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Biomèdica de Barcelona (PRBB). Dr Aiguader 88, 08003 Barcelona, Spain
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Zipf’s law seems to be ubiquitous in human languages and appears to be a universal property of
complex communicating systems. Following the early proposal made by Zipf concerning the pres-
ence of a tension between the efforts of speaker and hearer in a communication system, we introduce
evolution by means of a variational approach to the problem based on Kullback’s Minimum Dis-
crimination of Information Principle. Therefore, using a formalism fully embedded in the framework
of information theory, we demonstrate that Zipf’s law is the only expected outcome of an evolving,
communicative system under a rigorous definition of the communicative tension described by Zipf.
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I. INTRODUCTION

Zipf’s law is one of the most common power laws found
in nature and society [1–6]. Although it was early ob-
served in the distribution of money income [7] and city
sizes, [1], it was popularized by the linguist George Kings-
ley Zipf, who observed that it accounts for the frequency
of words within written texts [2, 3]. Specifically, if we
rank all the occurrences of words in a text from the most
common to the least, Zipf’s law states that the probabil-
ity q(sm) that in a random trial we find the m-th most
common word (i = 1, ..., n) falls off as

q(sm) =
1
Z
m−γ ,

where,

Z =
∑
j≤n

j−γ ,

with γ ≈ 1. The ubiquity of this scaling behavior sug-
gested several mechanisms to account for the emergence
of this distribution, among many others, see [4, 8–12].

Within the context of human language, G. K. Zipf
early conjectured that this scaling law is the outcome
of a tension between two forces acting in a communica-
tion system [3]. Following Zipf’s proposal, speakers and
hearers need to simultaneously minimize their efforts, un-
der what he called Principle of Least Effort. Under this
view, a conflict would be present while trying to simul-
taneously minimize the efforts of both elements. The
speaker’s economy would favour a reduction of the size
of the vocabulary to a single word whereas the hearer’s
economy would do just the opposite, increasing the size
of a vocabulary to a point where there would be a dif-
ferent word for each meaning. The resulting vocabulary
would emerge out of this unification-diversification con-
flict [3]. Although both numerical and theoretical studies
have explored this idea [10, 11, 13] no truly analytic proof
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FIG. 1: A growing communication system. In (a) possible
meaning-signal associations made by the coder module P in
which eq. (2) holds is depicted. In (b) we summarize the
evolution rules of our communicative system. Suppose that
symmetry between coder and decoder -i.e., eq. (2)- holds for
the step n (above). At each step (below) a new element is
added to the set Ω and eq. (2) holds again for this new con-
figuration. Furthermore, the new configuration is constrained
by the MDIP , which introduces a path dependency in the
evolutionary process.

of unicity has been provided under realistic, information-
theoretic constraints. We will refer to the proposals made
in [10, 11, 13] as static for they consider a fixed size of
the code. As we shall see, we need another ingredient,
pointed out -in a different context- in [14], namely the
active role played by the evolutionary path followed by
the code. As it occurs with other systems growing out of
equilibrium, such as scale-free networks [15] we will con-
sider the evolution of the communicative exchange under
system’s growth.

Here the evolutionary component is variationally intro-
duced by minimizing the divergence between code config-
urations belonging to successive time steps. This minimal
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change follows the so-called Minimum Discrimination In-
formation Principle (henceforth MDIP ), a general vari-
ational principle considered analogous to the Maximum
Entropy Principle [16], from which statistical mechanics
can be properly formalized [17, 18]. The MDIP states
that, under changes in the constraints of the system, the
most expected probability distribution is the one mini-
mizing the Kullback-Leibler divergence (also referred as
to Kullback-Leibler entropy or relative entropy) from the
original one [17]. Such a variational principle constrains
the changes of the internal configurations of an statisti-
cal ensemble when the external conditions change in the
same way that internal configurations of an statistical
ensemble change when we introduce moment constraints
in a Jaynesian formalism. In our context, this informa-
tion theoretic functional assumes the role of a Lagrangian
whose minimization along the process defines the possi-
ble ensemble configurations one can observe at certain
point of an evolutionary path. Using the MDIP and re-
cent results from two of the authors on the convergence
properties of the entropy of growing stochastic objects
and its relation to the emergence of Zipf’s law [12], we
provide a proof of unicity for the emergence of Zipf’s law
in evolving codes.

The remainder of the paper is structured as follows:
In section II we rigorously define the communicative ten-
sion intuitively defined by Zipf and explicitly character-
ize the evolutionary process in terms of the mathematical
statement of such a tension. In section III we apply the
MDIP as the guiding, variational principle which ac-
counts for the possible evolutionary paths of the code.
Finally, we demonstrate that the consequences of the
application of both the communicative tension and the
MDIP account for the emergence of Zipf’s law as the
unique possible solution of the evolving code. In section
IV we discuss the implications of our results.

II. THE EVOLUTION OF THE
COMMUNICATIVE SYSTEM

In this section we mathematically define 1) the com-
municative tension described by Zipf and 2) the evolution
or growing of a given code subject to such a tension. We
furthermore define the range of application of our formal-
ism. As we shall see in section III, the proposal made in
this section defines a framework whose key piece to work
with is eq. (6).

A. The explicit description of the communicative
conflict

The first task is to properly define the communicative
tension between the coder and the decoder and how this
tension is solved. Following the standard nomenclature
used in studies of the evolution of communicating, au-
tonomous agents [19–21], in our system there are two

agents: the coder agent, P, encoding information from
a set of external events, Ω, and the decoder or external
observer, which infers the behavior of Ω through the code
provided by the coder agent P. In this way,

Ω = {m1, ...,mn}
is the set of external events acting as the input alphabet,
and

S = {s1, ..., sn}
is the set of signals or output alphabet. The coder mod-
ule P -fig. (1a)- is fully described by a matrix P(Xs|XΩ),
where XΩ is a random variable taking values on the set
Ω following the probability measure p; being p(mk) the
probability to have symbol mk as the input in a given
computation. Complementarily, Xs is a random variable
taking values on S and following the probability distri-
bution q which, for a given si ∈ S, reads:

q(si) =
∑
k≤n

p(mk)P(si|mk), (1)

i.e., the probability to obtain si as the output of a codi-
fication. We assume that

(∀mi ∈ Ω)
∑
i≤n

P(si|mk) = 1.

For the decoder agent inferring the input set from the
output set with least effort, the best scenario is a one-to-
one mapping between Ω and S. In this case, P generates
an unambiguous code, and no supplementary amount of
information to successfully reconstruct XΩ is required.
However, from the coding device perspective, this coding
has a high cost. In order to characterize this conflict,
let us properly formalize the above intuitive statement:
The decoder agent wants to reconstruct XΩ through the
intermediation of the coding performed by P. There-
fore, the amount of bits needed by the decoder of Xs to
unambiguously reconstruct XΩ is

H(XΩ, Xs).

From the codification process, the decoder receives
H(Xs) bits, and thus, the remaining uncertainty it must
face will be

H(XΩ, Xs)−H(Xs) = H(XΩ|Xs).

The tension between the coder and the decoder is solved
by imposing a symmetric balance between its associated
efforts -see fig. (1a)-, i.e.: The coder sends as many
bits as the additional bits the observer needs to perfectly
reconstruct XΩ:

H(Xs) = H(XΩ|Xs). (2)

The above ansatz is the mathematical formulation of the
symmetric balance between the efforts of the coder and
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the decoder. We will refer to this equation as the sym-
metry condition and, as pointed out in [11], it mathemat-
ically describes how the communicative tension is solved
by using a cooperative strategy between the coder and
the decoder agents. It is worth to note that different
equations sharing the same spirit were formerly proposed,
within the framework of the so-called code-length game
[10]. Using the fact that

I(XΩ : Xs) = I(Xs : XΩ),

we reach a general relation between the informative rich-
ness of the input variableXΩ and the informative richness
of the messages sent by the coder, constrained by eq. (2):

1
2
H(XΩ) ≤ H(Xs) ≤ H(XΩ). (3)

The first relation becomes equality only in the case of
P performing a deterministic codification process. The
second relation becomes equality when the coding device
performs completely random associations. It is clear that
eqs. (2) and (3) alone cannot explain the emergence of
Zipf’s law since one could tune the parameters of, say, an
exponential distribution to reach the desired relation be-
tween entropies. Therefore we need to introduce another
ingredient to obtain Zipf’s law as the unique possible so-
lution of our problem.

B. Evolution

The unicity in the solution is provided by the evolu-
tion, which is now explicitly introduced -see fig (1b). Let
us suppose that our communicative success grows over
time, thereby increasing the number of input symbols
that P can encode. Formally, this implies that the cardi-
nality of the set Ω defined above increases. We introduce
this feature by defining a sequence of Ω’s Ω(1), ...,Ω(k), ...
satisfying an inclusive ordering, i.e.,

Ω(1) ⊂ Ω(2) ⊂ ... ⊂ Ω(k), ...,

which is introduced, without any loss of generality, as-
suming that

Ω(1) = {m1},
Ω(2) = {m1,m2},
... ...

Ω(n− 1) = {m1, ...,mn−1},
Ω(n) = {m1, ...,mn−1,mn}.

At time step n, P will be able to process the n symbols
of Ω(n).The elements m1, ...,mi, ... are members of some
infinite, countable set Ω̃, i.e., (∀i)(Ω(i) ⊂ Ω̃). Ω̃ can
be understood, using a thermodynamical metaphor, as a
reservoir of information. Following the characterization,
we say that for every set Ω(i) there is a random vari-
able XΩ(i), taking values in Ω(i) following the ordered

probability distribution pi. Furthermore, we assume that
∃!µ ∈ (0, 1) such that (∀ε > 0)(∃N) : (∀n > N),∣∣∣∣H(XΩ(n))

log n
− µ

∣∣∣∣ < ε. (4)

i.e., that the entropy of the input set is unbounded when
its size increases, which implies that the potential input
set Ω̃ acts as an infinite reservoir of information. The
behavior of output set at the stage n is described by a
random variable Xs(n), which follows the ordered proba-
bility distribution qn, as defined in eq. (1), taking values
on S(n) = {s1, ..., sn}. We observe that S(n) ⊆ S(n+1),
defining a sequence S(1), ...,S(k), ... also ordered by in-
clusion. At every time step, the consequences of the sym-
metry condition -see eq. (2)- depicted in eq. (3) are
satisfied, which implies that the sequence

H = H(Xs(1)), H(Xs(2)), ...,H(Xs(k)), ...

also satisfies the convergence ansatz made over the se-
quence of normalized entropies of the input -see eq. (4).
The only difference is the value of the limit, ν. The value
of ν can be bounded by using eqs (3) and (4), thereby
obtaining:

1
2
µ ≤ ν ≤ µ (5)

Therefore, in this case, by virtue of eqs. (3), (4) and (5),
the convergence condition for the normalized entropies
of the sequence of random variables Xs(1), ..., Xs(n), ...
reads: ∃!ν ∈ ( 1

2µ, µ) such that (∀ε > 0)(∃N) : (∀n > N):∣∣∣∣H(Xs(n))
log n

− ν
∣∣∣∣ < ε. (6)

The above equation depicts two crucial facts in the forth-
coming derivations: If the potential informative richness
of the input set is unbounded, so is the informative rich-
ness of the output set, under the constraints imposed by
the symmetry condition -see eq. (2).

III. THE EMERGENCE OF ZIPF’S LAW
UNDER THE MDIP

The MDIP is presented in this section as the varia-
tional principle guiding the evolution of the code. As we
shall see at the end of this section, the consequences of its
application result in a proof of unicity for the emergence
of Zipf’s law in evolving codes.

A. The MIDP and its consequences for the
evolution of codes

The question is thus how the probability distribution
qn evolves along the growth process. Under the MDIP
we face a variational problem which is stated as follows:
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During the growth process, the most likely code at step
n+ 1 is the one minimizing the distance with respect to
the code at step n, consistently with the MDIP . Fur-
thermore, the evolution of the code must satisfy, along all
the evolutionary steps, the symmetry condition depicted
by eq. (2). The crucial contribution of the MDIP is
that it naturally introduces the footprints of the path
dependence imposed by evolution. Following the ther-
modynamical metaphor, this variational principle acts,
in our context, as a principle on energy minimization
acting over the transitions of successive codes. Putting
it formally, let

D(qn+1||qn) ≡
∑
i

qn+1n(si) log
qn+1(si)
qn(si)

be the Kullback-Leibler Divergence of the distribution
qn+1 with respect the distribution qn [22]. Therefore,
the MDIP is achieved by minimizing the following func-
tional [17]:

L(qn+1, λ) = D(qn+1||qn) + λ

 ∑
i≤n+1

qn+1(si)− 1

 .

We observe that this functional has a role equivalent
to the one attributed to the Lagrangian function in a
given continuous, differentiable system; therefore, the
trajectories minimizing it will govern the evolution of the
system. Furthermore, the symmetry condition on cod-
ing/decoding -eq. (2)- imposes that the solutions must
lie in the region defined by eq. (6). The minimum of L
is found when qn+1 satisfies:

qn+1(si) =
{
λqn(si) iff i ≤ n
1− λ iff i = n+ 1, (7)

being λ the Lagrange multiplier, which is a positive,
unique constant for all elements of the probability distri-
bution qn+1. We observe that, for λ = 1, D(qn||qn+1) =
0, but, in this case, H(Xs(n)) = H(Xs(n+1)), in contra-
diction to the assumption provided by eq. (6), according
to which informative richness grows during the evolution-
ary process.

Now we want to find the asymptotic behavior of
qn, n → ∞ under the above justified conditions (6) and
(7). The key feature we derive from the path dependency
in the evolution imposed by the MDIP is that the fol-
lowing quotient

(∀k + j ≤ n) f(k, k + j) =
qn(sk+j)
qn(sk)

(8)

does not depend on n. Therefore, along the evolutionary
process, as soon as

qn(sk), qn(sk+j) > 0,

f(k, k + j) remains invariant.

FIG. 2: Numerical simulation of the final distribution qn, (n =
104) obtained by constraining the growth process with i)the
consequences of the symmetry of coding/decoding -see eq.
(2)- provided by eq. (6) and ii) the application of the MDIP
at every step of the growth process. Different convergence
values are studied: a) ν = 0.2, b) ν = 0.3 and c) ν = 0.5.
The dashed lines are the best fit interpolations, which give
estimated exponents γ = 1.06, 1.04 and 1.01, respectively (all
with correlation coefficients r < −0.99).

B. The Emergence of Zipf’s Law

The asymptotic behavior of quotient f and, thus, the
tail of qn, is strongly constrained by the entropy restric-
tion provided by eq. (6) [12].

The first observation is that it can be shown that the
convergence properties of the Riemann ζ-function on R+

[23] strongly constrain the convergence properties of the
entropies of a given probability distribution [12]. Indeed,
we find that, if (∀δ > 0, n > m)(∃N) such that:

(∀m > N) f(m,m+ 1) <
(

m

m+ 1

)1+δ

,

then (∃C < ∞ ∈ R+) such that (∀n)(H(Xs(n)) < C),
which contradicts the assumptions of the problem, de-
picted by eq. (6). Indeed, primarily, one can observe
that the above statement implies that qn is dominated
by a power-law having exponent 1 + δ, i.e. that qn de-
cays faster than q′n, defined as:

q′n(si) =
i−(1+δ)

Z1+δ
,

where Z1+δ is the normalization constant. Now, we write
the explicit form of the entropy of X ′s(n) ∼ q′n -to be
written as H(X ′s(n))- when n→∞:

lim
n→∞

H(X ′s(n)) =
1 + δ

ζ(1 + δ)

∞∑
i=1

log i
i1+δ

+ log(ζ(1 + δ)).
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We observe that all the elements of the above equation
are finite constants, since

∞∑
i=1

log i
i1+δ

<∞.

Thus, having q′n as defined above,

lim
n→∞

H(X ′s(n)) <∞.

Therefore, during the growth process, due to the con-
straint imposed by eq. (6),

f(m,m+ 1) >
(

m

m+ 1

)(1+δ)

, (9)

with δ arbitrarily small, provided that n can increase
unboundedly. Otherwise,

H(Xs(n))
log n

→ 0,

in contradiction to the assumption that ν > 0 as depicted
in eq. (6).

Furthermore, we observe that, if (∀δ > 0, n > m)(∃N)
such that:

(∀m > N) f(m,m+ 1) >
(

m

m+ 1

)(1−δ)

(10)

then,

lim
n→∞

H(Xs(n))
log n

= 1,

again in contradiction to eq. (6), except in the extreme,
pathological case where ν = 1, when the coding pro-
cess is completely noisy. To see how we reach this latter
point we observe that statement (10) implies that qn is
not dominated by a power-law probability distribution q′n
having exponent 1− δ, namely:

q′n(si) =
i−(1+δ)

Z1−δ
,

where Z1−δ is the normalization constant. Putting ex-
plicitly the expression of the entropy for the random vari-
able X ′s(n), one obtains:

lim
n→∞

H(Xs(n))
log n

= lim
n→∞

δ(1− δ)
nδ log n

∑
k≤n

log k
k1−δ + δ


= lim

n→∞

1− δ
log n

(
log n− 1

δ

)
+ δ

= 1,

which is the desired result. Accordingly, since from eq.
(6) ν is generally different from 1,

f(m,m+ 1) <
(

m

m+ 1

)(1−δ)

. (11)

Thus, combining eq. (9) and (11), we have shown that
the asymptotic solution is bounded by the following chain
of inequalities:(

m

m+ 1

)(1+δ)

< f(m,m+ 1) <
(

m

m+ 1

)(1−δ)

.

The crucial step is that it can be shown that, if n→∞,
we can set

δ → 0.

(The mathematical technicalities of this result can be
found in [12].) This implies, in turn, that, for n� 1:

f(m,m+ 1) ≈ m

m+ 1

and, from the definition of f provided in eq. (8), we
conclude that

qn(sm) ∝ 1
m
,

thereby leading us to Zipf’s law as the unique asymptotic
solution.

In fig. (2) we numerically explored the behavior of
the rank probability distribution of signals belonging to
a growing code under the assumption of symmetry in
coding/decoding provided by eqs. (2) and (6), and the
MDIP whose consequences in the evolution of qn are
depicted in eq. (7). The outcome perfectly fits with
the mathematical derivations, showing very well-defined
power-laws with exponents close to 1 although the con-
vergence values ν diverge from 0.2 to 0.5. This numerical
validation shows that the predicted asymptotic effects -
i.e., the convergence of qn to Zipf’s law- are perfectly
appreciated even in finite simulations where 105 signals
are at work.

We end this section with a remark on the boundary
conditions needed for the emergence of Zipf’s law. In the
section II B, we imposed that the potential information
richness of the source must be unbounded. Such a con-
dition is mathematically stated by (4). We observe that,
more than an assumption, equation (4) is a boundary
condition under which a growing code can (assymptoti-
cally) exhibit Zipf’s law[26]. In this way, since H(Xs(n))
has a linear relation with H(XΩ(n)), the divergence of
the latter implies the divergence of the former. And it
is a required condition, since the entropy of a system
exhibiting a power law with an exponent equal to 1 di-
verges with n. Otherwise, exponents are higher, or other
probability distributions can emerge.

IV. DISCUSSION

The results provided in our study define a general ra-
tionale for the emergence of Zipf’s law in the abundance
of signals of evolving communication systems. The varia-
tional approach taken here as a formal picture of the least
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effort hypothesis has two ingredients. First, starting from
Zipf’s conjecture, we reach a static symmetry equation
to solve the communicative tension between coder and
decoder. This is consistent with previous work, but re-
veals itself insufficient to derive Zipf’s law as the unique
solution, for it is easy to check that static equations of
the kind of eq. (2) and (3) have infinite arbitrary so-
lutions, even in the asymptotic regime, due to the pos-
sible parametrizations of the solutions. Secondly -and
crucially- we consider that the code evolves through time,
and that, consistently, there is a path dependence in its
evolution, mathematically stated by imposing a varia-
tional principle, the MDIP , between successive states
of the code. It is only by imposing evolution (and thus,
path dependence) that we reach Zipf’s law as the only
asymptotic solution. Therefore, the origin of the power-
law with exponent γ = −1 derives from three comple-
mentary, very general conditions:

• The unbounded informative potential of the code,

• the loss of information resulting from the symmetry
condition, depicted in eq. (2), and

• evolution, and its associated path dependency, vari-
ationally imposed by the application of the MDIP
over successive states of the evolution of the system.

There is another, very interesting point, intimately tied
to a code exhibiting Zipf’s law and, more specially, the
consequences of the symmetry condition, the mathemati-
cal ansatz which abstractally encodes the Zipf’s hypoth-
esis of vocabulary balance: The presence of an inevitable
ambiguity in the code. It is a common observation that
natural languages are ambiguous, namely, that linguistic

utterances or parts of linguistic utterances can be as-
signed more than one interpretation. If the principle of
least effort is at work, and thus there is a cooperative
strategy between the coder and the decoder, then the
presence of a certain amount of ambiguity is expected,
provided that the speaker tends to assign more than one
meaning to certain signals. Therefore, ambiguity is a
byproduct of efficient communication rather than a fin-
gerprint of poor communicative design.

The presented framework is general, and rigorously
demonstrates that Zipf’s law is a natural outcome of
a broad class of communication systems evolving under
coding/decoding tensions. In other words, Zipf’s law
emerges in a system where the coder and decoder coe-
volve under a general problem of energy minimization.
The range of application to real-world phenomena, how-
ever, must be contrasted with the validity of data, for
it has been pointed out that many supposed power-law
behaviors show deviations when the statistical analysis is
performed accurately [24, 25]. It should be noted, how-
ever, that a deviation of the predicted behavior need not
be necessarily attributed to a fail of the framework. One
should take into account that other constraints, such as
general memory limitations, can play a role in shaping
the final distribution.
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011102 (2010).
[13] P. Vogt, in Artificial Life IX Proceedings of the Ninth

International Conference on the Simulation and Synthe-

sis of Living Systems, edited by I. J. Pollack, M. Bedau,
P. Husbands, T. Ikegami, and R. A. Watson (MIT Press,
2004).

[14] T. Maillart, D. Sornette, S. Spaeth, and G. von Krogh,
Phys. Rev. Lett. 101, 218701 (2008).

[15] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of
Networks (Oxford University Press. New York, 2003).

[16] E. T. Jaynes, Physical Review 106, 620 (1957).
[17] S. Kullback, Information Theory and Statistics (John

Wiley and Sons. New York, 1959).
[18] A. R. Plastino, H. G. Miller, and A. Plastino, Phys. Rev.

E 56, 3927 (1997).
[19] J. Hurford, Lingua 77, 187 (1989).
[20] M. A. Nowak and D. Krakauer, Proc. Nat. Acad. Sci.

USA 96, 8028 (1999).
[21] N. L. Komarova and P. Niyogi, Art. Int. 154, 1 (2004).
[22] T. M. Cover and J. A. Thomas, Elements of Information

Theory (John Wiley and Sons. New York, 1991).
[23] M. Abramowitz and S. I. (editors), Handbook of mathe-

matical functions, vol. 55 of NBS, Appl. Math. Ser. (U.S.
Government Printing office, Washington, D.C., 1965).

[24] I. Kanter and D. A. Kessler, Phys. Rev. Lett. 74, 4559
(1995).



7

[25] D. Avnir, O. Biham, D. Lidar, and O. Malcai, Science
279, 39 (1998).

[26] We notice that eq. (4) depicts a linear relation between
H(XΩ(n)) and logn; i.e.: H(XΩ(n)) ∼ µ logn. There are
strong reasons to believe that one could generalize this
statement by saying that the only condition needed is
that, in spite that

lim
n→∞

H(XΩ(n))

logn
= 0,

if H(XΩ(n)) is a monotonous, growing and unbounded
function on n, then Zipf’s law would emerge using similar
arguments to the ones used in this paper. The lack of a
rigorous demonstration for this latter point forces us to
restrict our arguments to the region of application of eq.
(4).


