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�
 Introduction

Cellular automata �CAs� are decentralized spatially extended systems consisting of large
numbers of simple identical components with local connectivity� Such systems have the
potential to perform complex computations with a high degree of e�ciency and robustness�
as well as to model the behavior of complex systems in nature� For these reasons CAs and
related architectures have been studied extensively in the natural sciences� mathematics� and
in computer science� They have been used as models of physical and biological phenomena�
such as 	uid 	ow� galaxy formation� earthquakes� and biological pattern formation� They
have been considered as mathematical objects about which formal properties can be proved�
They have been used as parallel computing devices� both for the high�speed simulation of
scienti
c models and for computational tasks such as image processing� In addition� CAs
have been used as abstract models for studying �emergent� cooperative or collective behavior
in complex systems� For collections of papers in all these areas� see� e�g�� Burks �
���a��
Fogelman�Soulie� Robert� and Tchuente �
����� Farmer� To�oli� and Wolfram �
����� Forrest
�
����� Gutowitz �
����� Jesshope� Jossifov� and Wilhelmi �
����� and Wolfram �
�����

In this chapter I will review selected topics related to computation in CAs� The pre�
sentation will assume an elementary knowledge of the theory of computation� including
formal�language theory and computability�

A CA consists of two components� The 
rst component is a cellular space�� a lattice of N
identical 
nite�state machines �cells�� each with an identical pattern of local connections to
other cells for input and output� along with boundary conditions if the lattice is 
nite� Let

�CA terminology di�ers among di�erent authors� The terminology in this chapter will be consistent with
most modern work�
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Figure �� Illustration of a one�dimensional� binary�state� r 	 � CA

with periodic boundary conditions shown iterating for one time step


Wolfram ����
� proposed a numbering scheme for one�dimensional

k	� ��elementary�� CAs in which the output bits are ordered lexico�

graphically� as in the �gure� and are read right�to�left �neighborhood

��� �rst� to form a binary integer between � and ���
 In that scheme�

the elementary CA pictured here is number ���


� denote the set of states in a cell�s 
nite state machine� and k � j�j denote the number of
states per cell� Each cell is denoted by an index i and its state at time t is denoted sti� where
sti � �� The state sti of cell i together with the states of the cells to which cell i is connected
is called the neighborhood �ti of cell i�

The second component is a transition rule �or �CA rule�� ���ti� that gives the update

state s
�t���
i for each cell i as a function of �ti �

Typically in a CA a global clock provides an update signal for all cells� at each time step
all cells update their states synchronously according to ���ti��

A one�dimensional� k � � �� � f�� 
g� CA is illustrated in Figure 
� Here� the neighbor�
hood of each cell consists of itself and its two nearest neighbors� and the boundary conditions
are periodic�i�e�� the leftmost cell is considered to be the right neighbor of the rightmost
cell� and vice versa� For one dimensional CAs� the size of the neighborhood �i �leaving o�
the t subscript when it is not needed� is often written as j�ij � �r � 
 where r is called the
radius of the CA� In the one�dimensional case� � � ��r�� � �� In cases of binary�state CAs
where the number of possible neighborhoods is not too large� the CA rule is often displayed
as a lookup table �or rule table� which lists each possible neighborhood together with its
output bit� the update value for the state of the central cell in the neighborhood� The ���
one�dimensional� k � �� r � 
 CAs are called elementary CAs �ECAs�� The one pictured in
Figure 
 is ECA 

�� according to Wolfram�s �
���� numbering scheme�

The behavior of CAs is often illustrated using �space�time diagrams� in which the con�
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Figure �� A space�time diagram� illustrating the typical behavior of

Elementary CA ���
 The lattice� displayed horizontally� starts with

a randomly generated initial con�guration
 Cells in state � are dis�

played as black� and cells in state � are displayed as white
 Time

increases down the page
 �This and other space�time diagrams given

in this chapter were plotted using the lattice automaton simulation

and graphing package la�d� written by James P
 Crutch�eld
�


guration of states in the d�dimensional lattice is plotted as a function of time� �Of course�
in most cases space�time diagrams are practical only for d � ��� Figure � gives a space�time
diagram of the behavior of ECA 

� on a lattice with N � ���� starting from a randomly
generated initial con
guration �the lattice is displayed horizontally� and iterated over ���
time steps with time increasing down the page�

The ECAs are among the simplest versions of the CA architecture �although� as can be
seen in Figure �� such CAs can give rise to apparently complicated aperiodic behavior�� This
basic architecture can be modi
ed in many ways�increasing the number of dimensions� the
number of states per cell and the neighborhood size� modifying the boundary conditions�
making the CA rule stochastic rather than deterministic� and so on�

CAs are included in the general class of �iterative networks� or �automata networks� �see
Fogelman�Soulie� Robert� and Tchuente� 
��� for a review of this general class�� CAs are
distinguished from other examples of this class in their homogeneous and local connectivity
among cells� homogeneous update rule across all cells� and �typically� relatively small k�



 Von Neumann�s Self�Reproducing Cellular Automaton

The original concept of cellular automata is most strongly associated with the great scientist
and mathematician John von Neumann� According to the history recounted by Burks �
����

���b�� von Neumann was deeply interested in connections between biology and the �then�
new science of computational devices� �automata theory�� Paramount in his mind was
the biological phenomenon of self�reproduction� and he had posed a fundamental question�
�What kind of logical organization is su�cient for an automaton to be able to reproduce

�



(a) (b)

Figure 
� �a� The von Neumann neighborhood
 �b� The Moore neigh�
borhood
 In both cases� the cell to be updated is shaded


itself�� The idea of using cellular automata as a framework for answering this question was
suggested to von Neumann by Stanislaw Ulam �Burks� 
���b�� Thus� the original concept
of cellular automata can be credited to Ulam� while early development of the concept can
be credited to von Neumann�

Von Neumann strongly believed that a general theory of computation in �complex net�
works of automata� such as cellular automata would be essential both for understanding
complex systems in nature and for designing arti
cial complex systems� Von Neumann
made foundational contributions to such a theory� and it is thus ironic that the standard
model of computation� with a CPU� globally accessible memory� serial processing� and so on
has been dubbed the �von Neumann style� architecture� and architectures such as cellular
automata have been dubbed �non�von Neumann style��

Von Neumann�s detailed solution to his question� �What kind of logical organization is
su�cient for an automaton to be able to reproduce itself�� was presented in his book Theory
of Self�Reproducing Automata �von Neumann� 
����� The manuscript was incomplete at the
time of von Neumann�s death in 
���� The manuscript was edited and completed by Burks�
who also gives an excellent detailed overview of von Neumann�s system in Essay 
 of his
book Essays on Cellular Automata �Burks� 
���a��

This question has to be framed carefully so that it does not admit trivial solutions� For
example� one can easily design a CA in which 
s reproduce themselves� The self�reproducing
automaton must have a certain degree of complexity� Von Neumann required that the
automaton in question be equivalent in power to a universal Turing machine�

The self�reproducing automaton that von Neumann constructed� here denoted as Mc� is
embedded in a two�dimensional cellular space with a particular CA rule and a particular
initial con
guration of states� The two�dimensional space is considered to be in
nite� and
all but a 
nite number of cells start out in a special �quiescent� state�

There are �� possible states per cell �including the quiescent state�� and the neighborhood
of each cell consists of 
ve cells� the cell itself and the four bordering cells to the north�
south� east� and west �Figure �a�� This two�dimensional neighborhood is now called the
�von Neumann neighborhood�� The two�dimensional neighborhood consisting of the cell
itself and its � neighbors �the von Neumann neighborhood plus the diagonal cells� is called
the �Moore neighborhood� �Figure �b��

�
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Figure �� A schematic diagram of the operation of von Neumann�s

self�reproducing automaton� illustrating the high�level components


�Adapted from Burks� ����c
�

Figure � illustrates schematically the high�level process by which the self�reproducing
automaton Mc works� Mc consists of a con
guration of states which can be grouped into
two functional units� a constructing unit� which constructs the new automaton� and a tape
unit� which stores and reads the information needed to construct the new automaton�

The tape unit consists of a tape control and a �tape�� The tape is a linear array of cells
that contains the information about M � the automaton to be constructed� In particular� it
contains �in left�to�right order� �
� the x and y coordinates �x�� y�� of the lower left�hand
corner of the rectangle in which the new automata is to be constructed �the �construction
area��� ��� the width � and height � of that rectangle� and ��� the cell states making up
the automaton �listed in reverse order of where they are to be placed in the rectangle� and
a asterisk indicating the end of the tape�

The construction of the new automaton M is carried out by the sending of signals �in
the form of propagating cell states� between the tape unit and the constructing unit� The
constructing unit consists of a construction control and a �constructing arm�� As shown
in Figure �� the constructing arm is an array of cell states through which cell states to be

�



constructed can be sent from the construction control to designated places in the construction
area�

The original automaton Mc is �turned on� by an external signal sent to the construction
control� The construction control then sends a signal to the tape unit� which reads from the
tape and sends �via signals� the values of x�� y�� and � to the construction control� The
construction control then causes the construction �arm��an expanding and contracting
array of cell states�to �move� �by changing the states of intermediate cells� from its initial
position to the upper left�hand corner of the construction area� Then the construction control
asks for and receives the value of successive states on the tape� and moves the construction
arm to place them in their proper position in the construction area�

When construction is complete �i�e�� the terminating asterisk is read from the tape�� the
construction control moves the construction arm to the lower left�hand corner of M and
sends the start signal to it� which causes M to begin the self�reproduction process anew�
Then Mc moves its construction arm back to its original position�

The above is a rough� high�level description of how von Neumann�s self�reproducing au�
tomaton works� Von Neumann�s solution included both this high�level design and its imple�
mentation in a ���state cellular automaton� The high�level functions invoked above�reading
states from the tape� sending di�erent signals� receiving and recognizing di�erent signals� and
so on�are all built up in a complicated way by primitive CA operations� At the lowest level�
von Neumann used primitive CA operations to synthesize logical operations such as �or��
�and�� and other simple operations such as delays and signal propagation� These operations
were used in turn to synthesize higher�level operations such as signal recognizers� the movable
construction arm� and so on� Finally� the higher�level operations were used to put together
the entire automaton� It is interesting to note that some of the intermediate�level operations
were analogous to the primitive elements von Neumann used in designing the EDVAC�the

rst �stored program� electronic computer�

It should be clear that Mc is capable of more than self�reproduction�in fact� it can be
shown to be a universal constructor� capable of constructing any automaton whose con
gu�
ration is stored on its tape� �It can also be shown to be capable of universal computation��
Self�reproduction then reduces to the special case where Mc�s tape contains a description
of Mc itself� It is essential that the constructed automaton be initially �quiescent� �i�e��
its states do not change before it receives a start signal�� If this were not the case� then
M might begin a new construction process before its own construction is completed� and
possibly interfere with its own construction process� Von Neumann�s automaton is initially
quiescent� it does not begin its construction process until it receives an external signal�

Von Neumann insisted that his CA have a reasonably small number of states per cell�
otherwise the question of universal computation and universal construction in a CA could be
begged by implementing high�level capabilities directly in each cell �with a huge number of
states�� His ���state construction was later further simpli
ed by Codd �
���� to a CA with
eight states per cell� and later by Banks �
��
� to four states per cell� Von Neumann�s design
itself was implemented on a computer by Pesavento �
����� Langton �
���� studied very
simple self�reproducing structures in CAs in order to understand the minimal requirements
for non�trivial self�reproduction�

Other types of self�reproducing automata �or computer programs� can be designed�for
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example� see Hofstadter �
����� Chapter 
�� for a discussion of self�reproduction in computer
programs and in nature� One commonality between all such systems is the use of the
same information in two modes� 
rst as an interpreted program that implements a copying
engine� and second as uninterpreted data to be copied to form the o�spring system� In von
Neumann�s system� the initial con
guration of states is interpreted by the CA to implement
the copying engine� and also holds the tape containing the uninterpreted initial con
guration
of states that will make up the copied automaton M � This basic principle� that the same
information is used in these two modes� also forms the basis of self�reproduction in molecular
biology� It is interesting to note that von Neumann�s design of a self�replicating automaton
was prior to the discovery of the detailed mechanisms by which DNA replicates itself�

�
 Universal Computation in Cellular Automata

�
� Smith�s Two�Dimensional Construction

Von Neumann was the 
rst to design a cellular automaton capable of universal computation�
Since then many others became interested in the problem and either improved on his original
construction or have developed alternative constructions� An early example was Alvy Ray
Smith �
��
�� who constructed a series of progressively simpler cellular automata capable
of universal computation� The 
rst in the series was a two�dimensional cellular automaton
Ms that simulates a given Turing machine M in �real time��that is� there is a one�to�one
correspondence between the time steps of Ms and the time steps of M �

Smith�s construction is quite straightforward� The main cleverness is using the same CA
states to represent both tape symbols and states of M � Suppose M has m tape symbols
�including the blank symbol� and n internal states� In Ms� the number of states per cell
k is one plus the maximum of m and n� The cellular space is an in
nite two�dimensional
space� with all but a 
nite number of cells being in a �quiescent� state� denoted by �� A
cell neighborhood consists of � cells� with the neighborhood template given in Figure �a�
Without loss of generality� assume that n � m� Then k � m � 
 �where the �m� 
�st state
is ���

The CA works as illustrated in Figure �b� One row of the space is used to simulate M �s
tape� At each time step t the cells in this row are in states corresponding to the symbols Si
on M �s tape at time step t in M �s operation� At any time� all but a 
nite number of M �s
tape squares are blank� Ms needs to know the extent of this 
nite tape area� so the leftmost
and rightmost cells of the 
nite tape are set to M �s blank symbol �here called �
��� All other
cells outside the current 
nite tape area are set to the quiescent state ��

The row of cells above the tape row contains one cell that simulates the tape head �labeled
h� containing state P �� It is directly above the cell �labeled s� whose symbol S� is to be
scanned at time t� Two other cells are necessary to label� cells a and b� the cells directly to
the left and right of cell h� All cells except the tape cells and h are in the quiescent state�

The actions of M�scan the current tape symbol u in state v� write a new tape symbol p
and go into state q� and move either left or right�can be written in the form �u� v� � pXq�
where X is either L �a left move� or R �a right move�� These actions are encoded in Ms�s
transition rule� part of which is schematically given in Table 
� �This table leaves out some

�
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cell a cell b

cell h

cell s

P
.  .  ..  .  . S-3 -2S -1S 0S 1S 2S 3S

Figure �� �a� The neighborhood template used in Smith�s universal
CA
 The cell to be updated is shaded
 �b�
 A schematic diagram of

the operation of Smith�s universal CA
 The current cell simulating the

tape head is labeled h� with state P 
 The cells immediately to its left

and right are labeled a and b� respectively
 The cell currently being

scanned is labeled s� and has state S�
 The other non�blank tape cells
i have states Si
 �Adapted from Smith� ����
�

details� such as entries dealing with the ends of the 
nite tape area� see Smith� 
��
 for
all details�� The starred symbol in each neighborhood con
guration is the symbol to be
updated by that transition� For example� the 
rst entry in the table is for the scanned cell
s� Assuming its value is u� the tape head�s value is v� and M has the action �u� v� � pXq�
s is assigned the new state p� Likewise� the second entry speci
es that the tape head moves
by updating the current tape head cell to state ��

In this way� Ms simulates any given Turing machine M in real time� As a corollary� a CA
Us can be constructed in this way to simulate a universal Turing machine U in real time�
�For example� Minsky �
���� described a ��state� ��symbol universal Turing machine� so a
two�dimensional� ��state CA can be constructed that simulates it in real time�� In his paper�
Smith gives several other variations of the original construction with di�erent number of
states� di�erent neighborhood templates� and one�dimensional architectures�

It should be noted that this approach to universal computation in CAs di�ers from von

�



Cell c Neighborhood of c Next state of c conditions

s P p S� � u
S�� S

�

�
S� P � v

� � �

h � �
� P � � in all cases
S�� S

�

�
S�

a � � if X � R
� �� P q if X � L

S�� S
�

��
S�

b � q if X � R
P �� � � if X � L
S� S

�

�
S�

Table �� Part of the transition rule for Smith�s universal CA� given

schematically
 A Turing machine move is represented as �u� v� 	 pXq�
scan the current tape symbol u in state v� write a new tape symbol p
and go into state q� and move X� where X is either L �a left move�

or R �a right move�
 A starred symbol represents the state of cell c�
the cell to be updated
 �Adapted from Smith� ����
�

Neumann�s in that Smith�s construction simulates a particular Turing machine M�a dif�
ferent construction is needed for each di�erent Turing machine�whereas von Neumann�s
construction can simulate any Turing machine by setting up the initial con
guration in the
correct way� Von Neumann�s construction� on the other hand� does not simulate Turing
machines in anything like real time�

Many alternative schemes for simulating Turing machines in cellular automata have been
formulated over the years� For example� Lindgren and Nordahl �
���� constructed an r � 
�
k � � one�dimensional CA in which tape symbols were represented by stationary cell states
�as in Smith�s construction� but in which the tape head �with internal state� was represented
as a left� or right�moving �particle��a propagating set of CA states�

�

 Universal Computation in the Game of Life

A very di�erent approach was used to show that the well�known CA �the Game of Life� is
capable of universal computation� �Life� was 
rst invented by John Conway in the 
���s�
it is de
ned and its universality is demonstrated in Berlekamp� Conway� and Guy �
�����
Chapter ��� Life is a two�dimensional� binary state CA� where each cell�s neighborhood �ti
is the Moore neighborhood �Figure �b�� The transition rule st��

i � ���ti� is very simple� if
sti � 
� then ���ti� � 
 if and only if exactly two or three other neighbors are in state 
�
otherwise ���ti� � �� If sti � �� then ���ti� � 
 if and only if exactly three other neighbors are
in state 
� otherwise ���ti� � �� In this discussion� Life is assumed to iterate on an in
nite
two�dimensional lattice� starting with an initial con
guration with a 
nite number of 
s� and

�



t = 0 t = 1 t = 2

t = 3 t = 4

Figure �� A glider in Life
 The structure at t 	 � and t 	 � is the

glider� which moves one square diagonally every four time steps


all other cells set to ��

Life is well known because this very simple transition rule often leads to very complicated
and interesting patterns in the cellular space� For example� it is very easy to construct initial
con
gurations that will produce simple� propagating� localized structures called �gliders�
�Figure ��� out of which more complicated patterns can be formed� Much investigation has
gone into discovering other kinds of propagating structures in Life as well �see Berlekamp�
Conway� and Guy �
����� Chapter �� for an overview of some of these structures�� Conway
asked the question �Can the population �i�e�� cells set to 
 of a Life con
guration grow
without limit�� William Gosper answered the question in 
��� with the invention of a
�glider gun�� a stationary structure that emits a new glider every �� time steps� Gliders and
glider guns are the key structures used in the construction of a universal computer in Life�

In this construction� rather than simulating a universal Turing machine� basic logical
functions are built up from interactions between streams of gliders �shot o�� from glider
guns� For example� in some cases when two gliders collide� they annihilate� This is used to
build a NOT gate� as illustrated in Figure �a� An input stream A of bits is represented as
a stream of gliders� spaced so that the presence of a glider represents a 
 and the absence
represents a �� This stream collides with a perpendicular stream of gliders coming from a
glider gun� spaced as indicated in the 
gure� Since two colliding gliders in this con
guration
will annihilate� the only gliders in the vertical stream that make it past the horizontal stream
are those that �collided� with the absent gliders� or �holes�� in the stream�the � bits� The
resulting vertical output stream is the NOT of the horizontal input stream�

AND and OR gates can be constructed similarly� as illustrated in Figures �b and �c� For
example� the AND function �Figure �b� takes two horizontal input streams� labeled A and B�
and outputs a horizontal stream with 
s �gliders� corresponding to positions in which both
A and B had 
s� and �s �holes� otherwise� G signi
es a glider gun shooting o� an upward�
moving stream of gliders with no holes� Whenever the B stream contains a 
� there is an
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The symbol � indicates a glider collision
 �Adapted from Berlekamp�

Conway� and Guy� ����
�

annihilation with the G stream� creating a hole in the G stream� Whenever the B stream
contains a �� the glider in the G stream is allowed to proceed� The A stream is delayed with
respect to the B stream just enough so that the hole or glider in G corresponding to the B
bit meets the corresponding A bit� A hole in the G stream allows the A bit �hole or glider�
to join the output stream� A glider in the G stream always creates a hole in the output
stream� It can be seen that this implements the AND function� The part of the vertical
G stream that goes past the A stream is consumed by an �eater� �labeled E�� a stationary
structure that destroys gliders�

The construction also includes clever ways to dispose of unwanted gliders� to copy glider
streams� to reposition� delay� and thin glider streams by arbitrary amounts� to store informa�
tion in the form of circulating glider streams� and to implement auxiliary storage registers
via stationary blocks of cells that can be accessed and moved around by glider �	eets��
These techniques and the logical functions described above can be used to build up circuits
consisting of glider streams that can compute any recursive function� By this means� Life is
demonstrated to be universal�

Note that in this construction� space and time resources are considered unbounded� The
goal was not to construct a e�cient computer in Life� or even one that could be practically
implemented� but simply to show that in principle Life can compute anything that is com�
putable� This also shows that even CA�s �such as Life� with very simple transition rules can
be inherently unpredictable�because of Life�s universality� there is no general procedure that
can predict� say� when an initial con
guration will fade away into the all �s con
guration�

Most work on universal computation in CAs consists of devising a CA that can simulate
a universal Turing machine or some other computer known to be universal� For example�
Margolus �
���� constructed a CA that is closely related to Fredkin and To�oli�s �
����







�Billiard Ball� model of computation� In contrast� Berlekamp� Conway� and Guy took an
already existing CA�Conway�s Game of Life�that was interesting for other reasons� and
showed that a universal computer could be embedded in it� They went even further in their
imaginations� speculating that �It�s probable� given a large enough Life space� initially in
a random state� that after a long time� intelligent self�reproducing animals will emerge and
populate some parts of the space�� Whether this is true remains to be seen� An interesting
treatment of the Game of Life and its relation to some modern scienti
c and philosophical
problems is given in Poundstone �
�����

In general� universal computation in CAs is interesting only as a proof of principle that this
kind of architecture is as powerful as any computer� In practice� none of the constructions of
universal computation in CAs is meant to be a practical device that one could actually use
to compute something� For one thing� setting up an initial con
guration that would result
in the desired computation would be extremely di�cult� For another� these embedded com�
puters are very slow �even Smith�s� which simulates a universal Turing machine in real time�
compared with any practical device� and even more so when one realizes that a massively
parallel system �a CA� is being used to simulate a slow� serial device�

�
 Dynamics and Computation in Cellular Automata

Several researchers have been interested in the relationships between the generic dynamical
behavior of cellular automata and their computational abilities� as part of the larger question
of relationships between dynamical systems theory and computation theory� Viewing cel�
lular automata as discrete� spatially extended dynamical systems� Stephen Wolfram �
����
proposed a qualitative classi
cation of CA behavior roughly analogous to classi
cations in
dynamical systems theory� �The analogy is rough since concepts such as �chaos�� �at�
tractor�� �bifurcation�� �sensitive dependence on initial conditions�� are rigorously de
ned
for continuous�state continuous�time dynamical systems� whereas CAs are discrete�state�
discrete�time systems�� Wolfram�s four classes of CA behavior are�

Class �� Almost all initial con
gurations relax after a transient period to the same

xed con
guration �e�g�� all 
s��

Class �� Almost all initial con
gurations relax after a transient period to some 
xed
point or some temporally periodic cycle of con
gurations� but which one depends on
the initial con
guration� �It should be pointed out that on 
nite lattices� there is only
a 
nite number ��N� of possible con
gurations� so all rules ultimately lead to periodic
behavior� Class � refers not to this type of periodic behavior but rather to cycles with
periods much shorter than �N ��

Class �� Almost all initial con
gurations relax after a transient period to chaotic
behavior� �The term �chaotic� here refers to apparently unpredictable space�time
behavior��

Class �� Some initial con
gurations result in complex localized structures� sometimes
long�lived� Li and Packard �
���� claimed that ECA 

� �Figure ��� for example� has
typical class � behavior�
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Wolfram �
���� speculated that all class � CAs �except the ECAs� are capable of universal
computation� and that it could be implemented in a way similar to that described above for
Life�by building circuits out of propagating localized structures such as gliders� However�
since there can be no general method for proving that a given rule is or is not capable of
universal computation� this hypothesis is impossible to verify�

Subsequent to Wolfram�s work� several researchers have asked how static properties of
CA rules relate to the dynamical behavior of the CAs� Christopher Langton� for example�
studied the relationship between the �average� dynamical behavior of cellular automata and
a particular statistic ��� of a CA rule table �Langton� 
����� For binary�state CAs� � is
simply the fraction of 
s in the output bits of the rule table� For CAs with k 	 �� � is
de
ned as the fraction of non�quiescent states in the rule table� where one state is arbitrarily
chosen to be quiescent�

Langton performed a number of Monte Carlo samples of two�dimensional CAs� starting
with � � � and gradually increasing � to 
 � 

k �i�e�� the most homogeneous to the most
heterogeneous rule tables�� Langton used various statistics such as single�site entropy� two�
site mutual information� and transient length to classify CA �average� behavior at each �
value� The notion of �average behavior� was intended to capture the most likely behavior
observed with a randomly chosen initial con
guration for CAs randomly selected in a 
xed��
subspace� These studies revealed some correlation between the various statistics and �� The
correlation is quite good for very low and very high � values� However� for intermediate �
values in 
nite�state CAs� there is a large degree of variation in behavior�

Langton claimed on the basis of these statistics that as � is incremented from � to �
 �


k � the average behavior of CAs undergoes a �phase transition� from ordered behavior
�
xed point or limit cycle after some short transient period� to chaotic behavior �apparently
unpredictable after some short transient period�� As � reaches a �critical value� �c� the
claim is that rules tend to have longer and longer transient phases� Additionally� Langton
claimed that CAs close to �c tend to exhibit long�lived� �complex��non�periodic� but non�
random�patterns� Langton proposed that the �c regime roughly corresponds to Wolfram�s
class � CAs�

Langton further hypothesized that CAs able to perform complex computations will most
likely be found in this regime� since complex computation in cellular automata requires
su�ciently long transients and space�time correlation lengths� A review of this work that is
skeptical about the relationships between � and dynamical and computational properties of
CAs is given in Mitchell� Crutch
eld� and Hraber �
���a��

Packard attempted to experimentally test Langton�s computation hypothesis by using a
genetic algorithm �GA� to evolve CAs to perform a particular computation �Packard� 
�����
He interpreted the results of his experiment as showing that the GA tends to select CAs
with � close to �c�i�e�� the �edge of chaos�� This experiment was widely interpreted as
supporting the hypothesis that cellular automata capable of complex computation are most
likely to be found near �c� However� my colleagues and I were unable to replicate these
results� and were able to argue from empirical and theoretical grounds that Packard�s result
was almost certainly an artifact of mechanisms in the particular GA that was used rather
than a result of any computational advantage conferred by �c regions �Mitchell� Hraber� and
Crutch
eld� 
�����
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Figure �� �a� Space�time diagram illustrating the typical behavior of
ECA ��� a �chaotic� rule
 �b� The same diagram with the regular

domains �ltered out� leaving only the embedded particles


Those negative results did not disprove the hypothesis that computational capability can
be correlated with phase transitions in CA rule space� they showed only that Packard�s results
did not provide support for that hypothesis� Relationships between computational capability
and phase transitions have been found in other types of dynamical systems� For example�
Crutch
eld and Young �
���� 
���� looked at the relationship between the dynamics and
computational structure of discrete time series generated by the logistic map at di�erent
parameter settings� They found that at the onset of chaos there is an abrupt jump in
computational class of the time series� as measured by the formal�language class required to
describe the time series� This result demonstrated that a dynamical system�s computational
capability�in terms of the richness of behavior it produces�is qualitatively increased at a
phase transition�

However� in the context of cellular automata� our results made it clear that� 
xing r and
k� any particular task is likely to require CAs with a particular range of � values for good
performance� and the particular range required is a function only of the particular task� r�
and k rather than any intrinsic properties of regions of CA rule space� A discussion of the
problems with Langton�s and Packard�s experiments and� more generally� with the �edge of
chaos� hypotheses is given in Mitchell� Crutch
eld� and Hraber �
���a��

A di�erent approach to understanding relationships between dynamical systems theory
and computation in CAs was taken by James Hanson and James Crutch
eld �
���� Crutch�

eld and Hanson� 
���� Hanson� 
����� They noted that attempts like Wolfram�s and Lang�
ton�s to classify a given CA rule in terms of its generic behavior is problematic� since for
many rules there is no �generic� behavior either across initial con
gurations or even for the
same initial con
guration�e�g�� there can be di�erent dynamics going on in di�erent parts
of the lattice� Instead� they developed techniques for classifying the di�erent patterns that
show up in CA space�time behavior� In particular� they applied Crutch
eld�s �computational
mechanics� framework �Crutch
ed� 
���� to the classi
cation of such patterns� Their idea
was� given a space�time con
guration formed by a CA� to discover an appropriate �pattern
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basis��a representation in terms of which the con
guration could be understood� Once such
a pattern basis is found� the part of the con
guration 
tting the basis can be seen as forming
a background against which coherent structures �defects� walls� singularities� etc�� that do
not 
t the basis evolve� In this way� coherent structures are identi
ed and their dynamics can
be understood� This approach includes both the identi
cation of patterns�
nding the most
appropriate pattern basis�as well as an analysis of the dynamics in terms of the embedded
coherent structures� It is important that this approach work both for ordered con
gurations
and for apparently structureless ��chaotic� or �turbulent�� con
gurations� An example of a
turbulent con
guration is given in Figure �a� a space�time diagram of the typical behavior
of ECA 
� �which is classi
ed as class � under Wolfram�s scheme��

To understand the patterns formed by CAs� Hanson and Crutch
eld combined tools from
computation theory and from nonlinear dynamics� Computation theory comes in because
Hanson and Crutch
eld de
ne their pattern bases in terms of formal languages and their
corresponding automata� For example� ECA 
� has a single pattern basis !�� � ������
That is� every other site is a zero� the remaining sites can be either � or 
� �Such a formal�
language description of a set of con
gurations could possibly be discovered automatically
via a �machine reconstruction� algorithm� Crutch
eld� 
�����

Crutch
eld and Hanson call the space�time regions that conform to the regular�language
pattern basis �regular domains�� A regular domain is a space�time regions whose spatial
con
gurations consist of words in the regular�language pattern basis� A regular domain
must be both temporally invariant�the CA always maps a con
guration in the regular
domain to another con
guration in the same regular domain�and spatially homogeneous�
roughly� the graph representing the 
nite automaton corresponding to the regular language
is strongly connected �Hanson and Crutch
eld� 
�����

Once the regular domains of a space�time con
guration are discovered �either by eye or
by an automated induction method�� those regions are considered to be understood�their
dynamics consists of being mapped to the same pattern basis at each time step� Those
regions can then be 
ltered out of the space�time diagram� leaving only the deviations from
regular domains� which are called �embedded particles�� whose dynamics can be studied�
�These di�er from the explicitly designed propagating structures called �particles� in some
research on CAs�see below��

In ECA 
�� there is only one stable regular domain�!���but some regions have �s on
even sites and some on odd sites� The boundaries between these �phase�locked� regions are
called �defects� and can be thought of as the embedded particles of the system� However�
particles de
ned in this way will be in di�erent places if the con
guration is read from left�
to�right than if it is read from right�to�left� Instead� Hanson and Crutch
eld de
ne blocks
of the form 
����n
� n � �� 
� �� � � �� to be particles since these contain both the left�to�right
and the right�to�left defects and the cells in between� De
ning the particles in this way is
more symmetric and does not lose any information about the defects� Figure �b shows a

ltered version of Figure �a� in which all the particles are colored black� and all other cells are
colored white� For random initial con
gurations� these particles have been shown to follow
a random walk in space�time� and annihilate in pairs whenever they intersect �see Eloranta
and Nummelin� 
���� Hanson and Crutch
eld� 
���� and Eloranta� 
�����
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In short� Rule 
� can be understood of consisting of regular domains de
ned by the
regular language !��� and of particles that di�use randomly and pair�annihilate� Thus a
chaotic con
guration� such as that of Figure �a can be understood structurally in a much
more informative way than simply classifying it as �chaotic� or �turbulent��

Since this understanding is based on notions from computation theory� Crutch
eld and
Hanson call the regular domain and particle structure of a CA�s behavior its �intrinsic com�
putation�� This term refers to structures that emerge in a system�s behavior that can be
understood in computational terms� even in the absence of any interpretation of what compu�
tation is taking place� Crutch
eld and Hanson speculate that the complexity of the intrinsic
computation gives an upper bound on the complexity of possible �useful� computations that
the system can be made to do� where �useful� refers to input"output behavior that is desired
by some outside observer� or is needed by the system itself for its �survival� in some environ�
ment� For example� in the case of ECA 
�� they speculate that the CA cannot be made to do
any computation more complex than generating !�� and generating random di�usion� Note
that understanding the CA�s intrinsic computation requires more than simply examining
space�time con
gurations�it requires the induction of an appropriate set of pattern bases�
and the subsequent discovery of particles that form boundaries between di�erent pattern
bases or dislocations between di�erent phases of the same pattern basis� In Section � I will
describe an application of this framework to describing useful computation by CAs�

Hanson and Crutch
eld linked their analysis of intrinsic computation in CAs to nonlinear
dynamics by analyzing the �attractor�basin portrait� of ECA 
� �Hanson and Crutch
eld�

����� which gave additional insight into the dynamics of the CA�s particles� and showed
that small perturbations in the con
gurations do not appreciably change the CA�s behavior
or intrinsic computational complexity�

In contrast to work on universal computation in CAs and to general relationships between
dynamics and computation such as those described above� much CA research is on how CAs
can be used as fast� practical� parallel computers� The next several sections will describe
some e�orts in this direction�

�
 The Firing Squad Synchronization Problem

The 
ring squad synchronization problem �FSSP� was an early and well�known problem
for one�dimensional cellular automata� The 
rst published statement of the problem was a
note by Moore �
����� which credited the original statement to Myhill in 
��� and the 
rst
solution to McCarthy and Minsky� all apparently unpublished� The problem is as follows�
Consider a one�dimensional r � 
 CA in which there are special leftmost and rightmost cells�
In keeping with the 
ring squad analogy� the leftmost cell is called the �general� and all the
other cells are called �soldiers�� The general can receive input from outside the system�

At time step �� all cells are in the quiescent state� At some time step t � tg� the general
�responding to an external input� goes into a special state� interpreted as a �command to

re�� Then at some later time step t � tf � all of the soldier cells must go into the �
ring�
state� and none of them can have been in the 
ring state at any previous time step� The
problem is to devise states and state transitions for the soliders that will accomplish this
behavior�
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The original motivation for the FSSP was the problem of how to get all parts of a self�
reproducing automaton �like the one devised by von Neumann� to turn on simultaneously
when only local communication is possible� Many solutions to the FSSP have been proposed�
A simple one� described by Fischer �
����� is illustrated in the schematic space�time diagram
given in Figure �� In this 
gure� N � 
��

Once the general goes into the �command to 
re� state �here at time step ��� it sends
out two signals �in the form of propagating cell states�� signal A �solid line� traveling with
velocity 
 �one cell per time step� and signal B �dashed line� traveling with velocity 
"��
It then acts as a �boundary� cell �shaded�� The rightmost cell also acts as a boundary cell
after time step ��

When A reaches a boundary cell� it is re	ected at a perpendicular angle� This means
that the A and B signals will reach the cell at the center of the lattice �or adjoining cells on
even�sized lattices� simultaneously� When this happens� the central cell or cells at which A
and B meet become �generals� �signi
ed by black dots� which send out new A and B signals
and then become boundary cells� as illustrated in the 
gure� This same signaling pattern
and subsequent halving of the lattice is repeated recursively until all cells are boundary cells�
and at the following time step all cells go into the 
ring state �darker shading�� This strategy
works for any N and the time from the original command to 
re to all cells 
ring will be
�N � �� �Fischer� 
���� developed a similar approach� using similar signals and the �sieve of
Eratosthenes� to construct a one�dimensional CA that generates primes� in particular� the
CA generates a binary sequence in which the tth bit is 
 if and only if t is prime��

It can be shown that the minimum possible time to 
re is �N��� A solution achieving this
minimal time was 
rst proposed in an unpublished manuscript by E� Goto �Moore� 
�����
The solution described above can be implemented with 
� states per cell �Fischer� 
����� A
fair amount of research has gone into 
nding minimal�time solutions with a minimum number
of states �e�g�� Waksman� 
���� Balzer� 
���� Mazoyer� 
���� Yunes� 
���� and in 
nding
solutions to generalizations of the FSSP �e�g�� Moore and Langdon� 
���� Shinahr� 
���� and
Culik� 
����� The large literature on this problem indicates the degree of interest on how
to perform synchronization e�ciently in decentralized parallel systems� For an overview of
work on this problem� see Mazoyer �
�����

The description above was in terms of propagating signals rather than a CA rule� but
it is not too di�cult to translate this high�level description into such a rule� This kind
of high�level description� in which signals and their interactions are the primitive building
blocks� is very useful for designing and understanding computation in cellular automata�
such descriptions will be given in the sections below� However� very often such high�level
descriptions obscure the complexity of the underlying CA rule� in terms of the number of
states or the neighborhood size required to implement the desired higher�level signaling�

�
 Parallel Formal�Language Recognition by Cellular Automata

The study of formal�language recognition and generation has been a cornerstone of theo�
retical computer science� and the investigation of computational architectures such as CAs
often begins with studies of their formal�language recognition abilities� Several researchers
have looked into this question for CAs �e�g�� Cole� 
���� Smith� 
���� Pecht� 
���� Seiferas�
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���� Sommerhalder and van Westrhenen� 
���� Bucher and Culik� 
���� Cho�rut and Culik�

���� Terrier� 
����� both for theoretical reasons and for the prospect of using CAs as parallel
pattern�recognizers� In this section I will review some of the work by Alvy Ray Smith� whose
interest was in understanding how to exploit the parallelism of CAs for formal�language and
pattern recognition�

Smith �
���� studied one�dimensional r � 
 �bounded CAs� �BCAs��CAs with two
special �boundary� cells� The rightmost non�boundary cell was designated to be the �accept�
cell� A BCA is said to accept language L if� for all words x in L� there is a time t such that
the accept cell goes into an accept state� and for all words x not in L� there is no such time
t� A BCA is said to accept language L in real time if� for any word x of length n� the CA
can determine that x is in L within n steps�

Smith proved that the class of languages that can be accepted by BCAs is the class
of context�sensitive languages� and concluded that �pattern recognition by �such cellular
automata reduces to problems in the theory of context�sensitive languages��

Smith described recognition algorithms in terms of propagating signals� similar to those
in the description of the FSSP solution above� He gave as one example the problem of
recognizing the context�free language �here called L�� consisting of all palindromes�words
that are the same read forwards as backwards� Figure 
� gives a schematic space�time
diagram illustrating the bounded CA constructed by Smith that recognizes L� in real time�
In Figure 
�� the input is the palindrome abcdcba� Each cell� including the �shaded� boundary
cells� sends out a signal containing its state in both directions at velocity 
� When two signals
that do not carry the same state arrive at the same cell� a �no� signal is sent with zero velocity
indicating that that cell did not contain the center of the palindrome �solid vertical lines
in Figure 
�� When the two boundary signals intersect in the center of the lattice� if there
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center cell does not contain the �no� signal� then the right boundary signal re	ects back to
the right at velocity 
� and when it arrives at the rightmost �non�boundary� cell� it causes
that cell to go into the �accept� state �light shading�� If the center cell did contain the �no�
signal� then the input would be judged not to be a palindrome� and the rightmost cell would
not go into the accept state� �In Figure 
�� N is odd� When N is even� two signals are
considered to intersect when they occupy adjacent cells� and if two intersecting signals do
not carry the same state� the �no� signal is sent at zero velocity by the rightmost of the two
cells��

A second example is a bounded CA that recognizes the context�sensitive language L� �
fambmcmjm � 
g in real time� Smith�s construction is illustrated in Figure 

� The input
is aaabbbccc� which is in L�� Let B denote the boundary�cell state� Each cell sends a
zero�velocity signal �not shown in the 
gure� indicating its initial state� In addition� special
zero�velocity signals �solid vertical lines in Figure 

� are sent to indicate any Ba boundaries�
ab boundaries� bc boundaries� and cB boundaries� A signal from the Ba boundary is sent
at velocity 
 to the right� and checks for all a�s� A signal from the bc boundary is sent at
velocity 
 to the left� and checks for all b�s� Both signals stop either when they encounter
a wrong letter or when they encounter a zero�velocity boundary signal� If the left�moving
Ba�boundary signal encounters only a�s� the right�moving bc�boundary signal encounters
only b�s� and if they reach the ab boundary at the same time� then the input is guaranteed
to be of the form ambmw for some su�x w� If this is the case� the right�moving Ba signal
continues moving right at velocity 
�

At the same time as this process is going on� a signal is sent from the ab boundary to
the right� moving at velocity 

� and checking for all b�s� and a signal is sent from the cB
boundary to the left at velocity 

�� checking for all c�s� Both signals stop either when they
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encounter a wrong letter or when they encounter a zero�velocity boundary signal� If the ab
signal encounters only b�s and the cB signal encounters only c�s� and if they reach the bc
boundary at the same time� then the input is guaranteed to be of the form w�bncn for some
pre
x w�� Furthermore� if they reach the bc boundary at the same time as the right�moving
Ba signal� then the input is guaranteed to be of the form ambmcm� and the right�moving Ba
signal proceeds to the rightmost non�boundary cell� which goes into the accept state�

As was the case for the FSSP� the above descriptions of CA formal�language recognizers
are given in terms of propagating and intersecting signals� not in terms of CA rules� �Com�
piling� these high�level description into CA rules takes some thought� For example� multiple
signals can occupy the same cell simultaneously� this requires allowing enough states per
cell to encode the multiple signals� and then determining the correct transitions for each
possible con
guration� This can require a large number of states per cell� Smith was not
concerned with designing CA rules that can recognize formal languages with a minimum
number of states� rather� his purpose was to show that� in principle� there exist bounded
CAs in which parallelism can be used so that a large class of languages can be recognized in
real time� He compared the language�recognition capability of such CAs with certain other
parallel architectures �e�g�� �bounded iterative automata� and multitape Turing machines��
and proved a number of results showing that the class of bounded CAs is faster in many
cases� He also gave several other clever constructions of bounded CAs that can recognize
formal languages in real time�

Many of Smith�s results on language recognition have been generalized to CAs of more
than one dimension by Seiferas �
���� and by Pecht �
�����

�
 Parallel Arithmetic by Cellular Automata

In addition to their application as parallel formal�language recognizers� CAs have been in�
vestigated as parallel devices for performing arithmetic operations� In this section I describe
work in this area by Kenneth Steiglitz and his colleagues� who use various �interacting par�
ticle� methods to perform parallel arithmetic in CAs� �Other work on parallel arithmetic
in cellular automata has been done by Sheth� Nag� and Hellwarth� 
��
� Clementi� De Bi�
ase� and Massini� 
���� and Mazoyer� 
���� among others�� �Their notion of particle di�ers
from that of Hanson and Crutch
eld as described above� In the next section� their work
will be contrasted with �particle computation� methods based on Hanson and Crutch
eld�s
framework��

In one study� Steiglitz� Irfan Kamal� and Arthur Watson �
���� designed a particular
class of CAs�the one�dimensional� binary�state� �parity�rule 
lter automata��to perform
parallel arithmetic� This class of automata has the property that propagating periodic
structures often act as �solitons��that is� they can pass through each other in space�time
without destroying each other� but only by shifting each others phase� It turns out that
such a feature can be useful for implementing arithmetic operations in CAs via particle
interactions�

One�dimensional 
lter automata �FAs� di�er from standard CAs in that their cells are
updated asynchronously from left to right� given radius r� a cell i is updated using the
neighborhood�
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Figure ��� Space�time diagram displaying four typical particles sup�

ported by the r 	 � BPFA
 �Reprinted from Steiglitz� Kamal� and

Watson� ����
�
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In other words� cell i�s neighborhood consists of the states of the already updated r cells to
the left� cell i itself� and the not�yet�updated r cells to the right� Although this architecture
loses the parallelism of CAs �in which all cells are updated simultaneously�� implementations
of FAs can retain some degree of parallelism by simultaneously updating the cells along a
space�time diagonal frontier from the upper right to the lower left �Steiglitz� Kamal� and
Watson� 
�����

A binary�state parity�rule FA �BPFA� is de
ned by the update rule�

st��
i �

�

 if �ti has a positive� even number of 
s
� otherwise�

The BPFAs are parameterized by the radius r� The lattice will be thought of as in
nite�
but the initial con
gurations will contain only a 
nite number of nonzero sites�

Steiglitz� Kamal� and Watson de
ned a �particle� to be a particular kind of periodic
sequence in the space�time behavior of a parity�rule FA �see Figure 
��� It has been shown
that in a BPFA� every con
guration with a 
nite number of nonzero sites will evolve to a
periodic sequence� which can be decomposed into particles �Steiglitz� Kamal� and Watson�

����� It has also been shown that in these FAs particles move only to the left� never to the
right�

Steiglitz� Kamal� and Watson devised an algorithm for enumerating all particles of period
p that could be formed and could propagate in a BPFA with a given radius r� They also
devised a scheme in which information could be encoded in a particle�s �phase state��a
combination of its periodic phase and its displacement with respect to the left boundary of
the lattice� They were then able to empirically construct tables giving the results of collisions
between pairs of particles as a function of their phase states�

All this enabled Steiglitz� Kamal� and Watson to implement a �carry�ripple adder� using
r � � BPFA particles� as illustrated in Figure 
�� The two addends n and m are represented
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Figure �
� Schematic diagram of the operation of the carry�ripple

adder of Steigliz� Kamal� and Watson
 The �particle�bundles� �pairs

of particles� encode the bits of the two addends� and are labeled A
������ B ���� or ����� and C �����
 The fast particle� labeled F � prop�
agates the carry bit
 �Adapted from Steiglitz� Kamal� and Watson�

����
�

as equal�length binary numbers �with zeros padding the front of the shorter number�� The
jth pair �nj� mj� of corresponding bits in n and m are represented in the BPFA as a pair
of parallel particles �a �particle bundle��� labeled A� B� or C in the 
gure� Particle bundle
A represents the case where nj � mj � �� B represents the case where nj � �� mj � 
 or
vice versa� and C represents the case where nj � mj � 
� The particle bundles are arrayed
in order of j from left to right� with the most signi
cant bit on the left� A �fast particle��
labeled F in the 
gure� travels through A� B� and C� and the collisions e�ect the binary�
addition operation� with the resulting particle bundles encoding the result for each added
pair� and the F particle encoding the current carry bit� �It is required here that the speeds
of the particles do no change after collisions� a requirement that is not hard to implement in
BPFAs�� The 
nal F and the 
nal particle bundles transmit the results of the addition to
the leftmost cell� where they are read o� by some external interpreter�

The trick to implement this carry�ripple adder was to 
nd a set of particles that have
the desired behavior� Steiglitz� Kamal� and Watson sketched a graph�search algorithm �not
described here� that searches collision tables for particles implementing any desired logical
operation via collisions between a fast particle and slow�particle bundles� as in the carry�
ripple addition scheme described above�

Steiglitz� Kamal� and Watson�s construction was meant to be an example of how simple
parallel arithmetic can be implemented in cellular�automaton�like devices� Other simple log�
ical operations besides addition could presumably be implemented in a similar way� Their
work di�ers from most of the constructions I have described in previous sections in that it is
meant to be a practical method for parallel computation rather than a proof of principle or a
theoretical result� All the algorithms they described �e�g�� enumerating particles and search�
ing collision tables� were actually implemented and were analyzed in terms of complexity
to show that this is a feasible approach� The next step is to devise automated methods to
e�ciently combine these simple arithmetic operations into more complicated desired compu�
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tations� and to demonstrate that these achieve the requisite parallelism and accompanying
speed�up� This is likely to be di�cult�as Squier and Steiglitz comment in a later paper�
�the behavior of the particles is very di�cult to control and their properties only vaguely
understood�� �Squier and Steiglitz� 
�����

In their later study� Richard Squier and Kenneth Steiglitz �
���� described a possibly
more general and more easily programmable approach to computation in CAs using colliding
particles� Their �particle machine� approach is closely related to lattice gases� an application
of cellular automata to the simulation of 	uid dynamics� in which �particles� are primitive
cell states rather than more complex space�time structures and local rules are given directly in
terms of particle movements and particle collisions and reactions� �For overviews of research
on lattice gases� see� e�g�� Doolen� 
���� To�oli and Margolus� 
���� and Lawniczak and
Kapral� 
�����

Squier and Steiglitz�s particle machines are one�dimensional� bounded binary�state CAs�
A certain number n of particle�types is de
ned ahead of time by the designer�the idea is to
de
ne enough types so as to be able to use this same CA for many di�erent computations�
The state of each cell encodes an occupancy vector which says which particle type is currently
contained by the cell �the number of states per cell is n� the number of particle types�� The
transition table gives� for every con
guration of particles in a neighborhood� what the next
state is for the center cell of that neighborhood�

To perform a computation� particles are �injected� by an outside agent at di�erent speeds
at the ends of the lattice� propagating along the lattice and colliding with other particles
�where a collision occurs when two particles are in adjacent cells� and having reactions� It is
also decided ahead of time what constitutes an answer� and the computation is considered
to be complete when the answer appears somewhere in the lattice�

Squier and Steiglitz gave several examples to illustrate how particle machines might be
programmed� In all the examples� r � 
 and n � 
�� The 
rst example is a binary�addition
scheme� illustrated in Figure 
�a� which is similar to the carry�ripple adder scheme described
above� Here� the bits of the two addends� n and m� are represented by four di�erent types
of �data� particles� left� and right�moving �s and 
s� The bits of n are injected in the left
end of the lattice� least�signi
cant bit 
rst� and likewise for the bits of m in the right end
of the lattice� In the center of the lattice is a stationary �processor� particle pk� which can
take on one of two types� p� or p�� representing a carry bit of � or 
� respectively� It starts
out in state p�� When pk�s neighborhood contains a right�moving data particle on its left
and a left�moving data particle on its right� the two data particles are annihilated� a new�
left�moving �answer� particle is created that encodes the result of addition mod � �with the
current carry bit�� and pk is set to either p� or p�� depending on the new carry bit� The
left�moving answer particle can pass unchanged through any additional right�moving data
particles� The answer is read o� the left end of the lattice as the answer particles arrive�

A second example is binary multiplication �Figure 
�b�� Here� as before� data particles
encoding the bits of the two multiplicands n and m travel left and right towards the center
of the lattice� In the center is a row of processor particles� At each three�way interaction
between two data particles and a processor particle� the processor particle is set to encode the
sum of the product of the two bits and its previous state �initially set to ��� Any carry bits
are encoded by the right�moving particles� After all the data particles have passed through
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Figure ��� Schematic illustration of Squier and Steiglitz�s �a� bi�
nary addition and �b� multiplication schemes using particle collisions


�Adapted from Squier and Steiglitz� ����
�

each other� the processor particles contain the product nm� with the least�signi
cant bit
on the left� �Note that this scheme requires knowing ahead of time how many processor
particles to use for a given n and m��

Squier and Steiglitz give similar sketches for particle�collision schemes to perform arbi�
trarily nested combinations of arithmetic operators as well as schemes to perform digital

ltering� These examples are meant to illustrate the general framework� which Squier and
Steiglitz claim can provide a programmable CA substrate for general�purpose parallel com�
putation� �They contrast their approach with systolic arrays� e�g�� Kung� 
���� Systolic
arrays are special�purpose CA�like devices in which each processor�and sometimes the con�
nection topology�is typically more complicated than that in the CAs which we have been
discussing�� Like the BPFA approach described above� at this point the research into this
framework is just beginning� it is as yet unclear how hard it will be to construct hardware
and to write �programs� for this framework for performing more complex computations with
a useful degree of parallelism� Some discussion of hardware implementation of this approach
is given in Squier� Steiglitz� and Jakubowski �
�����

�
 Evolving CAs with Genetic Algorithms

�This section is adapted from Mitchell� Crutch
eld� and Das� 
�����

In previous sections� I have described several projects in which cellular automata are clev�
erly �and sometimes with considerable di�culty� hand�designed to perform computations�
The work of myself and my colleagues James Crutch
eld� Rajarshi Das� and James Han�
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son takes a di�erent approach� that of automatically designing CAs with genetic algorithms
�GAs��

Genetic algorithms are search methods inspired by biological evolution� In a typical GA�
candidate solutions to a given problem are encoded as bit strings� A population of such
strings ��chromosomes�� is chosen at random and evolves over several generations under
selection� crossover� and mutation� At each generation� the 
tness of each chromosome is
calculated according to some externally imposed 
tness function� and the highest�
tness
chromosomes are selected preferentially to form a new population via reproduction� Pairs of
such chromosomes produce o�spring via crossover� where each o�spring receives components
of its chromosome from each parent� The o�spring are then subject to a small probability
of mutation at each bit position� After several generations� the population often contains
high�
tness chromosomes�high�quality solutions to the given problem� �For overviews of
GAs� see Goldberg� 
��� and Mitchell� 
�����

Some early work on evolving CAs with GAs was done by Packard and colleagues �Packard�

���� Richards� Meyer� and Packard� 
����� Koza �
���� also applied genetic programming
to evolve CAs for simple random�number generation� Our work builds on that of Packard
�
����� described in Section �� We have used a form of the GA to evolve CAs to perform
two computational tasks� The 
rst is a density�classi
cation task �Mitchell� Hraber� and
Crutch
eld� 
���� Mitchell� Crutch
eld� and Hraber� 
���b� Crutch
eld and Mitchell� 
����
and Das� Mitchell� and Crutch
eld� 
����� �Subsequent work on evolving CAs and related
architectures to perform density classi
cation was done by Sipper� to appear� and by Andre�
Bennett� and Koza� 
����� The second is a synchronization task �Das� Crutch
eld� Mitchell�
and Hanson� 
����� All the work described here uses one�dimensional� binary�state r � �
CAs with periodic boundary conditions�

For the density classi
cation task� the goal was to 
nd a CA that decides whether or not
the initial con
guration �IC� contains a majority of 
s �i�e�� has high density�� If it does�
the whole lattice should eventually go to the 
xed�point con
guration of all 
s �i�e�� all cells
in state 
 for all subsequent iterations�� otherwise it should eventually go to the 
xed�point
con
guration of all �s� More formally� we call this task the ��c � �

�
� task� Here � denotes

the density of 
s in a binary�state CA con
guration and �c denotes a �critical� or threshold
density for classi
cation� Let �� denote the density of 
s in the IC� If �� 	 �c� then within M
time steps the CA should go to the 
xed�point con
guration of all 
s �i�e�� all cells in state 

for all subsequent iterations�� otherwise� within M time steps it should go to the 
xed�point
con
guration of all �s� M is a parameter of the task that depends on the lattice size N �

Designing an algorithm to perform the �c � �
�

task is trivial for a system with a central
controller or central storage of some kind� such as a standard computer with a counter
register or a neural network in which all input units are connected to a central hidden unit�
However� the task is nontrivial for a small�radius �r � N� CA� since a small�radius CA
relies only on local interactions� It has been argued that no 
nite�radius� 
nite�state CA
with periodic boundary conditions can perform this task perfectly across all lattice sizes
�Land and Belew� 
���� Das� 
����� but even to perform this task well for a 
xed lattice
size requires more powerful computation than can be performed by a single cell or any linear
combination of cells� Since the 
s can be distributed throughout the CA lattice� the CA must
transfer information over large distances �� N�� To do this requires the global coordination
of cells that are separated by large distances and that cannot communicate directly� How
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Figure ��� Space�time diagrams for �maj� the r 	 
 majority rule
 In

the left diagram� �� �
�
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�
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can this be done while still exploiting the parallelism of CAs� Our interest was to see if the
GA could devise one or more methods�

The need for such coordination is illustrated in Figure 
�� in which we display the space�
time behavior of a naive hand�designed candidate solution for this task�the �majority� rule
�maj� in which the output bit for each ��bit �r � �� neighborhood is decided by a majority
vote among the seven cells in the neighborhood� Figure 
� gives two space�time diagrams
displaying the behavior of this rule on two initial conditions� one with �� � 

� and the
other with �� 	 

�� As can be seen� local neighborhoods with majority 
s map to regions of
all 
s and similarly for �s� but when an all�
s region and an all��s region border each other�
there is no way to decide between them� and both persist� Thus� the majority rule �which
implements a threshold on a linear combination of states� does not perform the �c � �

�
task�

Instead� more sophisticated coordination and information transfer must be achieved� This
coordination must� of course� happen in the absence of any central processor or central
memory directing the coordination�

We used a genetic algorithm to search for r � � CA rules to perform the �c � �
�

task� Each
chromosome in the population represented a candidate CA rule�it consisted of the output
bits of the rule table� listed in lexicographic order of neighborhood �cf� � in Figure 
�� The
chromosomes representing rules were thus of length ��r�� � 
��� The size of the rule space
in which the GA worked was thus �����far too large for any kind of exhaustive evaluation�

Our version of the GA worked as follows� First� a population of 
�� chromosomes was
chosen at random from a distribution that was 	at over the density of 
s in the output bits�
�This �uniform� distribution di�ers from the more commonly used �unbiased� distribution
in which each bit in the chromosome is independently randomly chosen� We found that
using a uniform distribution considerably improved the GA�s performance on this task�
see Mitchell� Crutch
eld� and Hraber� 
���b� for details�� The 
tness of a rule in the
population was computed by �
� randomly choosing 
�� ICs that are uniformly distributed
over � � ����� 
�� � with exactly half with � � �c and half with � 	 �c� ��� iterating the
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Table �� Rule tables and measured values of PN������� at various N
for three di�erent r 	 
 rules
 To recover the ����bit string giving

the output bits of the rule table� expand each hexadecimal digit �the

�rst row followed by the second row� to binary
 The output bits are

then given in lexicographic order starting from the all��s neighborhood

at the leftmost bit in the ����bit binary string
 �maj �hand�designed�

computes the majority of �s in the neighborhood
 �exp �evolved by the

GA� expands blocks of �s
 �par �evolved by the GA� uses a �particle�

based� strategy


rule on each IC until it arrives at a 
xed point or for a maximum of M � �N time steps�
and ��� determining whether the 
nal behavior is correct�i�e�� 
�� �s for �� � �c and 
��

s for �� 	 �c� The rule�s 
tness� F���� was the fraction of the 
�� ICs on which the rule
produced the correct 
nal behavior� No partial credit was given for partially correct 
nal
con
gurations� �Like the initial population of rules� each sample of ICs on which to test the
rules was chosen from a uniform distribution rather than an unbiased distribution over �
because the former considerably improved the GA�s performance on this problem��

In each generation� a new set of 
�� ICs was generated� F��� was computed for each rule in
the population� CAs in the population were ranked in order of 
tness� the �� highest 
tness
��elite�� rules were copied to the next generation without modi
cation� and the remaining
�� rules for the next generation were formed by single�point crossovers between randomly
chosen pairs of elite rules� The parent rules were chosen from the elite with replacement�
that is� an elite rule was permitted to be chosen any number of times� The o�spring from
each crossover were each mutated at exactly two randomly chosen positions� This process
was repeated for 
�� generations for a single run of the GA� �Since a di�erent sample of ICs
was chosen at each generation� the 
tness function was stochastic�� For a discussion of this
algorithm and details of its implementation� see Mitchell� Crutch
eld� and Hraber �
���b��

In our experiments� we set N � 
��� a reasonably large but still computationally tractable
odd number �odd� so that the task will be well�de
ned on all ICs��

Six hundred runs were performed� each starting with a di�erent random�number seed�
We examined the 
ttest evolved rules to understand their computational �strategies� for
performing the density classi
cation task� On most runs the GA evolved a rather unsophis�
ticated class of strategies� One example� a CA here called �exp �for �expand��� is illustrated
in Figure 
�� This rule had F��� � ��� in the generation in which it was discovered� Its
computational strategy is the following� Quickly reach the 
xed point of all �s unless there
is a su�ciently large block of adjacent �or almost adjacent� 
s in the IC� If so� expand that
block� �For this rule� �su�ciently large� is � or more cells�� This strategy does a fairly good
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Figure ��� Space�time diagrams for a �block�expanding� rule� �exp


In the left diagram� �� � ���� in the right diagram� �� � ���
 Both

ICs are correctly classi�ed


job of classifying low and high density ICs under F���� it relies on the appearance or absence
of blocks of 
s to be good predictors of ��� since high�density ICs are statistically more likely
to have blocks of adjacent 
s than low�density ICs�

Similar strategies were evolved in most runs� On approximately half the runs� �expand 
s�
strategies were evolved� and on most of the other runs� the opposite �expand �s� strategies
were evolved� These block�expanding strategies� although they obtained F��� � �� with
N � 
��� do not count as sophisticated examples of computation in CAs� all the computation
is done locally in identifying and then expanding a �su�ciently large� block� There is
no notion of global coordination or information 	ow between distant cells�two things we
claimed were necessary to perform well on the task� Indeed� such strategies perform poorly
under performance measures using di�erent distributions of ICs� and when N is increased�
This can be seen in Table �� which gives the rule tables and performances across di�erent
lattice sizes for di�erent rules� The performance PN���� is de
ned as the fraction of correct
classi
cations over 
�� ICs chosen at random from the unbiased distribution �each bit in the
IC is independently randomly chosen�� This is a more di�cult test of quality than F���� since
they are chosen from an unbiased distribution� these ICs all have �� close to 

� and are thus
the hardest cases to classify� Therefore� PN���� gives a lower bound on other performance
measures� As can be seen� PN������maj� was measured to be zero for each N � PN������exp� is
approximately ���� for N � 
�� and drops to approximately ��� for the larger values of N �

Mitchell� Crutch
eld� and Hraber �
���b� analyzed the detailed mechanisms by which the
GA evolved such block�expanding strategies� This analysis uncovered some quite interesting
aspects of the GA� including a number of impediments that� on most runs� kept the GA
from discovering better�performing CAs� These included the GA�s breaking the �c � �

�
task�s symmetries for short�term gains in 
tness� as well as �over
tting� to the 
xed lattice
size N � 
�� and the unchallenging nature of the IC samples�

Despite these various impediments and the unsophisticated CAs evolved on most runs� on
approximately �# percent of the runs the GA discovered CAs with more sophisticated strate�
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Figure ��� Space�time diagrams for �par� a �particle�based� rule
 In

the left diagram� �� � ���� in the right diagram� �� � ���
 Both ICs

are correctly classi�ed
 The gray�looking region consists of a checker�

board pattern of alternating �s and �s


gies that yielded signi
cantly better performance across di�erent IC distributions and lattice
sizes than was achieved by block�expanding strategies� The typical space�time behaviors of
one such rule� here called �par �for �particle��� are illustrated in Figure 
��

The improved performance of �par can be seen in table �� �par not only has signi
�
cantly higher performance than �exp for N � 
��� but its performance degrades relatively
slowly as N is increased� whereas �exp�s performance drops quickly� As we describe in Das�
Mitchell� and Crutch
eld �
����� �par�s behavior is similar to that of a CA designed by Gacs�
Kurdyumov� and Levin �
�����

In Figure 
� it can be seen that� under �par� there is a transient phase during which spatial
and temporal transfer of information about the density in local regions takes place� Roughly�
over short times� �par�s behavior is locally similar to that of �maj in that local high�density
regions are mapped to all 
s� local low�density regions are mapped to all �s� with a vertical
boundary in between them� This is what happens when a region of 
s on the left meets a
region of �s on the right� However� there is a crucial di�erence from �maj� when a region of
�s on the left meets a region of 
s on the right� rather than a vertical boundary being formed�
a checkerboard region �alternating 
s and �s� appearing �gray� in the 
gure� is propagated�
When the propagating checkerboard region collides with the black�white boundary� the inner
region �e�g�� the large white region in the right�hand diagram of Figure 
�� is cut o� and
the outer region is allowed to propagate� In this way� the CA uses local interactions and
geometry to determine the relative sizes of adjacent low� and high�density regions that are
larger than the neighborhood size� For example� in the right�hand space�time diagram� the
large inner white region is smaller than the large outer black region�thus the propagating
checkerboard pattern reaches the black�white boundary on the white side before it reaches
it on the black side� the former is cut o�� and the latter is allowed to propagate�

The black�white boundary and the checkerboard region can be thought of as �signals�
indicating �ambiguous� regions� The creation and interactions of these signals can be inter�
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Figure ��� �a� The right�hand spacetime diagram of �gure ��
 �b�
The same diagram with the regular domains �ltered out� leaving only
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code of table 
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preted as the locus of the computation being performed by the CA�they form its emergent
�algorithm��

The above explanation of how �par performs the �c � �
�

task is informal and incomplete�
Our approach to a more rigorous understanding is to examine the space�time behavior ex�
hibited by the CA and to �reconstruct� from that behavior what the emergent algorithm
is� using Crutch
eld and Hanson�s computational mechanics framework �Section ��� Recall
that regular domains are �roughly� regions of space�time consisting of words in the same
regular language�in other words� they are regions that are computationally homogeneous
and simple to describe� E�g�� in 
gure 
�� there are three regular domains� corresponding to
the regular languages ��� 
�� and ��
��� Particles are de
ned to be the localized boundaries
between those domains� In computational mechanics� particles are identi
ed as information
carriers� and collisions between particles are identi
ed as the loci of information processing�
Particles and particle interactions form a high�level language for describing computation in
spatially extended systems such as CAs� Figure 
� hints at this higher level of description�
to produce it we 
ltered the regular domains from the space�time behavior displayed in the
right�hand diagram of 
gure 
� to leave only the particles and their interactions� in terms of
which the emergent algorithm of the CA can be understood� Table � gives a catalog of the
relevant particles and interactions for �par� In Crutch
eld and Mitchell �
���� and in Das
�
���� we describe other particle�based rules that were evolved by the GA for this task� In
Das� Mitchell� and Crutch
eld �
���� we describe the evolutionary stages by which �par was
evolved by the GA�

In Das� Crutch
eld� Mitchell� and Hanson �
����� we gave a similar analysis for a global
synchronization task� The goal for the GA was to 
nd a CA that� from any IC� produces
a globally synchronous oscillation between the all�
s and all��s con
gurations� This task

�




Regular Domains
�� � �� �� � 	� �� � ��	��

Particles �Velocities�
� � ���� ��� � � ���	�� ���
� � ���� ��	� � � ���� ����
� � ���� ��� � � ���� �	�

Interactions
decay �� � � �
react � � � � �� �� � � �� � � � � �

annihilate � � �� �� � � � � �

Table 
� Catalog of regular domains� particles � domain boundaries��

particle velocities �in parentheses�� and particle interactions seen in

�par�s space�time behavior
 The notation p � �x�y means that p is the
particle forming the boundary between regular domains �x and �y
 �

denotes an annihilation �no particles are formed by the interaction�


di�ers considerably from the FSSP� First� the FSSP uses cells with many states� allowing
for boundary cells� a �general� cell� and a diverse array of signals� In contrast� we are
using two�state CAs with periodic boundary conditions� so there can be no special cells or
propagating signals based on di�erent local states� Instead� like in the density�classi
cation
task� �signals� have to emerge as particles�boundaries between regular domains formed by
cells in state � or 
� Second� the desired 
nal behavior is not static� as in the FSSP� but is
dynamic�an oscillation between all 
s and all �s� Third� in our task synchronization must
take place starting from any IC� rather than all cells starting in the quiescent state as in
the FSSP� We believe that all of these features make this task more interesting and make it
require solutions that will be more similar to the emergence of spontaneous synchronization
that occurs in decentralized systems throughout nature�

Figure 
� illustrates the behavior of one CA� here called �sync� evolved by the GA to
perform this task� The behavior is illustrated both as a space�time diagram and as a 
ltered
version of that diagram which reveals the embedded particles� The basic strategy of �sync
is similar in some ways to that of �par for the density�classi
cation task� Local regions of
synchrony can be formed easily by requiring that the all��s neighborhood maps to 
 and
the all�
s neighborhood maps to �� However� as can be seen in Figure 
�a� those local
regions can be out of phase with one another� �sync uses particles�boundaries between the
synchronized regions and the jagged regions�to allow one local phase to take over the entire
lattice� and to cut o� the others�

Again� tools of computational mechanics allowed us to understand �sync�s strategy in the
higher�level language of particles and particle interactions �Figure 
�b� as opposed to the
low�level language of CA rule tables and raw spatial con
gurations� This is described in
detail in Das� Crutch
eld� Mitchell� and Hanson �
�����

Our notion of computation via particles and particle�interactions di�ers considerably from
the notions used in the work presented in previous sections� Propagating particle�like signals
were used in the solution to the FSSP and in Smith�s formal�language recognizers� but those
were designed by hand to be the explicit behavior of the CA� and their interactions were
e�ected by a relatively large number of states� Steiglitz� Kamal� and Watson�s carry�ripple
adder and the universal computer constructed in the Game of Life both used binary�state
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Figure ��� �a� Space�time diagram illustrating the behavior of a CA
evolved by the GA to perform the synchronization task
 The initial

condition was generated at random
 �b� The same space�time diagram

after �ltering out regular domains


signals consisting of propagating periodic patterns� but again� the particles were explicit
against a quiescent background� and their interaction properties were carefully hand coded�
Squier and Steiglitz�s particles were the primitive states of the cells and their interaction
properties were explicit in the CA rule�

In contrast to all these systems� particles in our system are �embedded� as walls between
regular domains� and are often apparent only after those domains have been discovered and

ltered out� Their structures and interaction properties are �emergent� properties of the
patterns formed by the CAs� and although each cell has only two possible states� the struc�
tures of embedded particles can be more complex than atomic or simple periodic structures�
Finally� in contrast to Crutch
eld and Hanson�s work on computational mechanics of CAs� in
our work particles and their interactions attain semantics� in that they contribute to an over�
all strategy for accomplishing a desired task� For example� in Figure 
��b�� the 
 particle can
be interpreted as signaling a particular kind of ambiguity�a white region bordering a black
region each of size greater than �r�
� Its interaction with the � particle and the subsequent
creation of the � particle can be interpreted as signaling that the white region was smaller
than the black region� This kind of interpretation contrasts with the non�semantic particles
of Figure �b� In the case of �par� these kind of semantics can be attached to particles and
their interactions only in virtue of the evolutionary process to which the CA�s lineage has
been subject�

More generally� our philosophy is to view CAs as systems that naturally form patterns
�such as regular domains�� and to view the GA as taking advantage�via selection and
variation�of these pattern�forming propensities so as to shape them to perform desired
computations� We then attempt to understand the behavior of the resulting CAs by applying
tools �such as the computational mechanics framework� formulated for analyzing pattern�
forming systems� which give us a high�level description of the computationally relevant parts
of the system�s behavior� In doing so� we begin to answer Wolfram�s last problem from

��



�Twenty problems in the theory of cellular automata� �Wolfram� 
����� �What higher�level
descriptions of information processing in cellular automata can be given��� and we believe
that this framework will be a basis for the �radically new approach� that Wolfram thinks
will be needed�

This approach is motivated in part by our interest in developing scienti
c tools for un�
derstanding how systems in nature perform computations� However� we also believe that
the best approach to engineering highly complex� massively parallel� and decentralized com�
puting systems will be to take advantage of the natural dynamics of such systems in the
same way that natural evolution takes advantage of the intrinsic dynamics of the systems
on which it operates�

While our work on evolving CAs with GAs is a highly simpli
ed example of this overall
approach� the GA�s discoveries of rules such as �par and of rules that produce global synchro�
nization is signi
cant� since these are the 
rst examples of a GA�s producing sophisticated
computation in decentralized� distributed systems� These discoveries are encouraging for the
prospect of using GAs to automatically evolve computation for more complex tasks �e�g��
image processing or image compression� and in more complex systems� these are the subjects
of current work by our group� Moreover� evolving CAs with GAs also gives us a tractable
framework in which to study the mechanisms by which an evolutionary process might create
complex coordinated behavior in natural decentralized distributed systems� For example�
we have already learned how the GA�s breaking of symmetries can lead to suboptimal com�
putational strategies �Mitchell� Crutch
eld� and Hraber� 
����� eventually we may be able
to use such models to test ways in which such symmetry breaking might occur in natural
evolution� In general� models such as ours can provide insights on how evolutionary processes
can discover structural properties of individuals that give rise to improved adaptation� In
our case� such structural properties�regular domains and particles�were identi
ed via the
computational mechanics framework� and allowed us to analyze the evolutionary emergence
of sophisticated computation�

�
 Conclusion

This review has only begun to describe the large literature on computation in cellular au�
tomata� and the even larger literature on decentralized parallel computation in general� Some
of the recent work on these topics is brought together in the Parcella proceedings �Handler�
Legendi� and Wolf� 
���� Legendi et al�� 
���� Wolf� Legendi� and Schendel� 
���� Wolf�
Legendi� and Schendel� 
���� Jesshope� Jossifov� and Wilhelmi� 
�����

Among the important topics that were left out are discussions of hardware implementions
of CAs �e�g�� To�oli and Margolus� 
����� reliable computation in CAs �e�g�� Gacs� 
����� a
larger discussion of analysis of CAs in terms of computation theory �e�g�� Wolfram� 
���b�
Nordahl� 
���� Moore� 
����� computation in more complex CA architectures� including
three�dimensional CAs �e�g�� Tsalides� Hicks� and York� 
����� CAs with real�valued states
�e�g�� Garzon and Botelho� 
����� and systolic arrays �e�g�� Kung� 
����� and the many
applications CAs and CA�like architectures have found in parallel computation�

The theory and applications of CAs and similar systems will likely attract increasing
interest as the capabilities for massive parallel computation expand and robust� decentralized�

��



and highly distributed systems become imperative� CAs and similar systems will also be
increasingly important as modeling tools� as scientists probe more deeply into the behavior
of natural systems composed of simple components with local communication and emergent
collective properties� I hope that this review will contribute to the increase of interest in
CAs and to the eventual understanding and wider application of such systems�
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