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The entirety of human scientific knowledge may be thought as being embodied in an

ever expanding spindle-shaped volume. The two sharp tips represent the well recognized

frontiers of science – the microscopic world and the cosmos. For the time being, these two

extremities span more than 35 orders of magnitude both in space and time ranging from

cosmological scales of 1017 seconds (time elapsed since the Big Bang) and 1026 meters (the

size of the observable universe) down to the atomic world measured in attoseconds (10−18)

and nanometers (10−9). Scientific research aimed at pushing the two tips farther has become

so expensive that it requires progressively more international collaboration; consequently,

progressively fewer scientists are fortunate enough to be directly involved in these studies.

On the other hand, people often underestimate or even overlook the most extensive fron-

tier of science, namely, the surface of the spindle far from the tips that mostly corresponds to

the macroscopic world of our own size. In fact, human life on Earth depends on production

and reproduction in the macroscopic world and the overwhelming majority of scientists work

on problems confined to macroscopic space and time scales. If one asks what is the unifying

theme of scientific research on macroscopic scales, perhaps, the answer lies in understanding

complexity. Scientists from all walks of life agree that complex systems and complex behav-

iors exist everywhere in the macroscopic world, however, people disagree on the meaning

of complexity. Intrinsic to the profound essence of the concept itself, complexity cannot

be approached by applying a clear-cut definition. We are suspicious of the existence of a

“science of complexity” or a universal measure of complexity. One must bear in mind that

complexity goes along with specificity. Without setting a framework from the outset it is

impossible to talk about complexity in general terms. This will become clearer when we

look at biological symbolic sequences later on.

Before delving into the problem further I would like to make a few points based on com-

mon sense. Firstly, how do things get complex? Projection from a higher-dimensional space

into a lower-dimensional space makes life more “complex”. A simple example is putting a

one-dimensional curve in a two-dimensional surface may cause self-intersections that can-

not be removed by small deformations, but self-intersections of one-dimensional curves in

a three- or higher-dimensional space are incidental and can be eliminated by infinitesimal

deformations. In engineering practices one often has to add new coordinates or parameters

to make things look simpler in the enlarged space. Repeated use of simple rules may produce

complex behaviors or patterns as is evident in the iteration of the simple map xn+1 = 1−µx2
n
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or applications of some nearest-neighbor rules in one-dimensional cellular automata. The

use of the wrong reference system may also lead to a more complicated appearance of the

phenomena, a well-known example being the geocentric system of Ptolemeaus versus the

heliocentric system of Copernicus.

Thus we see the necessity of distinguishing objective complexity from the complicated

way of describing the phenomena. Maxwell’s equations of electromagnetism provides a sharp

contrast. In his 1865 paper Maxwell introduced 20 equations for 20 variables without using

vector notation. In Fig. 1 we copied the equations from Maxwell’s A Treatise on Electricity

and Magnetism (1873) keeping the original labeling by capital letters (all other formulas

were simply numbered). Only a true genius could infer from these equations the existence

of electromagnetic waves that propagate with the speed of light.
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ρ =
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(J)

σ = lf + mg + nh + l′f ′ + m′g′ + n′h′ (K)

FIG. 1: The Maxwell equations in 1865.

A hundred years after Maxwell these same equations may be written in one line as

δdθ = J.

This equation utilizes 5 symbols including the equality sign and looks much “simpler” than

the original system of Maxwell. However, in order to understand this relation one has to

recognize d as the exterior differential, δ as the co-differential, and θ as a differential 1-form,

that is, one must be acquainted with modern differential geometry. Things may look simple
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if one stands on high ground. Phenomena that looked complex to primitive human beings

may not be so for us. We should avoid any confusion caused by description and concentrate

on complexity objectively.

In order to highlight one way of doing this, let us start with an observation.

A high energy physicist recognizes the following lower case letters u, d, c, s, b, t as quark

names and associates them with a certain mass, charge and quantum numbers such as

“charm” or “flavor”. More scientists use the symbols p, n, e to denote proton, neutron and

electron each having a certain mass, charge, spin or magnetic moment, but they are not

concerned with from which three quarks a proton or neutron is made.

Chemists consider H, C, N, O, P, S to be element names and know their atomic number,

ion radius, chemical valence and affinity. Chemical compounds may be denoted by combined

use of such symbols as H2O, NO, CO2, etc. However, when it comes to writing chemical

formulas for the nucleotides and amino acids which are the constituents of DNAs and pro-

teins, there is no need to write down the tens of atomic symbols each time. Biochemists

call the nucleotides a, c, g, t and the amino acids A, C, · · · , W, Y . Now all one has to know

is c and g are strongly conjugated by three hydrogen bonds while the weak coupling of a

and t is made by two hydrogen bonds. Here “strong” and “weak” differ by many orders

of magnitudes from that in high energy physics. In a biochemical pathway or a metabolic

network, proteins/enzymes are denoted by simple names and there is no need to spell out

the amino acids that make the proteins.

This list can be extended further. What is the morale learned from the observation? In

describing Nature one cannot grasp the details on all levels at once; one has to concentrate

on a particular level at a time treating larger scales as background and reflecting smaller

scales in “parameters”, etc. For example, in describing the Brownian motion of a pollen the

environment at large is represented by a temperature while the friction force is given by using

a coefficient of friction. If necessary, one could go down to the molecular level to calculate

the coefficient directly. This is called coarse-grained description. Coarse-graining is reached

by making “approximations”, i.e., by ignoring details on finer scales. Nevertheless, it may

lead to rigorous conclusions. Geoffrey West, the President of the Santa Fe Institute mentions

that had Galileo be equipped with our high precision measuring instruments he would not

be able to discover the law of free falling body and would have to write a 42-volume Treatise

on Falling Bodies.
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Furthermore, coarse-grained description of Nature is always associated with the use of

symbols. If one is lucky enough these symbols may form symbolic sequences. Symbolic

sequences from biology fall in this class. We understand primarily DNAs and proteins as

biological sequences, both being one-dimensional, directed and unbranching hetero-polymers

made of four and twenty kinds of monomers/letters, respectively.

Since we have come to the notion of symbolic sequences, let us recollect a basic fact on

huge collections of symbolic sequences. In Claude Shannon’s seminal 1948 paper that laid

the foundation of modern information theory, besides the famous definition of information

now familiar to all students, he stated a few other Theorems. Theorem 3 can be roughly

interpreted as follows. Given a sequence of length N made of 0’s and 1’s, there are in total

2N such sequences. Generally speaking, when N gets very large, these 2N sequences can be

divided into two subsets: a huge subset of “typical” sequences and a small group of “atypical”

sequences. The statistical property of a typical sequence resembles that of any other typical

sequence or the bulk of the huge group, while the property of any atypical sequence is very

specific and has to be scrutinized almost individually. The simplest members of the atypical

set are sequences made of N consecutive ‘1’s or ‘0’s as well as various kinds of periodic

and quasi-periodic sequences. However, the most significant ones from the atypical set are

those with hidden regularities mixed with seemingly random background. These are the

true complex sequences we have to characterize.

Biological sequences are the result of several billions years of evolution and natural selec-

tion; they must belong to the set of atypical sequences in the space of all possible sequences

of similar lengths. Due to the huge volume of data, the inevitably noisy background, and

experimental errors, statistical tools should be invoked in the beginning of any analysis of

biological sequences. However, one must rely on more “deterministic” approaches to reveal

hidden regularities in the real data. In fact, by looking at real sequence data one may

encounter surprises and discover peculiar features that cannot be seen in statistical stud-

ies alone. We show a few examples that have been unearthed from real bacterial genomes

without the need of much biological knowledge as a prerequisite.

The first example we look at is the species-specific “avoidance signature” in bacteria

genomes. Take for example, the genome of the harmless K12 strain of E. coli. This DNA

loop is made of 4 639 675 letters of a, c, g and t. If one collects short strings of length 8

along the loop, shifting one letter at a time, one would collect 4 639 675 strings. However,
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Escherichia coli K-12 (K=8)

FIG. 2: A two-dimensional histogram of 8-strings in E. coli. Each element of this 256× 256 square

matrix represents the number of appearance of a string type with gggggggg in the upper-left corner,

cccccccc in the upper-right corner and aaaaaaaa in the lower-left corner, etc.

these strings can only belong to 48 = 65 536 different types. If the E. coli genome is a

random sequence, each string type would appear 4639675/65536 ≈ 71 times. What happens

in reality? Figure 2 is a two-dimensional histogram showing the number of appearances

of all string types using a crude color code. In this square there are 256 × 256 = 65 536

cells each representing a counter for a string type. In order to highlight the missing and

under-represented strings, white and bright colors are allocated to zero and small counts.

Counts greater than a certain number are put in black. This is also a kind of coarse-graining

that leads to the fairly regular patterns seen in the figure. It turns out that E. coli does not

like strings containing ctag as a substring. If one looks at similar “portraits” of other closely

related species, e.g., Samonella or Shigella, they all share this common feature. This might

be a reminiscence of the environment when their common ancestors tried hard to avoid the

ctag-containing recognition site of a “restriction enzyme” produced by their enemy. Different

bacteria have different “avoidance signature”, but some do not.
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If one collects all string counts and draws a one-dimensional histogram by putting the

counts along the abscissa and the number of string types in a small bin of counts along

the ordinate, one would get an almost continuous distribution biased towards small counts

(there are 176 missing 8-string types) with a long tail up to count 777. If one “randomizes”

the original genome and does the drawing again, one would get a bell-shaped curve centered

around the average value 71. At length 7 there is only one missing string, namely, gcctagg.

Among the 176 missing strings 8 must be the consequence of the missing gcctagg. Therefore,

only 168 are “true” missing ones. This observation raises a seemingly simple question:

suppose at length K + 0 one string is missing, how many strings would it take away at

length K + i? Simple induction would lead to an answer 4i(i + 1). However, this is only

an approximate result, since it ignores the overlap of the leading and ending letters in the

string, as was the case with gcctagg. The exact answer to this biology-inspired problem

leads to a neat piece of mathematics which makes use of combinatorics or language theory.

The second example is the fine structure in the number distribution of K-strings of some

randomized bacterial genomes. The aforementioned shape of the one-dimensional histograms

for the original and randomized E. coli genome seems to be natural. Now, let us take another

bacterium, say, the M. tuberculosis genome – the one-dimensional histogram resembles E.

coli, that is a continuous distribution biased towards small counts. However, if we randomize

this genome, keeping the number of a, c, g and t unchanged, a strange thing happens. See

Figure 3.

A fine structure appears in the one-dimensional histogram: instead of a continuous curve

we see several peaks. This seems anti-intuitive at first glance as we have got used to the fact

that structures usually disappear after randomization. However, a little reflection would tell

us that this was caused by the uneven distribution of the nucleotides in this genome: the

letters g and c make up almost 2/3 of the genome. When forming various 8-strings, one

simply does not have enough letters for some string types. For a fixed K there are K + 1

peaks, each being described by a Poisson distribution. The location and the parameter of

the distribution may be calculated precisely.

The avoidance signature in a two-dimensional histogram and the fine structure in random-

ized one-dimensional histogram reflect what is absent in a genome. The following example

deals with what is present in a genome.

The third example comes from species-specific short repeats in bacterial genomes. When
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K=8

FIG. 3: A 1D histogram of 8-strings in a randomized M. tuberculosis genome. The counts are given

along the abscissa, the ordinate being the number of string types in a bin. Since we draw attention

to the appearance of peaks, no numbers were put along the axes.

studying a genomic sequence by looking at its K-string composition, we see a transition

from randomness to some “determinism” with K increasing. The distribution of single

letters (K = 1) or dinucleotides (K = 2) are almost random, while at the longer K more

and more species-specific features appear. In particular, there are species-specific repeated

segments in some bacterial genomes. For example, the 25-string

aaatcagaccaaaatgggattgaaa

has 107 copies in the A. fulgidus genome and 171 copies in the M. thermoautotrophicus

genome. It is unique in these two genomes. No single copy of such string may be found

in all other DNA sequences known so far. Their function remains unknown and existing

annotations are questionable.

Another 18-string gttccaataagactaaaa exists as repeats in the genomes of three known

species from one and the same genus Pyrococcus with no appearance in other bacterial

genomes. It may serve as a genus marker for Pyrococcus. There are many other taxon-

specific repeats in bacteria genomes. We emphasize repeats because they are less affected

by individual differences or sequencing errors. Plenty of them exist if we confine ourselves to

single copy specific segments. However, they may not be robust enough to deserve special
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scrutiny.

So far, we have looked at DNA sequences. Our last example deals with protein sequence.

Let us look at the following piece of the winter flounder antifreeze protein:

MALSLFTV GQ LIFLFWTMRI TEASPDPAAK AAPAAAAAPA

AAAPDTASDA AAAAALTAAN AKAAAELTAA NAAAAAAATA

RG

It is an alanine(A)-rich protein made of 82 amino acids. Let us decompose this sequence

into a collection of overlapping 5-strings (penta-peptides): MALSL, ALSLF , etc. One

gets 78 such strings some of which appear several times. Now we ask the converse: given

the collection of these 5-strings, if we reconstruct a sequence by using each penta-peptide

once and only once, how unique would the construction be? The inverse problem is solvable

because at least one can get the original protein. Obviously, when K is big enough, the

reconstruction is unique. This problem has a natural relation to a well-known problem in

graph theory, namely, the number of so-called Eulerian loops in a graph. Indeed, by treating

5-string MALSL as a transition from MALS to ALSL , etc., and simplifying what we

obtained by reducing elements that do not affect the number of Eulerian loops, we get the

graph shown in Figure 4.

AKAA

AAPA

APAA

PAAA

AAAA

AANA

TAAN

LTAA

AAAP

FIG. 4: Euler graph determined by the winter flounder antifreeze protein.

This protein sequence has 1512 different reconstructions at K = 5, 60 at K = 6, 2 at

K = 7 and an unique reconstruction at K = 8. Most of naturally occurring proteins have
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unique construction at K = 5 or 6. It has been proved recently that there exist finite-state

automata which can recognize whether a given sequence has an unique reconstruction at

a given K. The uniqueness problem arises from an attempt to justify a recently proposed

method to infer bacterial phylogenetic relationships from the complete genomes that is

different from the traditional sequence-alignment methods. It is interesting to note that

equipped with the automata just mentioned, one could discover a few proteins with a huge

number of reconstructions at moderate K from a big protein database without possessing

any further biological knowledge. These proteins deserve further study.

At present the amount of known DNA and protein sequences grows quickly. These se-

quences are “atypical” according to Shannon’s theorem. On one hand, they should be

studied almost individually to reveal any common regularities. This is what bioinformat-

ics does. On the other hand, many questions may be asked by inspecting real data and

interesting mathematical problems may be posed and solved. In the above examples, we

have made connection to combinatorics, graph theory, language and automaton theory, as

well as Poisson distributions. The possible width and depth of these biology-inspired prob-

lems remind us once more that complexity goes along with specificity. Common features of

complex phenomena can only be inferred from exploring the specific richness of real data.
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