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Abstract

This paper looks at an N�person coordination game which is called by Brian Arthur as the

bar problem� We look at the mixed strategy equilibria and show that there is a unique purely

mixed strategy equilibrium in which all players play non�degenerated mixed strategies� We also

examine some simple dynamics that might evolve the system to that equilibrium by conducting

some preliminary numerical experiments� The results show that under usual initial conditions

the system will converge to the unique mixed strategy equilibrium�

�This paper summarizes the project I did during the ���� Santa Fe Institute Computational Economics Workshop�
Special thanks to the organizers of the Workshop� John Miller and Scott Page� I also wish to thank fellow workshop
participants� especially Nick Feltovich and Jordan Rapporport� for their very helpful comments and suggestions�



� Introduction

Brian Arthur��� used a very simple yet interesting problem to illustrate e�ective uses of inductive
reasoning as well as computational methods in economics research� Our interest here is to examine
Arthur�s example �called by Arthur as the Bar Problem� from a di�erent angle�

There is a bar called El Farol in downtown Santa Fe� There are n agents interested in going to
the bar each night� All agents have identical preferences� Each of them will enjoy the night at El
Farol very much if there are no more than m agents in the bar	 however
 each of them will su�er
miserably if there are more than m agents� In Arthur�s example
 the total number of agents is
���
 and the threshold number m  ��� The only information available to agents is the number of
visitors to the bar in previous nights� The payo�s would be � for each agent who made the right
choice at any particular night �i�e�
 go to the bar when the total number of agents going is less than
or equal to m
 or staying at home if the total attendance turns out to be more than m�	 for those
made the wrong choice
 the payo� would be �� We call this the BP game�

Arthur investigated the number of agents attending the bar over time by using a diverse pop�
ulation of simple rule based agents� One interesting result he obtained is that over time
 the
average attendance of the bar is about ���� Arthur examined the dynamic driving force behind
this �equilibrium�
 but he did not give a precise mathematical explanation in his paper�

Our interest here is the mixed�strategy equilibria in this coordination game
 and the possible
dynamic processes that could lead to such equilibria� I will characterize some preliminary results
in the following sections� I shall start with some theoretical analysis and discuss some computer
experiments we have conducted��

� The BP game and its equilibria

The bar problem is in the essence a N�agent coordination game in which each agent has two possible
pure strategies�

We are all familiar with the � � � coordination game with symmetric payo�s�� There are two
pure strategy Nash equilibria and one mixed strategy Nash equilibrium�

As the number of players go up in this symmetric pure coordination game
 the number of pure
strategy equilibria goes up quickly� In the Bar Problem
 the number of pure strategy Nash equilibria
is Cm

n 
 which is the possible number of ways to pick m out of n agents�

��� Strategic complementarity

The BP game is in fact a game with strategic complementarity
 using the de�nition in Milgrom and
Shannon���� It is straightforward to check that this game with its payo� structure satis�ed the so
called �single crossing property� and some other related conditions
 and therefore has the desired
strategic complementarity� �For the de�nition of �single crossing property�
 see �����

In Milgrom and Roberts���
 it is shown as a theorem that in any adaptive and sophisticated
learning process �as de�ned in their paper� associated with a normal form game
 the strategies of
players will eventually stay in a region� de�ned by the set of pure strategy Nash equilibria of that
underlying normal form game
 provided that the game is one with strategic complementarity�

�Arthur did point out in his paper that this could be explained as each agents playing a mixed strategy�
�All results presented in this paper were obtained while attending the Santa Fe workshop�
�We restrict attention to games with symmetric payo�s in this paper�
�The size of the region is the key�
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While this provides powerful insights and results for learning and dynamic processes in some
games
 it doesn�t tell us much about the BP game� Because there are so many pure strategy Nash
equilibria in the BP game
 the target region �see Milgrom and Roberts��� for the precise de�nition�
de�ned by the pure strategy Nash equilibria is in fact the whole strategy space� Hence the theorem
mentioned above by Milgrom and Roberts wouldn�t help too much in the BP game�

��� Mixed strategy equilibria

We discuss the number of mixed strategy Nash equilibria in the BP game�
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If in a mixed strategy equilibrium
 all players are choosing the same �mixing�
 then we call it
a symmetric mixed strategy equilibrium� As to the number of mixed strategy equilibria in the BP
game
 we have the following result�

Proposition � The number of symmetric mixed strategy equilibrium in the bar problem is one�

�strictly speaking� this should be lim��� F �m�n� �	 
 ��

�



Proof� � Let us consider the situation with a total number of agents being n and the threshold

number being m� assuming n � m�

In a symmetric equilibrium� all agents choose the same probability of going to the bar� which we

denote as ��

In such a situation� we must have the following condition which says that each agent is indi�erent

between going and staying�
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The left hand side is the payo� of an agent if it chooses to go� the right hand side is its payo�

if it chooses to stay�

Notice that the sum of both sides is exactly one� Therefore we know�
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Since F �m�n� �� is a continuous function in �� and F� � �� F �m�n� ��  �

�
has a unique

solution� Hence the number of symmetric mixed strategy equilibrium is one�

The next result goes a little further�

Proposition � In a mixed strategy equilibrium of the BP game� if no agent plays pure strategy�

then all agents must play the same mixed strategy�

Proof� � We take advantage of the fact that there are only two pure strategies available to each

agent�

If there are two agents using di�erent strategies in a mixed strategy equilibrium� we can denote

them as agent � and �� and their probability of going to the bar as �� and ��� It must be that

�� � ���

Let us use T to denote the group of all players other than players � and ��

Since player � is using a mixed strategy� it must be that the probability of more than m�� players
show up� given T and ��� equals

�

�
� Since it has to be true that both events of more than m � �

agents show up and no more than m� � agents show up are equally likely� given the strategies of T

and player ��

Likewise� player � is also using a mixed strategy� It follows that the probability of more than

m�� players show up� given T and ��� equals
�

�
� Since it has to be true that both events of more

than m � � agents show up and no more than m � � agents show up are equally likely� given the

strategies of T and player ��

Since all agents decide independently in a mixed strategy equilibrium� and �� � ��� the conclu�

sion of the above two paragraphs cannot both be true� For example� if �� � ��� and the probability

of more than m�� players show up equals �

�
� given T and �� 	� then it is impossible to have the

probability of more than m�� players show up� given T and ��� also equals �

�
� Notice that agents

only have two available pure strategies�
This contradiction tells us that in an equilibrium where all agents play mixed strategies� they

must be playing the same mixed strategy�

Combining the previous two propositions
 we know that there is a unique equilibrium in the BP
game in which all players play �the same� non�degenerated mixed strategy�
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� Agents with mixed strategy

Since we know that the BP game has only one mixed strategy equilibrium �MNE� and many pure
strategy equilibria �PNE�
 it is natural to conjecture that the unique MNE is a focal point of the
game�

In particular
 we are interested to see if any population of agents playing mixed strategies facing
selection pressure will evolve to the state in which all agents play the MNE strategy� The reasons
that we are interested in agents using mixed strategy are summarized as the following�

�� No agent can commit to any single pure strategy
 especially when dealing with a large popu�
lation� �More di�cult to achieve coordination as the number of agents increase��

�� Agents could appear to be using mixed strategies�

�� Reasonable agents might believe their own analysis only to some degree
 thus might some
doubts about their own prediction� Mixed strategy captures this degree of doubt
 with pure
strategies as the limiting beliefs�

�� The use of behavioral mixed strategy
 at least to some people
 seems reasonable when agents
have to make decisions under uncertainty�

�� The use of mixed strategy in the BP game seems no more unreasonable than the use of
 say

the use of myopic optimization in evolutionary games�

We used some computational experiments to investigate whether agents playing mixed strategies
will end up in the MNE�

� Computational experiments

��� The set up

We� conducted some numerical experiments with ��� agents
 each of them are restrict to select a
mixed strategy from the interval of ��� ��� The threshold number is set to be ���

Agents are randomly assigned a number from ��� �� as their initial strategy
 which is just the
probability of going to the bar� Let�s denote this number as �i for agent i� These are the initial
conditions of our experiments�

Then
 in each round
 agents decide whether they want to go to the bar by drawing a number
randomly from ��� ��
 and compare this number with their ��s� If �i is larger than the number agent
i drew
 it would decide to go to the bar	 if not
 it would choose to stay�

In each round
 each agent would receive a score of � if it made the right choice and � if it made
the wrong choice� Whether their choices are right or wrong depends on the threshold value
 other
agents� choices
 and their own choices�

Each generation of agents can live for �� periods�	 At the end of each generation
 all agents are
ranked by their accumulative score�

�I am grateful to David Kane� Micheal Herron� and other fellow participants in the Santa Fe workshop for helping
me with important computational issues�

��� is an arbitrary choice and can be changed to other numbers�
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The selection procedure we used in our experiments is very simple� take the top �� percent
 of
agents and eliminate the rest� We duplicate each of the surviving agent to get a new group of ���
agents�

The next step is to allow mutation in agent�s strategy� It is done by �rst choosing a random
number from the interval ��b��b�
 where b is randomly chosen from � to ����� Then add this
number to the number that representing the current strategy of an agent
 with the restriction that
all strategies have to remain in the interval ��� ��� Now we have a new generation of ��� agents��

In each of our experiment
 we ran this set up for a large number of generations to obtain the
�nal outcome�

��� The results

The preliminary experiments we ran involved either ���� or ���� ��� generations�
The outcomes for the experiments with ���� ��� generations indicate that the �nal strategies

of agents are within some tolerance of the MNE strategy
 regardless of the initial condition of the
experiments �i�e�
 the distribution of the initial strategies of the agents��

The outcomes for the experiments with ���� generations indicate some sign of convergence�
Instead of collapsing into a region around the MNE strategy
 the �nal strategies of agents often �in
most cases� have two �accumulation� points�

� Conclusion and further research directions

Systematic experiments are yet to be conducted to gain more insights and results about the tran�
sition to the mixed strategy equilibrium�

The results of the preliminary experiments indicates that the unique mixed strategy Nash
equilibrium is an attraction point for agents playing the BP game� The uniqueness plays an
important role here�

Some of the experimental set�up could be modi�ed
 and suggestions have been made to incor�
porate random mutation steps and more variations of the initial conditions�

There are many important issues this paper chose not to explore
 some of them could generate
further interesting results� These issues include�

� Incorporate the possibility that agents� actions are correlated by some public signal�

� Incorporate more systematic learning into agents� strategy�

� Have a population of heterogeneous agents�

� Consider more complex stage games� In particular
 consider games where agents have more
than � possible pure strategies and�or games with asymmetric payo�s�

	we also experimented with other non�trivial �neither � nor �	 percentages� and the result are qualitatively the
same�


There could be many other ways to apply a selection pressure on the agent population� but our experiments
conducted were restricted in using only the method mentioned above�
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