth rate
– in a very complicated way. Laplace (1814) corrected Bernoulli formally, though
not conceptually, writing down exactly the expected exponential growth rate, though
not pointing out its dynamical significance.

Menger (1934) did decision theory a crucial disservice by undoing Laplace’s cor-
rection, adding further errors, and writing a persuasive but invalid paper on the
subject that concluded incorrectly – in the language of utility theory – that only
bounded utility functions are permissible. This forbade the use of either of the dy-
namically sensible quantities because – forced into the framework of utility theory
– the expected rate of change in wealth corresponds to a linear (unbounded) util-
ity function, and the expected exponential growth rate corresponds to a logarithmic
(unbounded) utility function.
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That unbounded utility functions are not allowed became an established result.
We ask here why we cannot use unbounded utility functions, and find no good rea-
son. The arguments for the boundedness of utility functions that we found are not
scientifically compelling. A visual representation of the convoluted history of the
problem is shown in Fig. 1.

We conclude in Section 5 that the modern dynamic perspective is legitimate and
powerful. The requirement of boundedness for utility functions is both unnecessary
and detrimental to the formalism of decision theory. We aim to remove this unnec-
essary obstacle in the way of using physically sensible criteria in decision theory.
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Problem: Evaluate a gamble

1657 Huygens    

Computed expected linear 
growth rate.

Ergodic observable for additive 
growth process.

PROBLEM: Not ergodic if 
dynamics multiplicative as is 

often the case.

No utility required.

Flawed formal arguments supporting Menger 1934

ERROR: Menger 
ignored Bernoulli's 
second term 

ERROR: Menger 
ignored Laplace's 
correction 

Menger ruled 
out exponential 
growth rate

Menger ruled 
out linear 
growth rate

1934 Menger

Incorrectly claimed: Only 
bounded utility functions 

allowed. 

1738 Bernoulli

Attempted to mitigate Huygens' 
problems, but introduced 

unnecessary complications.

PROBLEMS: Introduced utility 
as non-linear mapping of 
money. Failed to compute 
expected rate of change of 

utility.

Only arguments based on 
Bernoulli require utility.

Laplace 
corrected 
Bernoulli

1814 Laplace

Corrected Bernoulli and 
computed expected exponential 

growth rate.

Ergodic observable for 
multiplicative growth process. 

PROBLEM: Conceptually 
remained within utility framework.

No utility required.

Figure 1: History of the classic decision theory problem of evaluating a gamble. The two physically
meaningful solutions are on the left and right of the figure. Typically, wealth processes are better
modeled as multiplicative than as additive, meaning that Laplace’s Criterion is usually more rele-
vant, especially when changes in wealth ∆W are of similar scale as wealth W itself. Problematic
aspects are color-coded in red.
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3. The dynamic perspective

In order to evaluate a gamble, we ask how the dynamics that the gamble is part
of are to be modeled. With this information we can construct an ergodic observable
whose expectation value reflects the behavior over time.

Treating ∆W (n) as a stationary random variable, repetition of a gamble may
mean different things. Firstly, a gamble may be repeated additively, so that the
wealth after T rounds of the gamble is

W (t0 + T∆t) = W (t0) +
T∑
τ=1

∆W (nτ ), (1)

where nτ is the value of the random variable n in the τ th round of the gamble.
Equation (1) implies that absolute changes in wealth, W (t0 + T∆t) − W (t0), are
stationary, i.e. their distribution does not depend on t0. Relative changes are not
stationary. In this case the long-time average of the rate of change in wealth converges
to the expectation value with probability one,

lim
T→∞

1

T∆t
[W (t0 + T∆t)−W (t0)] =

1

∆t
〈∆W (n)〉 . (2)

The expectation value, by definition, is identical to the large-ensemble average,
〈∆W (n)〉 = limN→∞

1
N

∑N
ν=1 [Wν(t0 + ∆t)−W (t0)], where Wν(t0 +∆t) are different

parallel realizations of wealth after one round of the gamble.
This explains Huygens’ Criterion: under additive dynamics, the rate of change

in wealth is an ergodic observable, and he who chooses wisely with respect to its
expectation value also chooses wisely with respect to the long-time average.

Secondly, a gamble may be repeated multiplicatively. To simplify notation, we
define per-round relative returns r(n) = W ∗+∆W (n)

W ∗
, where W ∗ is a reference-wealth.

These inherit their stationarity from the stationarity of ∆W (n). In this case,

W (t0 + T∆t) = W (t0)
T∏
τ=1

r(nτ ), (3)

which may be re-written as

W (t0 + T∆t) = W (t0) exp

[
T∑
τ=1

ln (r(nτ ))

]
. (4)

Under the dynamic given by (Eq. 3) relative changes in wealth, W (t0+T∆t)
W (t0)

, are
stationary, i.e. their distribution does not depend on t0. Absolute changes are not
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Figure 2: Assume initial wealth W (t0) = $1 and toss a fair coin. If tails shows (n = 1), W decreases
to W (t0 + ∆t) = $0.60. If heads shows (n = 2), W increases to W (t0 + ∆t) = $1.50. The gamble
is repeated (a) additively, linear plot, and (b) multiplicatively, log-linear plot (zoom-ins below the
main panels). For clarity, the same sequence of heads and tails is used in both plots, and the color-
codings are identical. A typical trajectory is shown (magenta lines). Under (a) the expectation
value of W (dashed line) grows in time with the expected rate of change (ergodic observable for this
dynamic, blue line), and a trajectory growing exponentially at the expected exponential growth rate
(green line) does not describe the long-time behavior. Under (b) the expectation value of W grows
exponentially but has nothing to do with the long-time behavior – W typically decays exponentially
in this case, following the expectation value of the exponential growth rate (ergodic observable for
this dynamic). Linear growth in time at the expected rate of change in W does not describe the
long-time behavior.
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stationary. In this case the long-time average of the rate of change in the logarithm
of wealth, i.e. the exponential growth rate, converges to the expectation value with
probability one,

lim
T→∞

1

T∆t
ln

(
W (t0 + T∆t)

W (t0)

)
=

1

∆t
〈∆ lnW (n)〉 . (5)

The expectation value, by definition, is identical to the large-ensemble average,

〈∆ ln(W (n))〉 = limN→∞
1
N

∑N
ν=1 ln

(
Wν(t0+∆t)
W (t0)

)
.

This explains Laplace’s Criterion: under multiplicative dynamics, the rate of
change in the logarithm of wealth is an ergodic observable, and he who chooses
wisely with respect to its expectation value also chooses wisely with respect to the
long-time average. Multiplicative repetition is exemplified by geometric Brownian
motion, the most influential model in mathematical finance.

From this modern perspective, the concept of utility is not needed to resolve
problems such as the St Petersburg paradox (Peters, 2011b).

Common error
Prominent texts in decision theory make incorrect statements about ergodicity,
i.e. the equality of expectation values and time averages, as for instance in the
following passage: “If a game is ‘favorable’ from the point of view of the expecta-
tion value and you have the choice of repeating it many times, then it is wise to
do so. For eventually, your amount of money and, consequently, your utility are
bound to increase (assuming that utility increases if money increases),” (Chernoff
and Moses, 1959, p. 98).

Chernoff and Moses’ statement is not true if “favorability” is judged by an observ-
able that is non-ergodic for a given dynamic. The general falsity of their statement
is evident in panel (b) of Fig. 2, an example of the multiplicative binomial process,
studied in detail by Redner (1990), see also http://youtu.be/LGqOH3sYmQA. Here,
W is not ergodic, and the game is “favorable from the point of view of the expecta-
tion value” of W , but it is certainly not wise to repeat it many times. We will use
red text in square boxes to highlight errors and weaknesses in arguments that are
commonly believed to be valid.

4. Historical development of decision theory

In this section we relate the modern treatment of the gamble problem to classic
treatments and highlight common misconceptions.
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4.1. Pre-1713 decision theory – expected wealth

Following the first formal treatment by Fermat and Pascal (1654) of random
events, it was widely believed that gambles are to be evaluated according to the
expected rate of change in monetary wealth. To give it a label, this criterion may be
attributed to Huygens (1657), who wrote “if any one should put 3 shillings in one
hand without telling me which, and 7 in the other, and give me choice of either of
them; I say, it is the same thing as if he should give me 5 shillings...”

Huygens’ Criterion:
Maximize the rate of change in the expectation value of wealth,

1

∆t
〈∆W (n)〉 . (6)

In modern terms, Huygens suggested to maximize the ergodic growth rate assuming
additive dynamics.

Nicolas Bernoulli, in a letter to Montmort (1713) challenged this notion by in-
troducing a lottery whose expected payout, 〈D(n)〉, diverges positively. Since the
expected rate of change in wealth 1

∆t
〈∆W (n)〉 = 1

∆t
(〈D(n)〉 − P ) is linear in 〈D(n)〉,

it too diverges for any finite ticket price P . According to Huygens’ Criterion any
finite ticket price should be paid for the lottery. However, N. Bernoulli chose the
lottery such that large gains only occur with small probability, and found that typical
individuals when (hypothetically) offered this lottery were not willing to pay much
to enter. This seeming incongruence became known as the St Petersburg paradox.
It exposes

Huygens’ weakness
Expectation values are averages over (imagined or real) ensembles of random
realizations. The conceptual weakness of Huygens’s Criterion is its limited rel-
evance to an individual making a decision. Either the individual has to be part
of a large resource-sharing group mimicking a statistical ensemble, or the wealth
process W (t) has to be additive for the rate of change to be ergodic so that the
expectation value reflects how the individual will fare over time. Wealth is often
better modeled with multiplicative dynamics.

Specifically, N. Bernoulli proposed the following lottery: a fair coin is tossed until
the first heads event occurs. The number of coin tosses necessary to arrive at this
event is n ∈ N, probability mass function pn(n) = 2−n, and the payout as a function
of n is D(n) = $2n−1. It follows that D(n) is power-law distributed with diverging
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first moment, probability mass function pD(D) = (2D/$)−1 with D ∈ {$2n−1}. The
time ∆t to generate an instance of the random variable, i.e. to play the lottery, is
considered independent of n in this study. The lottery is usually presented without
restriction on n; for a careful treatment of the problem one must limit n ≤ nmax. For
more than nmax coin tosses the lottery is declared invalid and no change in wealth
occurs. The divergence of 〈D(n)〉 is observed in the limit nmax →∞.

4.2. 1738–1814 decision theory – utility

By 1738 N. Bernoulli’s cousin Daniel Bernoulli and Cramer (Bernoulli, 1738, p. 33)
had conceptualized the problem as follows. They argued that people attach a value
to money that is non-linear in the dollar amount. Cramer had written to N. Bernoulli
in 1728: “in their theory [i.e. Huygens’ Criterion] mathematicians evaluate money
in proportion to its quantity while, in practice, people with common sense evaluate
money in proportion to the utility they can obtain from it.”

Bernoulli suggested a logarithm to map a dollar amount into utility UB(W ) =
ln(W ). The quantity, Bernoulli suggested, that people consider when deciding
whether to take part in the lottery is a combination of the expected gain in their
utility if no ticket price were paid, and the loss in utility they suffer when they pay
the ticket price. This leads to

Bernoulli’s Criterion:
a lottery ticket is worth buying if the following quantity is positive (Bernoulli, 1738,
pp. 26–27):

〈
∆U+

B

〉
−∆U−B =

nmax∑
n

pn(n) ln

(
W +D(n)

W

)
− ln

(
W

W − P

)
. (7)

The first terms on either side of the equation represent the expected gain in loga-
rithmic utility, resulting from the payouts of the lottery. This would represent the
net change in utility if tickets were given away for free, P = 0. The second terms
represent the loss in logarithmic utility suffered at the time of purchase, i.e. after
the ticket is bought but before any payout from the lottery is received. This is
inconsistent with expected-utility theory, as was pointed out in (Peters, 2011c).

Bernoulli’s inconsistency
Bernoulli’s Criterion is mathematically inconsistent with later work in expected-
utility theory because Bernoulli did not calculate the expected net change in log-
arithmic utility. He did not only replace money with utility of money but also
computed an observable other than the expected change in this new object.
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4.3. 1814–1934 decision theory – expected utility

The consensus in the literature on utility theory is that Bernoulli meant to com-
pute the expected net change in utility and made a slight error. Laplace (1814)
re-told Bernoulli’s resolution of the St Petersburg paradox and the invention of util-
ity. Perceiving Bernoulli’s Criterion as an error, he implicitly “corrected” Bernoulli’s
formal inconsistency without mention.

Laplace’s Criterion:
Maximize the expected rate of change in logarithmic utility (Laplace, 1814, pp. 439–
442),

1

∆t
〈∆UB(W )〉 =

1

∆t

nmax∑
n

pn(n) [ln(W +D(n)− P )− ln(W )] . (8)

Later researchers adopted Laplace’s corrected criterion. Todhunter (1865) followed
Laplace, as do modern textbooks in stating that utility is an object encoding hu-
man preferences in its expectation value, e.g. (von Neumann and Morgenstern, 1944;
Chernoff and Moses, 1959; Samuelson, 1983). Laplace stayed within Bernoulli’s con-
ceptual framework and was almost certainly not aware of the physical interpretation
of his criterion as the ergodic growth rate under multiplicative dynamics (Eq. 5).

Bernoulli motivated the logarithm by suggesting that the perceived utility change
induced by an extra dollar is inversely proportional to totaly wealth, dU(W ) = 1/W ,
whose solution is the logarithm. But Bernoulli also considered Cramer’s suggestion
of UC =

√
W a good representation of diminishing marginal utility. The modern per-

spective takes Bernoulli’s logarithm more seriously than he himself did. The route
to the modern treatment is to ask: “what if the logarithm was not merely conve-
nient and a good fit to the data, what would be its physical meaning if it truly was
a logarithm?” Using the logarithm in exactly the same place as the utility func-
tion is equivalent to assuming multiplicative dynamics and constructing an ergodic
observable.

4.4. Post-1934 decision theory – bounded utility

Karl Menger (1934) re-visited Bernoulli’s 1738 study, and came to the incorrect
conclusion that only bounded utility functions are permissible. Of course, whether a
utility function, or anything else, is bounded or not in the limit of diverging wealth
is practically irrelevant because financial wealth will always be represented by a fi-
nite number. However, based on formal arguments Menger drew conclusions for the
structure of the permissible formalism, namely he ruled out linear and logarithmic
functions as models of behavior, and, equivalently, additive and multiplicative pro-
cesses as models of wealth. Because of the central role of these dynamical models the

10



development of decision theory suffered from this restriction, and it is satisfying to
see that formal arguments against these important models are invalid, as intuition
would suggest. Menger must have been unaware of the correction to Bernoulli’s
work by Laplace. His error may be phrased as using Bernoulli’s criterion instead
of Laplace’s, and only considering the first term in Bernoulli’s criterion, implicitly
setting the ticket price to zero, P = 0. The invalidity of Menger’s claim was pointed
out in (Peters, 2011c), for a detailed discussion, see (Peters, 2011a). Menger’s ar-
gument survives as received wisdom. For completeness, we state it here and specify
the invalid inferences involved.

Menger’s flawed argument

1. Logarithmic utility resolves the original St Petersburg paradox because it
turns exponentially increasing wealth-payouts, Dn ∝ exp(n), into linearly
increasing utility-payouts ∆U(n) ∝ n for large n.

2. If payouts increase even faster, e.g. as the exponential of an exponential,
exp(exp(n)), then expected utility changes will diverge positively as nmax

diverges, just as expected wealth changes diverge for exponentially increas-
ing payouts.

3. In such games logarithmic utility predicts that the player will be willing to
pay any ticket price, just as linear utility does for exponentially increasing
payouts. In this sense logarithmic utility is not qualitatively different from
linear utility. For utility theory to achieve the desired generality, utility
functions must be bounded.

The argument sounds plausible. If the logarithm specifies the value attached to
money, there is no intuitive reason why it should be qualitatively different from a
linear function. But the logarithm encoding multiplicative dynamics provides us with
additional intuition: multiplicative dynamics imply an absorbing boundary. Unlike
under additive dynamics it is impossible to recover from bankruptcy, and this is a
qualitative difference. Closer inspection of Menger’s argument reveals that the issue
is indeed more nuanced than he thought.

We separate out the first term, for the smallest payout, and write the expected
utility change as

〈∆UB(W )〉 = pn(1) ln

(
W +D(1)− P

W

)
+

nmax∑
n=2

pn(n) ln

(
W +D(n)− P

W

)
. (9)
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This form motivates the following evaluation of the three steps in Menger’s argument

1. Apart from turning exponential wealth changes into linear utility changes,
logarithmic utility also imposes a no-bankruptcy condition. Bankruptcy
becomes possible at P = W + D(1). Reflecting this, the limit
limP→W+D(1) 〈∆UB(W )〉 is negatively divergent for any nmax.

2. If payouts increase as the exponential of an exponential then the ex-
pected utility change is positively divergent in the limit nmax → ∞
only for ticket prices satisfying P < W + D(1). The double-limit
limP→W+D(1) limnmax→∞

1
∆t
〈∆UB(W )〉 results in the indeterminate form

“−∞ +∞.” Note that the positive divergence only happens in the unre-
alistic limit nmax → ∞, whereas the negative divergence happens at finite
P . The negative divergence is physically meaningful in that it reflects the
impossibility to recover from bankruptcy under multiplicative dynamics.

3. In such games logarithmic utility does not predict that the player will want
to pay any finite ticket price. Instead, it predicts that the player will not
pay more than W + D(1), irrespective of how D(n) may diverge for large
n. This is qualitatively different from behavior predicted by Huygens’ cri-
terion (linear utility), where under diverging expected payouts no ticket
price exists that the player would not be willing to pay. Logarithmic util-
ity, carefully interpreted, resolves the class of problems for which Menger
thought it would fail.

Despite a persisting intuitive discomfort, renowned economists accepted Menger’s
conclusions and considered them an important milestone in the development of util-
ity theory. Menger implicitly ruled out the all-important logarithmic function that
connects utility theory to information theory (Kelly Jr., 1956; Cover and Thomas,
1991) and provides the most natural connection to ergodic theory (Peters, 2011b,c;
Peters and Klein, 2013). Menger also ruled out the linear function that corresponds
to Huygens’ Criterion, which utility theory was supposed to generalize.

Requiring boundedness for utility functions is methodologically inapt. It is often
stated that a diverging expected utility is “impossible” (Chernoff and Moses, 1959,
p. 106), or that it “seems natural” to require all expected utilities to be finite (Arrow,
1974, p. 28–29). Presumably, these statements reflect the intuitive notion that no
real thing can be infinitely useful. To implement this notion in the formalism of
decision theory, it was decided to make utility functions bounded. A far more natural
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way to implement the same notion would be to recognize that money amounts (and
quantities of anything physical, anything money could represent) are themselves
bounded, and that this makes any usefulness one may assign to them finite, even if
utility functions are unbounded. There is no need to place bounds on U(W ) if W
itself is bounded.

5. Summary and conclusion

In presenting our results we have made a judgement call between clarity and
generality. We have focused on the prototypical gamble problem of decision theory,
discrete in time and wealth changes, and we have contrasted purely additive dynamics
with purely multiplicative dynamics. Gambles that are continuous in time and wealth
changes can be treated along the lines of (Peters, 2011b). The specific St Petersburg
problem was treated in detail in (Peters, 2011c). A generalization beyond purely
additive or multiplicative dynamics is possible, just as it is possible to define utility
functions other than the linear or logarithmic function. This will be the subject of a
future publication (Peters and Adamou, 2014).

Our method starts by recognizing the inevitable non-ergodicity of stochastic growth
processes, e.g. noisy multiplicative growth. The specific process implies a set of mean-
ingful ergodic observables, e.g. the exponential growth rate. These observables make
use of a mapping that is traditionally viewed as a utility function, e.g. the logarithm.

The dynamic interpretation of the gamble problem makes sense of risk aversion
as optimal behavior for a given dynamic and wealth. Laplace’s Criterion interpreted
as an ergodic growth rate under multiplicative dynamics avoids the fundamental
circularity of the behavioral interpretation. In the latter, preferences, i.e. choices an
individual would make, have to be encoded in a utility function, the utility function
is passed through the formalism, and the output is the same as the input: the choices
an individual would make.

We have repeated here that Bernoulli (1738) did not actually compute the ex-
pected net change in logarithmic utility, as was pointed out in (Peters, 2011c). Per-
ceiving this as an error, Laplace (1814) corrected him implicitly without mention.
Later researchers used Laplace’s corrected criterion until Menger (1934) unwittingly
re-introduced Bernoulli’s inconsistency and introduced a new error by neglecting the
second diverging term, ∆U−. Throughout the twentieth century, Menger’s incor-
rect conclusions were accepted by prominent economists although they noticed, and
struggled with, detrimental consequences of the (undetected) error for the developing
formalism.

We have presented Menger’s argument against unbounded utility functions as it
is commonly stated nowadays. This argument is neither formally correct (it ignores
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the negative divergence of the logarithm), nor compatible with physical intuition (it
ignores the absorbing boundary). Laplace’s Criterion – contrary to common belief –
elegantly resolves Menger-type games.

Logarithmic utility must not be banned formally because it is mathematically
equivalent to the modern method of defining an ergodic observable for multiplicative
dynamics. This point of view provides a firm basis on which to erect a scientific
formalism. The concepts we have presented are not restricted to monetary wealth
but apply to anything that is well modeled by a multiplicative stochastic growth
process. Applications to ecology and biology seem natural. Some consequences of
this different approach have been reported (Peters, 2011b,c; Peters and Klein, 2013;
Peters and Adamou, 2013), and more will be the subject of future publications.
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Table 1: List of symbols

Symbol Name and interpretation

t time
t0 time before the gamble
∆t duration of one round of a gamble
T total number of sequential rounds of a gamble
τ integer specifying one sequential round of a gamble
N total number of parallel realizations of a gamble
ν index specifying one parallel realization of one round of a gamble
n integer specifying an event
nmax number of possible events
nτ random event that occurs in round τ
W wealth
∆W (n) change in wealth from t to t+ ∆t if event n occurs
Wν(t+ ∆t) wealth after one round of a gamble in realization ν
pn(n) probability of event n
pD(D) probability of monetary payout D
D(n) payout resulting from a lottery if event n occurs
∆U(n) change in utility resulting from event n
nmax maximum number of coin tosses
P price for a ticket in a lottery
U utility function
UC Cramer’s square-root utility function
UB Bernoulli’s logarithmic utility function〈
∆U+

B

〉
expectation value of gains in logarithmic utility at zero ticket price

∆U−B loss in logarithmic utility when reducing W by P
〈·〉 expectation value of ·
N set of positive integers
W ∗ reference-wealth to define multiplicative repetition
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