Generation of Higher Order
Emergent Structures

Nils A. Baas
Michael W. Olesen
Steen Rasmussen

SFI WORKING PAPER: 1996-08-057

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the
views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or
proceedings volumes, but not papers that have already appeared in print. Except for papers by our external
faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or
funded by an SFI grant.

©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure
timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights
therein are maintained by the author(s). It is understood that all persons copying this information will
adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only
with the explicit permission of the copyright holder.

www.santafe.edu

SANTA FE INSTITUTE




Generation of Higher Order Emergent
Structures

Nils A. BAAS®, Michael W. OLESEN?, and Steen RASMUSSEN?:¢

?Department of Mathematical Sciences
Uuniversity of Trondheim, NTH
N-7034 Trondheim
NORWAY

bTSA-DO/SA MS M997 and CNLS MS B258
Los Alamos National Laboratory
Los Alamos, NM 87545
U.S.A.

¢Santa Fe Institute
1399 Hyde Park Road
Santa Fe, NM 87501
US.A.

August 9, 1996



1 Introduction

In the study of complex systems - in particular self-organizing systems - the
notions of emergence and higher order structures come up. A framework for
studying them was given in [1, 2] where the notion of a hyperstructure was
introduced. In biological systems higher order hyperstructures occur both in an
intuitive and a formal sense. But in formalizations of these systems it has turned
out to be quite difficult to produce higher order emergence from first principles.
The first problem is of course to agree on what a higher order structure is. It
is known that second order structures occur relatively easy, the problem is to
know how to proceed to third order without external interference. The goal of
this paper is to discuss these problems in the light of the discrete field automata
formulated in [19] and [12]. Then we shall try to extract some of the formal
principles involved in the generation of higher order (hyper-) structures and
relate it to dynamical systems.



2 Biological examples

In biology we know that hierarchies and higher order structures occur in many
ways. Clearly we have the coarse fundamental order hierarchy

organisms < organs < tissues < cells < organelles < molecules

which have many refinements and substructures [8]. It seems like evolution has
favored systems that have been built up by subunits at several levels. In that
respect even the simplest cells are extremely complicated. Tn order to under-
stand the basic principles leading to such structures we should start looking at
the molecular level where we find many examples of supra-molecular structures
built up by subunits at several levels and hence quality for being intuitively
called higher order structures. Some guiding examples:

(1) The formation of polymers from monomers as for example ethylene molecules
forming polyethylene.

(i) The monomeric protein actin, spontaneously associates into linear, helical
polymers in the presence of ATP. These polymers are called actin fila-
ments. The filaments are cross-linked by other proteins—fodrin or filamin
to side-by-side aggregates like bundles or meshworks. These certainly
qualify to be called natural 3rd order structures. They greatly increase
the viscosity of the medium in which the filaments are suspended [8].

(iii) Microtubules spontaneously form their monomeric subunits. The process
starts with the tubulin a- og @-subunits forming o and g-dimers which
then form linear polymers associating side by side to form the hollow
microtubules [7]

(iv) Viruses are also built up through aggregation levels of subunits. This
applies to the simple tobacco mosaic virus and the much more complicated
bacteriophage T4 [5].

(v) Lipids dispersed in water form microscopic aggregates. Lipid molecules
cluster together with their hydrophobic moieties in contact with each other
and their hydrophilic groups interacting with surrounding water. These
clusters may be micelles, in other cases bilayers, liposornes or even more
complicated forms [11].

Many other and much more complicated examples of higher order structures
exist [22], but is seems reasonable to start with the simpler structures and try
to model the generation of them first. In the following we shall study a for-
mal example which is chosen because of it conceptual clearity and not because
it replicates the known dynamics for any particular biomolecular system. Our



system have hydrophobic-like and hydrophilic-like monomers which can poly-
merize. These polymers in turn can aggregate to micelle-like structures. Thus,
a system with three distingtive levels: monomers, polymers, and aggregates.



3 Higher Order Emergence

We have in examples described real systems with higher order structures. But
in order to understand them better, their use and synthesis, it is important
also to have formal systems in which such structures can be generated. Then
one can do experiments with the formal systems. In general when higher order
structures occur, new properties arise for each level — for example through
aggregation. This means that in this context we will be looking for objects or
aggregates with new properties. An obvious question is then what new means?
This really brings us into the basic discussion of emergence and the notion of an
observer. For a discussion of emergence and higher order structures we refer to
[1] where a suitable framework is given in which these concepts can be discussed.
How this connects to dynamics we refer to [20].

Let us just recall briefly a few basic notions. We consider families of objects
or structures S! of first order

Sy = S frs,sr,1), ms=1,2,...,n (1)

where s, is the state of the object, f,; defines the object-object interactions, and
7y is the local object time. In addition we need to define an update functional I
which schedules the object updates (e.g. parallel, random, event driven), which
together with the interaction rules — given by f,.. — defines the dynamics. Also
the important notion of an observer O! needs to be introduced. With O! we
can measure explicit system properties as for instance internal object states.

The system dynamics may now generate a new structure S? through the
interactions

P =R(SH, r=12,...,n (2)

where R is the process that generates S%. This is what we call a second order
structure which may be subjected to a possible new observer O2. Then we say
that a property P is emergent iff

P € 0*(8%), and P ¢ 0*(SY). (3)

Clearly emergence depends on the observer in use which may be internal or
ezternal. Also note that the emergent properties may be computable or non-
computable.

The above process can be iterated in a cumulative, not necessarily a recursive,
way to form higher order emergent structures which we shall call hypersiructures
of e.g. order N:

SV = R(SNTE,8N72 ). (4)

TN=1?~ry_nt""

It should be noted that the definition of an observation function is no more —
or just as — arbitrary as the definition of the objects and their interactions.

For more details we refer to [1] and [20] where the concept of emergence and
the relation between emergence and dynamics is discussed.



4 Discrete field antomata

4.1 The basic discrete field automata concept

Discrete field automata are based on the assumption that all molecular inter-
actions can be modeled by mediating particles [19, 12]. We model both matter
and fields as “information particles” that propagate locally along the edges of
a lattice and interact with one another at nodes, as in a Lattice Gas (LGA)
[4]. Thus, the rules that generate the dynamics are the rules that propagate the
information particles and define the local reactions depending on the current
state of the site together with an update functional U that schedules the object
updates. Unlike a standard LGA, the different Lattice Polymer (or Molecular)
Automata, LPA (LMA), we study here use several different types of information
particles, so the structure of a node is more complicated than the simple six bit
register required for a minimal LGA. The models to be discussed here are all
formulated on a 2-D hexagonal lattice, see figure 1.

Figure 1 here.

The transmission of the force particles between the molecules enables an
update of each individual molecule using only local information. After the
information particle transport steps, each latiice site can be updated indepen-
dently. The force-communicating particles propagate locally, that is, between
neighboring lattice sites. A variety of molecular interactions may be formulated
by choosing the mediating particles properly. For instance a polymer must obey
a connectivity constraint between its monomers and all molecules must obey an
excluded volume constraint.

A lattice automaton cell (object) has several variables (registers) which serve
to represent the current state of the current location (object). The total state
space X consists of a set of n sequences (internal states of the objects) ! of the
type

(4,7,8¢) = (4, 4,21, .., 24) (5)
where 1, ..., &, are values of the variables associated with each lattice site - a
data structure - and where (%, 7) indicates the lattice site location.

- The object-object interactions are defined by functions or lookup tables f,,
which have one or more of the data structure variables as arguments. Intuitively
we may describe a data structure P (the internal states of an object) as a box
(see figure 2) with a finite number g, of sub-boxes,

1To be more precise: The number of molecular objects is n, but since vacuum is used to
carry (transfer) the emitted information particles the rest of the lattice sites are just empty
sequences, sequences with #1,...,24 = 0. More about the information mechanics later.



Figure 2 here.

Our “physical-space”, where the molecular configurations form, is a lattice £
directly coordinatized by pairs (4, §),%,7 € N (integers). The contents of sub-
box k is an element of a set (or space) X, & = 1,2,...,q. A data structure D
is then formally defined by

D € NxNxXyxXox...xXpx...xX,

7
= NEXHX);
k=1
= 8. (6)

Each space X contains a distinguished element, *, meaning that the corre-
sponding box is empty. It is of course in principle possible that ¢ — oc. If
g = oo by the product we mean that in every element only a finite number of
components can differ from *. 2 Recall that if objects r is at lattice location
(4,7) a projection of the data structure Dy; ;) corrosponds to s, in equation (1).
The total state space X can now be expressed as

X = &§x8x...x8
5", (9)
If we for simplicity assume that the update is time stepped (as in the lattice
automata system we shall discuss), which means that all objects always have

the same local (= global) time ¢, then we may define X(t) € X as the current
state of the system (1) at time ¢. That is

X(1) = (s1(), 52(2), . ., 5a(2)) (10)

The system dynamics is generated by applying an update functional U to the
family of objects given in (1)

{S1E 4+ 1), ., Su(t+ 1)} = UHSL(E), ..., Su(O)]), (11)

®Note that in formalizing the data structures on our lattice L, we see that &, the space of
states for each object, describes a data-field over £, since we have the projection P
S
1l » (M
C

A data-field is then specified by a section of this map meaning that
c: L8 (8)

such that ¢ o p = identity. This just expresses that ¢ assigns a data structure to cach site and
hence defines a configuration,



and the local object-object interactions are defined by the f.,'s.
Note that in general no ezplicit, closed form fanction F : X — X exists that
takes the current global state

X(@) = (s1(t),...,5(N e X (12)
and maps it into some other state in the state space X
FX@)=X@+1). (13)

Such a function is only implicitly given through (11). # is a composition of
the local fr;s and the scheduling (ordering) of these interactions defined by U.
Obviously, the classical dynamical systems which can be explicitly written in
the form (13) are special cases of the form given in (1) and (11). This is true,
because a system that explicitly can be written in the form (13) can be viewed as
a single object S from (1) which is iterated by fi1. Since there is no scheduling
with only a single object, the update functional U, becomes the identity.

The problem of the local dynamics is how a data structure D(t) at lattice
site (¢, j) changes with time ¢

D)= (4,5, 1)+, %,...,2q). (14)
We can now write
DE+1) = (55,51, % s Y) (15)
where
n = Yk{(?’ljl ml:-":wq):
(1(7': j)}mlj i -;'rq):
e
(6(i:j)!ml:---:$¢i‘)] (16)
- fko(ﬂl,j,.’.[:]_,..-,i’q)o
fkl(l(i;j)7 T1y--- :mq) ©
...0
fre(6(i, 7). 21, ..., 2g)- (17)
This means that fiyo(%,7, 21,...,2,) is the part of the interaction which depends
on the data structure information at lattice site (4, §) and fu(I(4, ), 21, .. ., 2,)
is the part of the local interaction function that depends on the data structure
information at the neighboring lattice site in direction I, where { = 1,...,6.

Note that each part of the data structure update is made with only local infor-
mation, e.g. fr3(3(4,7),%1,...,%,) is computed at the neighboring site to (i, I
in direction 3, and the result (operatively writien by “0”) is then written into
the variable @y at box & in the data structure at site (7, 7). What our detailed



updating rules do is exactly to compute the only implicitly given function Y;.
Note that Y depends on U, since it depends on which sequence neighboring
sites are updated in which e.g. can be parallel or random. The dynramics will
preserve the length ¢ of the data structures, but that this is a convention, which
is not necessary.

4.2 Lattice automata dynamics

The data structure we use in this particular application has dimension ¢ =
7 (+2) (= 9 if also counting the lattice coordinates) and the object-object in-
teraction algorithm, f., consists of 10 substeps (5 major steps) for each of two
scheduling colors. Formally, the dynamical system is of the type as defined in
equation (16).

The data structure space S on the lattice is defined as follows:

xy defines the scheduling color. There are two colors, which are random
for free monomers and always alternating in a polymer to ensure that
neighboring monomers in a polymer can be updated independently in
each half of the update cycle.

zg defines vacuum and molecules. 0 indicates vacuum and water in some
fraction (a mean field approximation), 1 indicates a hydrophilic monomer
(a monomer that likes water), 2 indicates a hydrophobic monomer (a
monomer that dislikes water).

z3 defines the incoming excluded volume particles (“Repellons”) which are
being propagated from every monomer.

z4 defines the incoming force particles (“Forceons”) which are being propa-
gated from every monomer. The hydrophobic monomers propagate pos-
itive force particles and hydrophilic monomers propagate negative force
particles.

25 defines the current velocity which is being influenced by the random kicks
of the only implicitly given solvent (water).

zg defines the bond directions. A monomer can either be free, have one bond
(at the end of a polymer} or have two bonds (inside of a polymer).

#7 defines the incoming binding force particles (“Gluons”).

Each full update cycle consists of the following main steps for each scheduling
color:

(1) Propagation of information particles, both excluded volume particles {“Re-

pellons”) to neighborhood two, negative or positive foree particles (“Forceons”)

depending on whether the molecule is a hydrophobic or a hydrophilic



molecule also to neighborhood two, random kicks of the monomers from
the only implicitly given water molecules, and propagation of binding force
particles (“Gluons”) for polymerization.

(2) Creation of possibly new bonds.

(3) Computation of the most proper move direction of each monomer.
{(4) Move all molecules that need to move.

(5) Clear lattice for propagated information particles.

(6) Repeat step (1) - (5) for the other scheduling color.

After all objects have been updated once the global update is complete.

Figure 3 here.

The information particle propagation is discussed in figure 3 and an example of
a single update that defines the molecular dynamics is shown on a small § x §
lattice with periodic boundary conditions in figure 4. A complete, explicit de-
scription of the dynamics is given in the appendix. A different cellular automata
formulation of polymer dynamics can be found in [16].

Figure 4 here.

In the next section we discuss some of the constructive aspects of the dy-
namics. In section 7 we generalize the above formalization together with a
discussion of the constructive dynamics and put it into a traditional dynamical
system framework.



5 Third order emergence in lattice automata
systems

5.1 Second and third order interactions

All interactions between the first order objects, the molecules, are by definition
first order interactions. The first order interactions are the interactions that
generate the second order structures. For example the “glue” that makes up
a polymer is generated by the monomer-monomer interactions that make up
the bonds. The details of these interactions are defined in the appendix and
in [19, 12].

Second order interactions are, for instance, the interaciions we find between
polymers. These interactions are generated from a composition of first order
interactions, since each pairwise interaction always occur between the first order
objects. When a polymer communicates with another polymer the interaction
is given by the monomer-monomer interactions; the interactions between the
monomers from the two different polymers as well as the interaction between
the monomers making up each of the polymers. The second order interactions
are therefore only implicitly given.

The local use — or interpretation — of the different kinds of communicated
information defines the operational semantics of the information [19]. The sol-
vent particles are for instance interpreted differently by the monomers depending
on the context the monomer currently are in. If the monomer is free, the solvent
particle will induce a movement in its direction, but if the monomer is polymer-
ized it becomes a bit more complicated. The effect will depend on whether such
a moverment would violate bond restrictions.

Figure 5 here.

Thus, the meaning of an interaction with a solvent molecule (a kick) depends
on the context in which it occurs. In a certain way, we can interpret the data
structure and the functions operating on it as an infernal observer. In particu-
lar, this can be stated as follows: The interpretation of the information depends
on which hyperstructural level the communicating objects belong to. In this
system we have three levels; Ly the level of the free monomers and the solvent,
Ly the level of the polymers, and Lz the level of the polymer aggregates. In
general, new hyperstructural levels support new means of communication, both
within new levels and between old and new. Note that different levels in general
need not be part of a strict hierarchy. This is why the object complexity is bound
to increase as more hierarchical levels are to be generated - at least for the first

10



hierarchical levels. 3

Interactions between first order structures and second order structures are
of course also possible, but here the interactions are not symmetric. The first
order to second order interaction is of second order whereas the second order to
first order interaction is of first order because of the reasons given above. This
interpretation of the information depending on the context (e.g. in the hyper-
structure) of the interacting objects has profound consequences for how higher
order (> 3) emergent structures can self-assemble in formal self-programmable
or constructive dynamical systems.

5.2 Third order emergence

Let us emphasize that the following example is chosen because of its conceptual
clearily and not because it replicates the known dynamics for any particular
molecular system. For a physico chemical discussion of the lattice automata
dynamics please see [12].

In figure 6 it is clear that genuine third order structures are generated in the
[attice automata system through a generation of second order structures which
interact and form third order structures. Af the present state of the lattice
automata system we only look for and observe polymer aggregates. As we know
from the previous discussion each of these aggregates are generated through the
interactions between first and second order objects as well as through the inter-
action between second order objects. Fxamples of second order properties the
polymers carry are: elasticity and polarity. Examples of third order properties
the aggregates carry are: permeability - and an inside and an outside. All of
these properties do not have any meaning at the level(s) below. They are, how-
ever, generated or caused due to the lower level interactions. Also note that the
higher order structures cause the lower level structures to behave in a different
manner. The dynamics of the monomers are more restricted once they form a
polymer and polymers are more restricted once they form an aggregate. Thus,
there is a clear downward ceusation in such systems.

A formal identification of emergent properties of the second as well as the
third order structures can of course also be defined in terms of external compu-
tational algorithms that inspect the data structures and how they communicate.
These are examples of external, algorithmic observational functions of order two
0?, and three O3, It does not matter whether the observational mechanism is
an algorithm or a human.

3Whether more explicit internal ohject complexity always will be necessary to obtain yet
higher order emergent structures - and whether there is an object complexity limit above
which any functional property can be produced, we do not know. We would at least like to
believe that the latter is true. The (limited) number of molecules involved in the biochemistry
of life may also suggest that.

i1



Figure 6 here.

A thorough discussion of the lattice automata dynamics including scaling of
the radius of gyration of the polymers, hydrophobic cluster formation (phase
separation), micelle stability as a funciion of polymer length, and membrane
stability, will be done elsewhere.

12



6 Object complexity

It is clear from the observations we have made of the dynamics of the dis-
crete field automata systems that their ability to produce emergent structures
is highly dependent on the degree of detail - or fidelity - of the objects. As more
and more interactions - and more and more different molecules - are taken into
account, the more complex emergent structures the lattice automata systems
are able to produce.

Only allowing a simple molecule-molecule interaction without an excluded
volume, enables us to define Lattice Gasses which can gemerate a variety of
macroscopic fluid dynamics phenomena (P in figure 7) 4, Defining an ex-
cluded volume for the monomers allows the production of a little more detailed
monomer-monomer interaction dynamics which is what the simplest LPA /LMA
system has (D, and D3 in figure 7). By the addition of binding and scheduling
information to each of the data structures it becomes possible to generate poly-
mer dynamics (D4 in figure 7). These are examples of second order emergent
phenomena, as we have discussed earlier.

The polymers, however, can in a direct way be generated by the dynamics if
we allow an interaction which is specific for a polymerization process. Thus, it
becomes possible to produce second order structures from first order structures
(D¢ in figure 7). If no binding information is present in the data structure
it becomes possible to generate a phase separation or produce aggregates of
hydrophobic monomers surrounded by water and hydrophilic monomers (D3 in
figure 7). These aggregates are also examples of second order structures.

If binding information is present and the initial configuration is a random
configuration of polymers with hydrophilic heads and hydrophobic tails the for-
mation of micelle-like aggregates becomes possible (Ds in figure 7). In such a
situation the system has produced third order structures from the interactions
of second order structures (the polymers). If bond information together with
polymerization interactions as well as hydrophobic/hydrophilic molecules all
are defined, it becomes possible to generate polymer aggregates from an initial
condition of random monomers (D7 in figure 7). Intermediate configurations
of the dynamics will then be dominated by the newly polymerized hydropho-
bic/hydrophilic polymers. Thus, it is possible to produce third order structures
from first order structures.

TFigure 7 here.

Another part of the local object complexity is given by the the complexity
of the f.,’s measured as the number of rules or functions together with their

tNote that ro and z5 defined in section 5 has been merged into w2 in this section for a
more clear comparison.

13



argurments which define the local transformation of the variables in the data
structures. The number and the nature of the variables in § together with
their transformation rules f., (and U) charaterizes the computational complex-
ity (in terms of time, space, and algorithmic complexity)[14, 6] of the dynamical
system. So our observed relation between the object complexity and the gener-
ative power of the dynamics can also be stated in the form: The higher order
structures we want to generate the more complex objects the system must have.

Another way of saying this, is that a more detailed description of the Physics ®
is necessary to allow the formal system to produce higher order structures.
Weaker effects also have to be taken into consideration if more complex biomolec-
ular structures have to be explained.

The above may at a first glance seem contradictory to the findings of e.g.
very simple cellular automata rules capable of generating arbitrary complex
behavior — behavior equivalent to a Universal Turing Machine [9]. However,
this is only an apparent contradiction, since these findings only show that there
ezrist simple cellular automata rules (objects with low complexity), capable of
generating (any) complex structures, It does not say that every simple rule is
capable of generating arbitrary complex structures. Obviously, the dynamics of
any of the above rather complex (molecular) object descriptions given in figure
7 could be reduced to one of these simple cellular antomata rules (because any
formal description can). But what would that give us? It would very likely
not have any explanatory power in terms of what we know about the Physics,
since the interpretation of these new, simple rules would (by definition, because
they are simpler) be quite different from what they currently are. Also such a
compression of the rules would probably have to be compensated by increase
time and space complexities.

5We use Physics to denote principles of Nature independent of our description or knowledge
of it. We use physics to denote our formal understanding and models of these principles.

14



7 A formal dynamical systems description

Recall that X = 8" is the state space and X(¢) the current state of the sys-
tem. Since the current system state X(¢) at any time ¢ can be obtained by an
inspection of all the internal states of the objects S-(fs, sr(¢)), via some appro-
priate observational functions Q!, a state dynamics function of the form (13)
is always implicitly defined. Note, however, that an explicit expression of the
global state space mapping in general will not be obtainable. What ezplicitly
produces the dynamics, is the local application of the f., functions, defining the
object-object interactions — together with an appropriate update functional I,
which schedules these object-object interactions. Thus

{Sl(t+ 1)1 "':Sn(t"' 1)} U({Sl(t)a“'zsn(t)})
= To{fd{( 5@, (18

where r,s = 1,...,n. Thus, (18) becomes the nafural form for the dynamics
and not (13). By “o” we mean a composition which e.g. can have the form
given in section 4.1. For a discussion of some of the mathematical consequences
of this more general form of a dynamical system — which we have defined as a
stmulation — we refer to Rasmussen and Barrett [20].

In X the data structures may have different complexity as measured by
the number of non-empty boxes and the number of states in each box. The
complexity of the fr;s may also differ measured as the number of rules or func-
tions together with their arguments, that define the local transformation of the
variables in the data structure.

The general dynamical system question is: If we start out with a random
lattice configuration, how will the dynamics transform it — what is the transient
and what is the asymptotic behavior? Qur goal with this system is to look for
the production of polymers (2nd order structures) and even more important; ag-
gregates of polymers (3rd order structures) within one formal dynamical system
(recall D7 in section 8). Therefore our observers are external mechanisms (algo-
rithms or humans) looking for monomer-configurations, polymer-configurations,
and aggregate-polymer-configurations. The interactions are all determined by
the local object models, but are at the same time using the data structures as
a kind of internal observers which makes the interactions context dependent.

In the simulation we observe that polymers and polymer aggregates are
created. We now want to put this into a traditional dynamical system scheme.
We suggest that the observed dynamics can be interpreted as follows: There
exists a subspace Y C € (= space of configurations) such that F()) C ).

Y=M UMUMsUPLUPUA, (19)

where My, My and M3 are sets of monomer configurations of different com-
plexity in a well defined sense; M: lowest complexity, then M, and then Ms.

15



Similarly P; and Ps are sets of polymer-configurations with Py more complex
than P;. Ap is a set of polymer-aggregate-configurations.

Y = A; UP,U M, is invariant and the dynamics follows the following scheme
- which can easily be generalized to arbitrarily number of levels:

Ms U My U M5

! 1

P, U P& (20)
!

A%y

This scheme should be interpreted( as follows:

(i) The low complexity monomers in M;, simply remain within their class
under iteration of the dynamics. They do not have enough structure
(object complexity) to evolve.

(ii) The more complex monomers in the My class form polymers of type Py,
but under further iteration they just remain in the class and do not evolve
further.

(iii) The most complex monomers in Ms, transform inte Ps-polymers, but
only as an intermediate stage. The dynamics now give rise to new, con-
text interpreted interactions which under further iteration form polymer-
aggregates A;. This class remains stable under iteration. The evolution
from monomers has stopped. The elements of Ay represent the ultimate
power of the system to evolve higher order complexity.

The elements of A; having been formed by the process:
Ms— Py — A (21)

by interactions and observations and form a genuine hyperstructure of order 3
in the sense of Baas [1].

It would be interesting to look into general dynamical systems with this kind
of structure — especially the scheme given by (20) — whether they would be
natural generators of higher order structures. In general dynamical systems one
could say that this scheme would correspond to:

Mi: An invariant set.

. Attracting domain of Ms.

Py: “Semi-attracting” domain of M3 - to be mathematically defined.
Az Attracting domain of P, and second attracting domain of M.

16



8 Discussion

We have demonstrated how the lattice automata can be formulated so that
they fit into a broader dynamical systems context. We have also seen how the
dynamics of these mappings are defining higher order structures that can be
generated in simulation. It follows that genuine third order structures can be
generated using discrete field automata.

We have seen how increasing the object complexity of the primitives, the first
order objects, is crucial for the discrete field automata to produce higher order
emergence. Another way of saying this is that a more detailed description of
the system is necessary to allow the system to produce higher order structures.
Also weaker effects has to be taken into consideration if more complex structures
have to be explained.

Since the very beginning of the study of Complex Systems the dogma de-
scribed in figure § has been dominating.

Figure 8 here.

Is this really true? Can our “complex” hyperstructures be created only start-
ing with very simple object states and interaction rules without any external
interaction with the system? ® We doubt it. We do not doubt, of course, that
complex structures in formal systems can arise from very simple rule and state
descriptions which are much simpler than the structures they generate. How-
ever, we question a stronger version of the dogma that essentially holds that
a common minimal simplicity underlies all emergent structures. Furthermore,
there are complexities that reqire levels of construction.

In the lattice automata described we have two levels of emergence leading
to third order structures. We start with monomers and observe the interactions
and first the polymers emerge with new properties relative to an external obh-
gervational mechanism. The polymers then interact and the subtle point is that
they actually interact with more than just 1st level monomer-monomer inter-
actions - they also interact via 2nd order polymer-polymer interactions. When
monomers from different polymers interact, part of the data structure acts as a
kind of internal observer and relate the information for both polymers so that
it really becomes a polymer-polymer interaction. The dynamics eventually lead
to micelle-like polymer aggregates and as aggregates they qualify for 3rd order
structures.

This approach can of course be questioned. By introducing more object
complexity do we not then “script” the outcome of the dynamics? Yes, it is

8Note that we are considering fixed objects with no self-programming or “mutations” in
the explicit rules and variables. Our objects do not learn, which seems reasonable, since they
model simple invariant molecules.
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scripted in the sense that we try only to include information relevant for the
processes under investigation. But this is the case in any scientific inquiry. More
importantly, our object models do not “cross” the levels and reforence polymers
or polymer aggregates. They all reference monomers or monomner properties.
Thus, the interactions these rules together with the update functional define are
non-trivial to the production of the higher order structures we are investigating.

The next step is to extend the formal system so that 4th and higher order
structures can be generated from first principles. This should indeed be pos-
sible using the lattice automata following the principles we have outlined. We
could for instance imagine the generation of what corresponds to ion channels
in membranes, so that an active transport would be possible. The generation
of “tissues” or sheets of vesicles could perhaps also account for yet another
non-trivial level of structures.

We would also like to ask the question whether there are more direct types
of second order (e.g. polymer-polymer) interactions. Interactions more directly
given by observable polymer-polymer properfies. This might correspond more
to a system where a production of the protein filaments (recall the example in
section 2) are joined by a third kind of molecule binding the two filaments to-
gether and thus acting as the main object mediating the 2nd order interactions.
For the time being we leave these questions open, but we hope to extend our
scheme to other examples - not necessarily of a biological nature 7

Finally it should be noted, that it is of course also possible to create systems
similar to the ones presented here, where the data structures are not on the
laitice and where they are able to change structurally - not only in contents -
but also in length and in size of contents as well as the functions transforming
the contents. Thereby the system objects themselves can undergo an evolution
through yet another kind of a self-programming of the data structures and their
interactions. The dynamics of such systems has been studied in [17, 3, 10,
18). However, in the present framework the higher order structures and their
generation become more apparent, we believe.
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Appendix
A Notation

o D={1,...,dnax}, the set of directions. In the hexagonal lattice dpax = 6.

o dg: N x N — N x N, compute the position of the site neighboring site
(2, ) in direction d € D.

¢ : D — D, computes the direction number to the right of its argunment.
e A: D — D, computes the direction number to the left of its argument.

e w: D - D, computes the direction number of the opposite direction to
its argument.

*

# : D — {0,1,2}, computes the number of bond directions actually
“glued” to a neighbor, that is, #4(7, 7) = #(2(¢, f)ex # 0).

B Update

B.1 Propagation of information particles

This step defines the propagation of information particles. This is done by all
particles, it is thus nof regarding scheduling color. The step looks like:

FOR all particles z(%, Y AND FOR all directions d DO:

(1) IF a?(i,j)s,]_ ;ﬁ d AND w(i,j)slg ;é d THEN E(dd(i;j))a,w(d) = ﬂf(dd(i,j))s,w(d) + 1.

(2) IF m(i,j)g =2 THEN
z(da(i, j))f;,fu(_d) = a(da(?, §))a,u(a) — 2.
#(dg(ay(dali, 3)))awiet)) = #(doca)(da(é, )))aweray — L
w(dd(dd(z.j}).)):;,w(d) = :B(dd(dd(z._j)))‘;’w(_d).— 1.
e(daay(da(Z, 3))awiray = (dacar{da(?, H)Nawaray — 1.

(3) IF p < pwater THEN (4, )4, = 2(4, /)40 + 6.

{4) IF w(z’,j)g =1 AND #b(:n(z,j)) < 1 THEN FOR all directions d DO:
z{da(i, /) 7w = —1.

ELSE IF (i, j)2 = 2 AND #,(z(i, j)) < 2 THEN FOR all directions d DO:

ﬂ?(dd(‘l, J))'T,w(d) = #b(a}(ﬁ, J)) + 1.
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B.2 Creation of new bonds - polymerization

DO Liow X Leol times:
Choose a site (4, j) randomly. IF 2(i, )2 # 0 THEN:
Neandidates = 0-
IF @(4,7)2 =1 THEN
IF #4(z(4, 7)) < 1 THEN FOR all directions d DO
IF 2(i,7)7,¢ = 1 THEN
Neandidates = Teandidates T 1-
C(ncandidates) =d.
ELSE IF 2(%,7)2 = 2 THEN
IF #4(x(¢,7)) = 0 THEN FOR all directions d DO
IF z(7, f)7,4 = —1 OR =(4, j)7,4 = 2 THEN
Tcandidates = Peandidates + 1.
C("candidates) =d.
ELSE IF #5(z(¢,7)) = 1 THEN FOR all directions d DO
IF .'l?(i,j)'?,d =1 THEN
Ticandidates = Tcandidates 1 1.
C(ncandidates) =d.
IF ncandidates > 0 THEN
4= random(l, ncandidates)-
IF (%, 7), =2 AND F#s(z(2,7)) = 0 THEN
m(i!j)l = ﬂﬂ?(dg('&‘,j))
IF 2(d, (i, 5))2 = 2 AND #3(2(dy (3, 7)) = 0 THEN
56,1 = ~a(dy(i, ).
FOR all directions d DO 2(d4(7, ))7,w(a) = 0.
IF 2(3,7): =1 OR :c(dg(z',j)) =1THEN &=0.
ELSE IF #4(z(i, 7)) = 1 THEN
IF z(Z,7)s,0 =0 THEN b = 0.
ELSE b =1.
ELSE
IF 2(dg(4,7)) =0 THEN b= 0.
ELSE b =1.
2(2', j)ﬁ,b =4q.
w(dQ(i’ j))s.b =q.

B.3 Computation of direction

"This is only done for molecules with the right scheduling color.

FOR all particles z(¢, ) with the right scheduling color DO:
v1 = (%, f)ar — 2(4, F)a,a.
v2 = (1, j)a2 — (4, f)as.
vz = z(%, j)a,3 — 2(4, 54,6
The preferred direction d is computed as the direction in which there is the biggest “push”.
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IF (7, j)2 = 2 THEN d = w(d).
IF (i, 5)s > 0 AND (2(4, )6, > 0 AND (¢, /)5 # o(2(4, §),x) AND
(4, §)s # M=(i, 7)e,x) (k= 1,2)) THEN 2(i, j)s = 0.

B.4 Move particles
Move particles with the right scheduling color apropriately and update bonds.

21



References

[1] N.A.Baas, Emergence, hierarchies and hyperstructures, Artificial Life I11,
proceedings, ed. C.G. Langton, Addison-Wesley/Santa Fe Institute Studies
in the Sciences of Complexity Vol XVII (1994) 515-537.

[2] N.A.Baas, Hyperstructures as a tool in nanoctechnology. Nanobiclogy 3,
49-60, (1994).

[3] W. Fontana and L.W. Buss, The arrival of the fittest: Toward a theory of
biological organization, Bull. Math. Biology, 56, 1-64 (1994).

[4] U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice Gas Automata for the
Navier-Stokes Equation, Physical Review Letters 56, 1986, 1722- 1728.

[6] N.S. Goel and R.L. Thompson, Movable finite automata (MFA): A new tool
for computer modeling of living systems. Artifictal Life, proceedings, ed.
C.G. Langton, Addison-Wesley/Santa Fe Institute Studies in the Sciences
of Complexity Vol VI (1988) 317-340..

[6] J. Hoperoft and J. Ullman, Introduction to automata theory, languages,
and computation, Addison-Wesley (1979).

[7] H. Hotani, R. Laholz-Beltra, B. Combs, S. Hameroff and S. Rasmussen,
Nanobiology 1, 67 (19892).

[8] A.L. Lehninger, P.L. Nelson, and M.M. Cox, Principles of Biochemistry,
Worth Publishers, N.Y ., 1993.

[9] K. Lindgren and M.G. Nordahl, Universal computation in simple one di-
mensional celluar automata, Complex Systems 4(3), 299-318, (1990).

[10] K. Lindgren and M.G. Nordahl, Artificial food webs. Artificial Life I,
proceedings, ed. C.G. Langton, Addison-Wesley/Santa Fe Institute Studies
in the Sciences of Complexity Vol XVII (1994) 515-537.

[11] P.L. Luisi, P. Walde, and T. Oberholzer, Enzymatic RNA synthesis in self-
replicating vesicles: An approach to the construction of 2 minimal cell. Ber,
Bunsengs. Phys. Chem., 98 (No. 3}, (1994) 1160-1165.

[12] B. Mayer, G. Koehler, and S. Rasmussen, Simulation and dynamics of
entropy driven molecular self-assembly processes. To appear in Phys Rew
E.

(13] B. Mayer and S. Rasmussen, Lattice Molecular Automata (LMA): A
physico-chemieal simulation system for constructive molecular dynamics.
LA-UR/SFI preprint 96-1732. Available from the authors.

[14] M. Minsky, Computation - finite and infinite machines, Prentice-Hall, 1972.

22



[15]

[16]

[17]

[19]

[20]

[21]

K. Nagel, C.L. Barrett, and 5. Rasmussen, Network traffic as a self-
organized critical phenomena. LANL/SFI preprint 96-659. To appear in
the Proceedings of The International Twin Conference on Self-Organization
and Complexity, Stuttgart and Berlin, Germany, September 20-28, 1995,
ed,, F. Schweitzer, World Scientific Publ.

0. Ostrovsky, M. A. Smith, and Y. Bar-Yam, “Applications of Parallel
Computing to Biological Problems”, Annu. Rev. Biophys. Biomol Struct.,
24, 239-67 (1995).

S. Rasmussen, C. Knudsen, R. Feldberg, and M. Hindsholm, The core-
world: Emergence and evolution of cooperative structures in a computa-
tional chemistry, Physica D 42, 111-134, 1990.

S. Rasmussen, C. Knudsen, and R. Feldberg, Dynamics of programmable
matter. Artifictal Life II, proceedings, ed. C.G. Langton, C. Tayler, J.D.
Farmer, and 5. Rasmussen, Addison-Wesley/Santa Fe Institute Studies in
the Sciences of Complexity Vol XVII (1991) 211-254.

S. Rasmussen and J.R. Smith, Lattice Polymer Automata, Ber. Bunsengs.
Phys. Chem., 98 (No. 3), (1994) 1185-1193.

S. Rasmussen and C. Barrett, Elements of a theory of sirnulation, Lecture
Notes in Artificial Intelligence, Proceedings eds F. Moran et. al., Springer
Verlag, Vol. 929 (1995) 515-529.

S. Rasmusssen, N.A. Baas, C.L. Barrett, and M.W. Olesen, A note on simu-
lation and dynamical hierarchies. LA-UR/SFI preprint 96-661. To appear in
the Proceedings of The International Twin Conference on Self-Organization
and Complexity, Stutigart and Berlin, Germany, September 20-28, 1995,
ed., F. Schweitzer, World Scientific Publ.

[22] A.C. Scott, Stairway to the mind. Springer-Verlag (1995).

23



Figures

5

YAVAVAVAN

Figure 1: Definition of the hezagonal lattice £ and the 6 principal lattice direc-
{ions.
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Figure 2: Two neighboring data structure Dis5y and Dy 541y on the lattice L.



Figure 3: Force particle propagation. A monomer is propagating ezcluded vol-
ume particles, “Repellons”, and force particles, “Forceons”. The Repellons (in-
dicated by the large grey information particles) are propagated to distunce one
except in the direction where the monomer intend to move where they are prop-
agated out {o neighborhood two. The move direction is indicated by the black
“sector”. The Forceons (indicated by the small information particles) are prop-
agated 1o neighborhood two, but are also present at neighborhood one logether
with the Repellons (the Repellons cover them). The binding force particles (“Glu-
ons” ), which are not shown, are also propagated 1o neighborhood two. (The force
pariicles are depicied near, and not directly af, the corrosponding latlice site, be-
ceuse ¢ molecular object at the same sile then would “cover” the informalion
particles.)
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Figure 4: A single update of free monomers, hydrophobic (grey) and hydrophilic
(black) on a 8 x 8 lattice with periodic boundary conditions. Only one schedul-
ing color is used here. Note how random kicks from the (non esplicit) sol-

vent changes the velocity of some of the monomers. Eventually the hydrophobic
monomers will cluster,
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Figure 5: Data structures acting as internal observers (as opposed to external
observers) generating second order interactions. A 1st order interaction guing
a commaunication channel between aggregates. The internal 1st order interaction
within the aggregates communicate this interaction through the aggregate. A 2nd
order interaction between the aggregates is therefore induced by the 1st order
interactions - exlernal as well as internal.
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Figure 6: Generation of third level structures in the latfice automata sysiem.
Ly (monomers at timet = 0) — Ly (polymers at time t = 30} — Lz (micelle-
like aggregates at time t 20,000 and 60,000). Initially there are approzimately
the same number of hydrophobic (black) and hydrophilic (white) monomers. The
polymerization occurs such that a hydrophobic monomer (which is the nucleation
center) can form a bond to a hydrophilic monomer which in turn can polymerize
another hydrophobic monomer ete. At time t = 30 there ave siill a few free
hydrophilic monomers nol yet polymerized. Nole that the formed micelle-like
clusters are quile stable for these initial conditions and paramelers, since they
do not change much between t = 20,000 and 60,000.
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scheduling color

vacuum and molecules
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Figure 7: Definition of object complexity as the number of active variables in
the dala structure. The by * marked variables are empty. Dy produces fluid
dynamics as defined through the Laitice Gas. D2 produces monomer dynam-
ics with excluded molecular volumes. Dz produces aggregates of hydrophobic
monomers surrounded by water. Dy produces polymer dynamics. Ds produces
polymer aggregates, vesicles and membranes starting from polymer interactions.
D¢ produces polymers from monomers through a polymerization process. Dy
produces vesicles and membranes from polymers that are polymerized from the
initial monomers.
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Simple Rules and Complex Dynamical
States Structures

Figure 8: Complez Systems Dogma.
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