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Abstract. We study how different social learning strategies, composed
of cognitively plausible rules that guide information search, stopping
search and decision making, affect population-level performance in a
collective problem-solving task. We show that different social learning
strategies lead to remarkably different outcomes and demonstrate how
these outcomes are affected by the communication networks agents are
embedded in. We argue that understanding how communication net-
works affect collective performance requires taking into consideration
the individual strategies used by agents. To illustrate this point we show
how our findings can reconcile contradictory results in the literature on
network structure and collective problem solving.
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1 Introduction

The trade-off between exploration and exploitation lies at the heart of many
problems faced by individuals, groups and organizations, who often need to
decide whether to search for new, potentially better solutions (e.g., a technology,
social institution, or a business strategy) or keep using an existing solution that
works well [1, 2, 3, 4]. The right balance between exploration - searching for
superior novel solutions - and exploitation - reaping benefits of existing solutions
- is thought to be essential for adaptive behavior in humans and animals alike
[5, 3, 4].

When individuals interact through social learning, (e.g., when solving prob-
lems collectively), this trade-off is manifested in the balance between innovation
through individual learning from the environment and the imitation of existing
solutions in the population [6, 7, 8, 9, 10]. Innovation (exploration) is essential
both for tracking changes in the environment and for introducing novelty in the
population, while imitation (exploitation) serves the purpose of diffusing good
solutions in order to increase individual and group-level performance [11].



How do different social learning strategies affect behavior and performance
in collective problem solving and how do these strategies interact with the social
or organizational network in which learning takes place?

We address these two questions by modeling different social learning strate-
gies as algorithms composed of three cognitively plausible building blocks, previ-
ously studied in the literature on adaptive individual cognition: rules that guide
information search, stopping search and making a decision [12]. We study how
agents using different strategies perform in simple and complex tasks, while em-
bedded in social networks varying in structural properties that are known to
affect the ease of information flow in communities [13, 14].

How network structure affects collective performance has been a long-standing
interest of scholars of organizational behavior [15, 6, 16, 13, 14]. However, the
answers that have emerged are somewhat contradictory. A number of studies
have found that network structures that promote slower information diffusion
(typically those that are less well connected) enhance collective performance in
multi-peaked problem spaces, because they lead to higher levels of exploration
and increase the chance of finding better solutions [6, 13, 17]. A recent study,
focusing on the same problem, came to the opposite conclusion, finding that
networks promoting faster information flow (typically those that are well con-
nected) lead to better performance [14]. We argue that answering the question
of how network structure affects performance requires studying how it interacts
with the social learning strategies used by individuals.

We make two contributions. First, we demonstrate how the building blocks
of social learning strategies can lead to strikingly different levels of performance.
Second, we clarify and reconcile seemingly contradictory results in the literature
by showing how social learning strategies and network structure interact to affect
collective performance.

2 Modeling collective problem solving

We conceptualize collective problem solving as a task involving a group of agents
repeatedly searching for solutions that improve individual and group-level perfor-
mance. We follow several authors in modeling this problem as search on rugged
landscapes [13, 14]. Each potential solution on the landscape consists of a number
of components that are interdependent. Changing one component in a solution
can affect the payoff-contribution of other components and, as a result, search on
such landscapes is a form of combinatorial optimization. The main difficulty en-
countered when searching such landscapes is the presence of several local optima
(solutions from which it is difficult or impossible to find better solutions). As
a result, collectives face the challenge of finding good solutions without getting
stuck on local optima.

Problem-solvers can engage in two primary activities: exploration through
individual search or exploitation of known solutions via social learning. These
two activities are complementary and require the right balance to achieve good
performance.



Different network structures and social learning strategies can both affect
the balance of exploration and exploitation in the population. Networks and
social learning strategies that are fast at diffusing information both enable higher
levels of exploitation at the expense of exploration. The opposite effect holds for
networks and strategies that are slower at diffusing information. How different
social learning strategies embedded in different network structures affect the
balance of exploration and exploitation in the population is, therefore, crucial
for understanding the factors determining collective performance.

2.1 Problem space

To design the problem space we use the NK model [18], which is a ”tunably
rugged” landscape denoted by N , the number of components that make up each
solution, and K, the number of interdependencies between these components.
N and K together determine the structure of the problem space where different
solutions in the space have different payoffs. Consider a technology composed
of different parts or an organization with different departmental configurations.
Identifying a way to improve a technology or an organization’s configuration
depends both on its components and on the interdependencies between the com-
ponents. For example, changing one component (e.g., increasing the number of
departments in an organization) is likely to also have an impact on other com-
ponents of the organization, and as a result, whether this change will increase
overall performance depends on whether it also has a positive effect on the other
components with which it interacts.

Depending on the number of interdependent components K, the landscape
can be dominated either by a single global optimum (K = 0) in which case the
payoffs of nearby solutions are highly correlated and local search is highly effec-
tive; by multiple local optima (0 < K < N), where payoffs of nearby solutions
can have very different payoffs; or by almost completely uncorrelated landscapes
where the payoffs obtained by local search become very similar to a random walk
(K = N − 1).

To construct the environment we represent each solution in the environment
by an N -length vector composed of binary strings, leading to a total of 2N pos-
sible solutions in the problem space. The payoff of each solution is calculated
as the average of the payoff contributions of each element. The payoff contri-
bution of each element is a random number drawn from a uniform distribution
between 0 and 1. In the case of K = 0, a simple average of the N elements
is taken: (1/N)

∑N
i=1 Ni, whereas with K > 1, individual payoff contributions

are determined by values of the K − 1 other, interdependent elements, that is,
f(Ni | Ni, Ni+1, ..., NK), where f() is the payoff function and the total payoff

is (1/N)
∑N

i=1 f(Ni | Ni, Ni+1, ..., NK). In other words, when K = 0, changing
any single element of the solution will affect only the contribution of that ele-
ment, whereas when K > 0, changing a single element will change the payoff
contribution of the K − 1 other elements. When K = 0, exploration of solutions
through the modification of single components can prove effective, but as K in-
creases, local exploration becomes less and less effective [5]. Figure 1 displays a



simplified illustration of environments that vary in ruggedness. Panel A shows a
simple environment where only one unique optimum exists and it is possible to
reach this optimum by gradually modifying digits in one’s solution. In contrast,
Panel B shows a situation where several local optima exist, which means that
agents can get stuck in a local optima and be unable to reach higher payoffs via
local search.

We explore landscapes with N = 15 and K = [0, 2, 4, 6, 7, 8, 10, 12, 14]. Our
choices for values of N and K are representative of the literature. Following sev-
eral authors, we normalize the payoffs of different solutions by dividing them by
the maximum obtainable payoff on a landscape PNorm = Pi/max(P ) [13, 19].
The distribution of normalized payoffs tends to follow a normal distribution with
decreasing variance as K increases. This implies that most solutions tend to clus-
ter around very similar payoff values. Following [13] we use a monotonic transfor-
mation (PNorm)8 to widen the distribution, making most solutions ”mediocre”
and only a few solutions ”very good”. This assumption does not change any of
the results.

Fig. 1. Simplified illustration of the two environments studied. A: Simple
environment with a single global optimum. B: Complex environment with multiple
local optima and a global optimum. In the simple environment solutions one-digit
apart from each other have very similar payoffs, so modifying single digits in a solution
will eventually lead to the global optimum. In the complex environment payoffs of
nearby solutions can be very different, so search by single digit modification can lead
to local optima from which it is impossible to improve and, as a result, to find the
global optimum.

We focus on two different problem spaces, a simple one with a single optimum
(N = 15, K = 0) and a complex one with several local optima (N = 15, K = 7),
but we have also tested several other values of K.



2.2 Social learning strategies

We focus on three frequently studied social learning strategies, namely: (1) best
member rule [20], (2) majority/plurality rule (hereafter conformity) [21] and (3)
random copying rule [10]. We formalize these strategies as algorithms composed
of three basic cognitive building blocks: rules that guide information search,
stopping search and making a decision [12];

(i) Search rule: all agents search randomly among the population of other
agents.

(ii) Stopping rule: agents stop searching after looking up the solutions of s
other individuals. We focused on two sample sizes: agents stop after collecting
either a relatively small (s = 3) or a relatively large (s = 9) sample size.

(iii) Decision rule: agents either select the best performing agent (best mem-
ber); select the most frequent solution (conformity ; in case each solution is
equally frequent, switch to individual learning); or select a random agent (ran-
dom copying).

The combination of these rules produce five social learning strategies: best
member with small and large samples, conformity with small and large samples,
and random copying. Note that sample size does not affect the performance of
the last strategy, so we study only one version that samples a single random
individual.

As a benchmark, to see whether collective search improves performance over
and above pure individual learning, we also consider a pure individual learning
strategy, where agents explore possible solutions by randomly changing one digit
in their current solution, but never copy other agents (see section on Simulation
procedure for further details).

2.3 Network structure

We study a large number of networks that vary in several structural properties
that have been proposed in the literature and have been found to affect collec-
tive problem solving. We consider a fully connected network where each agent is
connected to every other agent in the population and eight additional network
structures that were studied by [14]. Each of these eight networks maximize or
minimize a specific loss function that corresponds to a specific network mea-
sure. The loss function that was minimized for each network is indicated by the
network topology in Table 1. The obtained networks cover a broad spectrum of
possible structures and the networks that were used in [13] and [14], the two
studies that reached incompatible results. All networks have N = 100 nodes and
a fixed degree of d = 19, except for the fully connected network where d = N .
Table 1 shows the properties of each network. These different networks vary
in several structural properties that have been previously shown to affect the
speed of information flow. The top five networks are well connected and efficient
at spreading information, while the bottom four networks are less well connected
and hence less efficient at spreading information.



Table 1. Properties of the networks studied

Topology Radius Diameter Closeness Betweenness Clustering Constraint

Fully connected 1 1 1 1 1 1
Max max closeness 2 3 0.55 0.01 0.18 0.07
Min max closeness 2 3 0.55 0.01 0.18 0.07
Min mean betweenness 2 3 0.55 0.01 0.18 0.07
Min mean clustering 2 3 0.55 0.01 0.02 0.05
Max max betweenness 2 4 0.38 0.02 0.67 0.14
Max mean clustering 3 4 0.46 0.01 0.59 0.13
Max mean betweenness 4 7 0.35 0.02 0.56 0.13
Max var constraint 5 4 0.45 0.01 0.36 0.10

2.4 Simulation procedure

We simulated 100 agents. Agents searched the space of possible N -digit solutions
in a given social network by modifying single digits in their current solutions in
order to improve their performance. Agents by default engaged in social learning
(exploitation) and switched to innovation (exploration) if the former did not
prove successful. Specifically, on each time step agents went through the following
steps:

(1) Implement social learning strategy composed of three building blocks:
(i) Search rule: search randomly among the population
(ii) Stopping rule: stop searching after looking up the solutions of s other

individuals. In different simulations, all agents use one of two sample sizes: either
a relatively small (s=3) or relatively large (s=9) sample size

(iii) Decision rule: in different simulations all agents either select the best
performing agent (best member); select the most frequent solution (conformity)3;
or select a random agent (random copying).

(2) Observe whether the solution identified via social learning produces a
higher payoff than the current solution. If yes, switch to the alternative solution;
otherwise go to Step 3.

(3) Engage in exploration by modifying a single digit in the current solution
and observe whether it produces a higher payoff than the current solution. If
yes, switch to the alternative solution; otherwise keep the current solution.

As a benchmark, in some simulations agents did not use social learning strate-
gies but solely an individual learning strategy consisting of Step 3 above.

Steps (1)-(3) determine the complete strategy of an agent. It can be seen that
the decision whether to explore through individual learning (step 3) or exploit
through social learning (step 1) depends on whether social learning proves suc-
cessful. As a result, reliance on exploration versus exploitation emerges naturally
depending on the usefulness of social learning.

We iterate this procedure for t = 200 time steps and record the average payoff
in the population on each time step separately for each combination of strategy,

3 This implies selecting the majority/plurality solution in the sample. In case each
solution is equally frequent, switch to individual learning.



network structure and problem space. Results reported are averaged across 1000
different draws of NK environments with the same parameters N and K.

3 Results

3.1 Performance of different social learning strategies

First we focus on the performance of different social learning strategies in a fully
connected network in the absence of any structural properties. Figure 2 shows
the average payoff achieved by each strategy over time for two different problem
spaces: a simple one with a single optimum (N = 15,K = 0, left panel) and a
complex one with several local optima and a global maxima (N = 15,K = 7,
right panel). Table 2 summarizes results for all other values of K. Notice that
the results are qualitatively the same for all values of K > 0.

Performance on simple problem spaces. In the simple problem space
(where K = 0) all strategies eventually find the global optimum, however, strate-
gies differ in the time it takes populations to converge (left panel of Figure 2).
The best member strategies lead to the fastest convergence, followed by con-
formity and random copying. Since the simple problem space is dominated by
only one optimum, the tension between exploration and exploitation is not so
pronounced since eventually every individual will end up with the same solution.

Performance on complex problem spaces. The right panel of Figure 2
shows two striking results. First, the conformity strategy relying on small sam-
ples converges to the highest long-run outcomes, outperforming the best member
strategies by a large margin. Second, the small-sample version of the conformity
strategy outperforms the large-sample version.

In complex problem spaces (where K > 0), identifying good solutions is
not straightforward since the space is dominated by several local optima. Here,
best member strategies reach the highest short-run outcomes, but they quickly
drive the whole population toward locally optimal solutions, from which point
individual exploration is no longer able to find better solutions. As a result the
whole population gets stuck in an inferior state. Compared to best member, the
conformity strategies converge more slowly and, therefore, lead to higher levels
of exploration in the population.

While the large-sample version of the conformity strategy performs poorly,
the small-sample version converges to the highest long-run outcomes, outper-
forming the best member strategies by a large margin. The underlying reason is
that the conformity strategy is less efficient at finding a good solution, leading to
more exploration of the problem space. In addition, the small-sample version of
conformity is able to diffuse good solutions that are discovered later-on, because
its relatively large sampling error makes it more likely that good solutions identi-
fied by only a few individuals in the population will appear as the most frequent
solution in an individual sample. This allows infrequent but superior solutions
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N=15, K=7 

Best member (s=3) Best member (s=9) Conformity (s=3) Conformity (s=9) Random copying Individual learning

Fig. 2. Performance over time for different strategies in a fully connected
network. N denotes the number of components of the system and K represents the
number of interactions between the components; s stands for sample size. Left: simple
environment with a global optimum, Right: complex environment with multiple local
optima.

discovered later on to diffuse through the population (see also [22]). In the long
run the small-sample version of conformity is able to reach the highest outcomes,
as the group is able to search extensively as well as to converge on high fitness
solutions over time. In contrast, the smaller sampling error of the large-sample
version of conformity makes this strategy unable to diffuse infrequent but useful
information and leads to poor performance.

That the superiority of the small-sample conformity strategy does not stem
purely from the fact that it makes individuals explore individually when so-
cial learning cannot identify good solution can be seen from the fact that it
outperforms two simple benchmarks, namely pure individual learning and ran-
dom copying. This pattern of results was replicated in all complex landscapes
(N > K > 0, see Table 2).

Random copying, like best member, engages in high levels of exploitation in
the beginning and drives agents to several locally optimal solutions. However,
since this decision rule is not biased towards any criteria related to success (e.g.
best option, most frequent option) it is not able to drive the population to good
solutions.

Finally, all social learning strategies outperformed pure individual learning,
replicating the finding that collectives outperform individuals in this task [13,
14, 23].

Taken together, these results indicate that different social learning strate-
gies lead to different patterns of explorative and exploitative behavior over time.
Strategies such as the best member rule lead to high levels of exploitation and



drive the population toward local optima. Other strategies such as the confor-
mity rule promote higher levels of exploration and enable the population to find
higher-payoff solutions. The extent to which different strategies prove useful also
depend crucially on their building blocks (search, stopping and decision rules).

Since different strategies can achieve remarkably different performance within
the same network, it is important to study how this difference plays out and
interacts with with other network structures that are also known to affect per-
formance through exploration and exploitation [13, 14].

3.2 Interaction of network structure and decision strategy

We now proceed to the question of how network structure and decision strategies
interact. We investigate how strategies perform in different networks, and what
determines the superiority of well or less well connected networks. We verify
our conclusions above in more realistic network structures, and reconcile two
contradictory results in the literature. Lazer and Friedman [13] use an agent-
based simulation to compare a fully connected network to a locally connected
lattice and found that the locally connected network outperformed the fully
connected network in the long run. This result implies that networks that lead
to slower information spread lead to better outcomes. In contrast, Mason and
Watts [14] report a behavioral experiment with eight different networks (see
Table 1). They find that networks that are faster at spreading information in
the population outperform slower networks. What is driving this difference in
results? Given the computational nature of the study by Lazer and Friedman
[13] we know the exact strategy their agents relied on: the best member rule
with a sample size of two. However, given the data available we cannot tell what
strategies participants used in the study of Mason & Watts [14].

Here we show that both results can be obtained depending on the social
learning strategies that agents use in a given network. To demonstrate this point
we re-run the study reported in the previous section in all networks reported in
Table 1. We focus on the two best performing social learning strategies, the best
member and conformity strategies with small samples.

We focus on the eight different networks studied by [14]. As in our previous
simulations, we set N = 100 and d = 19 (these networks have the same degree
to node ratio as in the study of [14]).

Figure 3 shows the average payoff achieved by groups in different networks.
The left panel shows the average performance of the eight networks when agents
rely on the best member rule, while the right panel shows the same performance
when agents rely on the conformity rule. Results in the left panel replicate the
findings of [13] who find that less well connected networks outperform better
connected ones, while results in the right panel replicate the findings of [14] who
report the opposite result. By comparing the two panels we can also see that the
conformity strategy outperforms the best member strategy in each network.

Our findings demonstrate that both types of networks can lead to superior
performance depending on the social learning strategies used by individuals in
the group. The underlying explanation is the following. Network structure and



social learning strategies both affect the levels of exploration and exploitation
in the population. If both strategy and network promote high levels each of the
two behaviors, performance is likely to drop, however, if network and strategy
promote opposite effects, performance is likely to rise.
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Networks using conformity rule 

● maxmaxbetweenness maxmeanclustering maxmeanbetweenness maxvarconstraint maxmaxcloseness minmaxcloseness minmeanbetweenness minmeanclustering

Fig. 3. Collective performance on networks using when agents use the best
member rule (left panel) and the conformity rule (right panel). Well connected
networks are marked in red and less well connected networks in blue. The left panel
replicates the findings from Lazer & Friedman (2007)[13] while the right panel replicates
the findings of Mason & Watts (2012)[14]

3.3 Sensitivity Analyses

We perform two sensitivity checks. First, we study how our main results are
affected by environmental turbulence and second, we study the best sample size
for the best member and conformity strategies. For both checks we use the fully
connected network.

Changing task environments. We model two types of environmental change.
In the first case we completely regenerate the NK landscape half-way through
the simulation, forcing agents to re-learn everything that was adaptive in the
past. This represents an environment that changes rarely but drastically (for an
example see [24]). In the second case we redraw the fitness contribution of a
randomly selected single digit in the solution space every 40th time step. This
represents a more frequent, but less drastic change. From Figures 4 we conclude
that environmental change does not alter our main conclusions.

Best sample size. We focus on identifying the best sample size for the best
member and conformity strategies, sample size has no effect on random copying.
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Fig. 4. Performance over time for different strategies in changing environ-
ments.Left panel: Rare but drastic environmental change. Right panel: Fre-
quent but less drastic environmental change.

For the best member strategy the best sample size turns out to be s = 2, how-
ever, the difference between different sample sizes is relatively small4. Therefore
we choose to keep sample size of s = 3 in the main text to make it directly
comparable to the conformity strategy that also uses a sample size of s = 3. For
conformity the best sample size is s = 3.

4 Discussion

We studied how social learning strategies affect collective performance in differ-
ent social network structures and under varying levels of task complexity.

We modeled strategies as algorithms composed of three cognitively plausible
building blocks - that is, rules that guide search, stopping search, and mak-
ing a decision - and studied how these rules affect the performance of different
strategies.

We asked two questions. First, how do different social learning strategies
affect behavior and performance in collective problem solving? We found that
best member strategies reach the best performance in the short run, but a small
amount of conformity (achieved by relying on small samples) ensures the high-
est long-run outcomes whenever task environments are complex. The intuition
underlying these results is the following. The best member strategies are fast at
diffusing useful information and, therefore, quickly drive the population toward
locally optimal solutions. Reliance on small-samples performs slightly better than

4 Note that the best member strategy with a sample size of 1 would correspond to the
random copying strategy.



large-samples, because it leads to slightly slower convergence and thereby allows
the population to explore and find optima that have higher payoffs.

Second, how do these strategies interact with the network structure in which
learning takes place? Our results indicate that networks promoting faster in-
formation diffusion outperform the slower networks when agents use conformity
strategy. However, opposite is the case when agents use best member strategy:
here, slower networks outperform faster ones. This shows that collective perfor-
mance depends both on the network structure agents are embedded in as well
as the social learning strategies they use. These findings enabled us to clarify
and reconcile seemingly contradictory findings from the literature, by showing
that both well connected and less well connected networks can be beneficial for
the same task, depending on the social learning strategies used by individuals
[6, 13, 17, 14].

Our study has broad implications for organizational learning, technological
innovation and the diffusion of innovations. Most studies of exploration and
exploitation in organizations focus on how to design the external environment
to make firms more adaptive [25, 6, 13, 19]. Our study highlights that it is also
important to consider the individual strategies used by agents and organizations.
In addition our study shows that interventions aimed at changing the social
environment without paying attention to the individual-level strategies might
not produce the desired effect.

Research on technological innovation has highlighted the combinatorial na-
ture of innovation with most new inventions being recombinations of existing
innovations [26, 27]. Much of this research has focused on how innovation oc-
curs, whereas there has been very little attention devoted to the co-evolution
of innovation and imitation. Our study identifies situations where imitation can
both help and hinder the development of technological innovation.

Several open questions remain to be addressed. In line with previous studies
we focused on the NK landscape as a form of a tunably rugged landscape. The
extent to which our results (and other results from the literature) would apply
to other landscape problems is a question for future research. We also assumed
for the sake of clarity that populations rely on a single social learning strategy.
Future research should address the dynamics of exploration and exploitation in
a population using multiple strategies at the same time. Our model could also be
tested empirically. There are only a handful of studies on how people behave in
combinatorial optimization problems that have a rugged structure and we know
very little about how these results translate to other problems [28, 29, 30, 31].
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Table 2. Strategy performance at the final time step (t = 200) in different environ-
ments.

Environment

Strategy
N = 15,
K = 2

N = 15,
K = 4

N = 15,
K = 6

N = 15,
K = 8

N = 15,
K = 10

N = 15,
K = 12

N = 15,
K = 14

Best member
(s = 3)

mean 0.8522 0.705 0.600 0.513 0.444 0.408 0.376
min 0.288 0.179 0.171 0.150 0.131 0.081 0.111
max 1 1 1 1 1 1 1

st.dev 0.166 0.220 0.218 0.200 0.174 0.163 0.148

Best member
(s = 9)

mean 0.823 0.688 0.567 0.479 0.424 0.381 0.369
min 0.249 0.187 0.118 0.094 0.116 0.102 0.109
max 1 1 1 1 1 1 1

st.dev 0.185 0.233 0.220 0.197 0.181 0.154 0.151

Conformity
(s = 3)

mean 0.978 0.915 0.807 0.681 0.571 0.461 0.377
min 0.370 0.446 0.205 0.254 0.219 0.145 0.119
max 1 1 1 1 1 1 1

st.dev 0.062 0.125 0.176 0.188 0.185 0.168 0.147

Conformity
(s = 9)

mean 0.714 0.563 0.469 0.491 0.356 0.314 0.280
min 0.222 0.230 0.208 0.197 0.166 0.146 0.126
max 1 1 1 1 1 1 1

st.dev 0.148 0.132 0.112 0.092 0.103 0.082 0.072

Random
copying

mean 0.681 0.517 0.428 0.369 0.314 0.274 0.235
min 0.090 0.102 0.093 0.051 0.052 0.044 0.061
max 1 1 1 1 1 1 1

st.dev 0.236 0.237 0.199 0.189 0.166 0.140 0.115

Individual
learning

mean 0.681 0.518 0.420 0.354 0.302 0.261 0.228
min 0.205 0.285 0.156 0.144 0.152 0.127 0.114
max 0.954 0.718 0.638 0.515 0.486 0.418 0.336

st.dev 0.092 0.074 0.066 0.058 0.051 0.044 0.038
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