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ABSTRACT:

Contrary to prior reports, we find that a set of 16 food webs, with 25 to 172 nodes, from a
variety of aquatic and terrestrial ecosystems, generally display neither “small-world” nor
“scale-free” topological properties. The food webs do display relatively short characteristic
path lengths consistent with small-world topology. However, most food webs display less
clustering than that expected in small-world networks, which appears related to the small size
of food webs. The ratio of observed to random clustering coefficients across biological and
non-biological networks increases linearly with network size over 7 orders of magnitude (+° =
0.90). A 1:1 clustering ratio occurs in networks with ~40 nodes. Most food webs display
single-scale exponential or uniform degree distributions rather than the scale-free, power-law
distributions previously reported for food webs and many other networks. Uniform degree
distributions have not been reported previously for real-world networks. The failure to
observe scale-free topology in most food webs appears related to the relatively small size, high
connectance, and differences in the assembly of food webs compared to other real-world
networks.



I. INTRODUCTION

Food webs, which depict networks of
trophic relationships in ecosystems, provide
complex yet tractable depictions of biodiversity,
species interactions, and ecosystem structure and
function. Although food web studies have long
been central to ecological research (May 1986,
Pimm et al. 1991, Levin 1992), there has been
controversy over whether there are regularities in
food web structure worth explaining (e.g., Paine
1988). Early analyses of topological properties of
empirical food webs emerged from research on
ecological diversity-stability relationships (e.g.,
MacArthur 1955, May 1973) and typically
employed low resolution, species-poor (S < 20)
depictions of food webs (e.g., Rejmanek and Stary
1979, Cohen and Briand 1984). Dramatic
improvements in data (e.g., Warren 1989,
Winemiller 1990, Martinez 1991) led to the
successful description and modeling of general
food-web properties among ecosystems (Williams
and Martinez 2000), including how food-web
properties vary with species richness, resolution,
and sampling effort (e.g., Martinez 1993, 1994,
Martinez et al. 1999).

Research on food web structure is one
example of a wide range of scientific
investigations of “real-world” network topology
(Strogatz 2001). In particular, complex systems
research across many disciplines has resulted in
renewed interest in the study of “small-world”
network topology (Watts and Strogatz 1998)
inspired by the “six degrees of separation”
sociology experiment by Milgram (1967). Most
real-world networks have the two required small-
world characteristics: (i) high clustering compared
to a random graph, with neighbors of a node much
more likely to be connected to each other than in a
random graph, and (ii) small path length compared
to a regular lattice, with the average shortest path
length (“characteristic path length”) among all
pairs of nodes increasing logarithmically with the
number of nodes, similar to what is seen in
random graphs (Watts and Strogatz 1998). Types
of networks examined for these topological
properties include social, technological, economic,

and biological networks (see Strogatz 2001, Albert
and Barabasi 2002 for reviews).

Researchers have explicitly examined a
few food webs for small-world properties. A set
of four food webs display greater clustering than in
random webs and short path lengths (Montoya and
Solé 2001) and an overlapping set of seven food
webs display short path lengths which are slightly,
but significantly, longer than path lengths of
random food webs (Williams et al. 2001). Earlier
research using low-quality (i.e., poorly resolved,
highly aggregated, low diversity) food-web data
concluded that path lengths are short but
speculated they would increase with greater
species richness (Schoener 1989), contrary to
recent findings that path lengths decrease with
increasing species richness (Williams et al. 2001).

A great deal of attention has been placed
on the power-law, or “scale-free” distribution of
node degrees of many small-world networks
(Barabasi and Albert 1999). Real-world networks
display degree distributions that deviate from a
Poisson distribution found for simple random
graph models (Erdos and Renyi 1960, Bollobas
1985). Many networks including the WWW,
Internet domains and routers, scientific co-authors
and citations, metabolic and protein networks, and
phone-call networks display a scale-free degree
distribution, with power-law exponents ranging
from ~1 to 2.5 (Albert and Barabési 2002). Also,
Montoya and Sol¢é (2001) report scale-free degree
distributions with an exponent ~1 for three of four
food webs they examined. However, real-world
networks can display other types of degree
distributions, including “broad-scale” distributions
that show a power-law regime with a sharp cut-off
in the tail (e.g., movie-actor collaborations) and
“single-scale” distributions with fast-decaying tails
including exponential (e.g., Caenorhabditis
elegans neural network) and Gaussian (e.g.,
acquaintances among a Mormon social group)
distributions (Amaral et al. 2000).

Using a set of 16 high-quality food
webs from a variety of ecosystems, we develop
the most comprehensive picture to date of
whether food webs display small-world and
scale-free structure (Montoya and Solé 2001),
similar to topology of many other real-world



networks (Albert and Barabasi 2002). We
briefly discuss some potential ecological
implications of observed food web network
structure.

I1I. METHODS

The 16 food webs studied, two of which
are variants of the same web, represent a wide
range of species number, linkage densities,
taxa, and habitat types (Table 1). There are
five lakes or ponds, two streams, three
estuaries, and five terrestrial ecosystems
(temperate, desert, sub-tropical) represented.
The food webs are described in more detail in
Dunne et al. (2002) and in their individual
references (Table 1). Food webs consist of L
directed trophic links between S nodes or
“trophic species.” Trophic species, functional
groups of taxa that share the same set of
predators and prey within a food web, are a
widely accepted convention in structural food-
web studies that reduce methodological biases
related to uneven resolution of taxa within and
among food webs (Williams and Martinez
2000). Trophic species webs are constructed
by aggregating taxa from the original
“taxonomic food webs” into trophic species.
Taxonomic to trophic species aggregation
occurs for <10% of nodes in nine of the food
webs studied (Table 2).

We measured three properties central to
recent network topology research for the 16
food webs: 1) characteristic path length (D), the
average shortest path length between all pairs
of species (Williams et al. 2001), 2) clustering
coefficient (CI), the average fraction of pairs of
species one link away from a species that are
also linked to each other (Watts and Strogatz
1998), and 3) cumulative degree distribution,
the fraction of trophic species P(k) that have k£
or more trophic links (both predator and prey
links). We treated trophic links as undirected
when calculating path length and clustering
because effects can propagate through the web
in either direction, through changes to both
predator and prey species (Williams et al.
2001). For 100 random webs with the same C

and S as each empirical web, we also calculated
mean D and C/. We rejected random webs that
had nodes or groups of nodes disconnected
from the main web, since our empirical data
lacks disconnected sub-webs or species.

III. RESULTS

The 16 food webs range in size from 25
to 172 trophic species, connectance
(links/species®) from 0.026 to 0.315, and links
per species from 1.59 to 25.13 (Table 2). The
average connectance over all 16 webs is 0.11
(SD = 0.09), similar to mean connectance
values reported for other reliable sets of
community food webs (Martinez 1992: 5 webs,
mean C = 0.11, SD = 0.03; Havens 1992: 50
webs, mean C = 0.10, SD = 0.04).
Characteristic path lengths range from 1.33 to
3.74, generally decreasing with increasing
connectance (Williams et al. 2001). Empirical
food webs display similar, slightly longer (for
13 of 15 webs analyzed) path length values
compared to random webs (Table 2).

A comparison of the clustering
coefficients of empirical food webs to that of
counterpart random webs (Table 2: CIl/Cl,.»)
gives ratios ranging from 0.3 to 3.8. Only four
food webs, the three very low connectance
Scotch Broom and Ythan Estuary 1 & 2 webs,
plus Little Rock Lake, display clustering that is
twice or more that of random webs (CI/Cl,,, =
2.1 to 3.8). Eleven webs have Cl/Cl,,, < 1.5,
with six of those webs displaying equal or
lower clustering than random webs (CI/Cl,,, =
0.3 to 1.0). The largest clustering coefficient
ratio, 3.8 for the large version of the Ythan
Estuary web, is lower than ratios for other
biological networks. The substrate and reaction
graphs for Escherichia coli display clustering
coefficient ratios of 12.3 and 6.6 (Wagner and
Fell 2001) and the C. elegans neural network
has a ratio of 5.6 (Watts and Strogatz 1998).
Looking across 33 real-world networks
including biological and non-biological
networks, the clustering coefficient ratio
increases as an approximate power-law
function, specifically a linear function, of the



size of the network, with an exponent of ~1
(Figure 1). A 1:1 ratio occurs in networks with
~43 nodes. The non-biological networks
displayed, which range in size from 4941 to
1,520,251 nodes (Albert and Barabasi 2002)
have clustering ratios that range from 16 for the
power grid (Watts and Strogatz 1998) to
~14,000 for neuroscience coauthorship
(Barabasi et al. 2001). Biological networks,
especially ecological networks, have relatively
few nodes compared to non-biological
networks and clustering coefficients that are
much closer to random.

The linear relationship of the clustering
ratio to network size arises because clustering
in random networks should be equal to
connectance (C = L/S°), since the likelihood
that one node is connected to another node is
the same as the likelihood that two neighbors of
a node are connected. This is demonstrated by
the near identity of Cl.,, with C for the 33
networks of Figure 1 (Cl,, = 1.0425C +
0.00089, P < 0.001, #* = 0.996). However,
observed clustering appears to scale linearly
with L/S for the same networks (C/ = 0.0033L/S
+0.2332, P = 0.006, * = 0.219). Thus, the
ratio of observed to random clustering should
increase approximately linearly with S, since
(L/S)(L/S?) =S.

Following Amaral et al. (2000), we
analyzed cumulative rather than density
distributions of food web degree data.
Previously published food-web density degree
distributions include degree bins with a
frequency of 0 that were not included when
scale-free functions were fit to the data
(Montoya and Solé¢ 2001). The use of
cumulative distributions avoids the problem of
arbitrary exclusion of null bins and gives a
more accurate picture of the shape of the
distribution in small, noisy data sets. All 16 of
the trophic food webs display cumulative
degree distributions that differ from a Poisson
distribution expected in random networks (Fig.
2). Non-random density distributions were also
reported for the taxonomic food web versions
of Scotch Broom (referred to as “Silwood

Park™), Ythan Estuary 1 & 2, and Little Rock
Lake (Montoya and Sol¢é 2001).

The two least connected food webs
display scale-free or broad-scale degree
distributions, with power-law behavior over the
whole range of the Grassland web (exponent =
1.71) and part of the range of the Scotch Broom
web (exponent = 0.92) (Fig. 2). The Scotch
Broom web displays an exponential drop-off in
the tail. The remaining 14 food webs display
single-scale distributions. Eight food webs
have data consistent with an exponential
distribution (Ythan Estuary 1 & 2, El Verde
Rainforest, Canton Creek, Chesapeake Bay, St.
Martin Island, Little Rock Lake, Mirror Lake)
and six webs, generally those with relatively
high connectance, have data consistent with a
uniform distribution (Stony Stream, St. Marks
Seagrass, Lake Tahoe, Bridge Brook Lake,
Coachella Valley, Skipwith Pond). One of the
uniform distribution food webs, Lake Tahoe,
displays a tail well fit by a Gaussian
distribution. An overlay of normalized food
web data from all 16 webs clearly demonstrates
the general trend that distribution tails drop off
faster than expected for scale-free networks

(Fig. 3).
IV. DISCUSSION

An increasingly wide array of
information, social, physical, and biological
networks (Albert and Barabdasi in press)
including food webs (Montoya and Solé 2001)
have been described as small-world networks
with short path lengths and high clustering.
Our analyses suggest that most food webs do
not display typical small world topology.
Characteristic path lengths of food webs are
short and only slightly longer than random,
consistent with small world topology and
observations for most real-world networks
(Montoya and Sol¢é 2001, Williams et al. 2001,
Albert and Barabasi 2002). However, only four
of fifteen trophic food webs analyzed,
including two that are different versions of the
same web, unambiguously display the much
greater than random clustering expected for



small-world topology, as also reported for the
taxonomic versions of the same four webs
(Montoya and Sol¢ 2001). The apparent
deviation of most food webs from small-world
topology is related to the small size of food
webs (10" to 10° nodes) compared to most
other networks (10” to 10" nodes) examined for
small-world properties. When network size is
taken into account, food webs fit into a
predictable continuum of clustering, with
increasingly greater than random clustering
observed in larger networks. In general,
observed clustering coefficients tend to
increase as a linear function of links per
species. These findings suggest that the
expectation of high clustering in small-world
topology (Watts and Strogatz 1998) is
generally inapplicable to small networks with
relatively few links per species.

As with small-world topology, the
degree distributions of food webs appear
similar to other real-world networks in some
respects and different in others. We observed
degree distributions that deviated from random
(see also Montoya and Sol¢ 2001), as observed
in other networks (Albert and Barabési 2002).
Williams and Martinez (2000) reported the
deviation of food web degree distributions from
distributions in random networks for prey and
predator links considered separately (“‘generality”
and “vulnerability,” Schoener 1989) in a set of
seven trophic food webs reanalyzed in this study
for non-directed degree distributions. A simple
one-dimensional “niche model” was found to
successfully ~ predict  those  non-random
distributions and other topological properties
(Williams and Martinez 2000), including
characteristic path length (Williams et al. 2001).

While the shapes of food-web degree
distributions deviate from random, they also differ
from scale-free, power-law distributions observed
in many other networks (Albert and Barabasi
2002). Our comprehensive analysis of 16 food
webs, including reanalysis of the four previously
studied webs (Montoya and Solé 2001), shows
that food webs are generally single-scale networks
(Amaral et al. 2000), displaying either exponential
or uniform distributions. To our knowledge,

uniform distributions have not been previously
reported for real-world networks. We found a
partial exponential distribution in the Scotch
Broom trophic web and exponential distributions
in the Ythan Estuary 1 & 2 trophic webs (+* =0.97
to 0.98) that differ from the less explanatory (=
0.79 to 0.83) scale-free patterns previously
reported for the taxonomic versions of those webs
(Montoya and Solé 2000). This is likely due to
our use of cumulative rather than density
distributions for analysis in order to incorporate
empty bin data, and not due to differences in
resolution of taxa in trophic versus taxonomic
webs. An analysis of cumulative distributions for
the taxonomic versions of the 16 food webs did
not substantively alter our results (data not shown).

We find that food webs with relatively
high connectance typically display uniform
distributions while webs with very low
connectance display power-law or partial power-
law distributions. The tendency towards a uniform
degree distribution in high connectance food webs
may occur because networks with relatively few
nodes and high connectance have relatively high
average degree. This minimizes the difference
between the average (2L/S) and the maximum
possible (2S) degree, cutting off distribution tails
that would include nodes with much higher than
average degree, as often seen in large, low
connectance, small-world networks (e.g., Figure 1
non-food web networks have mean nodes =
140,000, C = 0.01, and L/S = 1400). Conversely,
sparsely connected food webs with very low
average degree can display power-law
distributions as seen in many real-world networks.
The lowest connectance food web, Grassland (C =
0.026), displays a power-law distribution and has S
=61 and L/S = 1.59, which differ by a factor of C"'
= 38.4. In contrast, the highest connectance food
web, Skipwith Pond (C = 0.315), displays a
uniform distribution and has S = 25 and L/S =
7.88, which differ by a factor of only 3.2.

Both low and high connectance food webs
are unusual, and their more extreme connectances
appear to be artifacts of particular food web
collection or assembly procedures. The two
lowest connectance webs (C = 0.03), Grassland



and Scotch Broom, the only webs that display
complete ~or partial power-law  degree
distributions, are “source webs” constructed by
following food chains upward from one or a few
basal species. In addition, these webs ignore co-
occurring generalists such as spiders and birds and
focus on specialist parasitoid insects whose
immature stages develop on or within a single
insect host, ultimately killing the host. Such
parasitoids tend to be linked to very few other
species, resulting in webs with low C (Martinez et
al. 1999). The two highest connectance webs (C =
0.3), Coachella Valley and Skipwith Pond, which
display uniform distributions, are small webs
dominated by omnivores, taxa that feed at multiple
trophic levels. Such taxa tend to be generalists
with links to many other species, resulting in high
C. In Coachella Valley, the high levels of
omnivory are an artifact of high node aggregation
(only 1 of 30 taxa are identified at the species
level). Most food webs are less skewed towards
specialists or generalists and thus have
connectances closer to 0.1 and are more likely to
display exponential degree distributions.

The lack of power-law degree distributions
in food webs also may relate to how ecosystems
assemble and evolve compared to other networks.
Networks  that display scale-free  degree
distributions probably emerge via a set of
mechanisms that differ from those that produce
networks with broad- and single-scale distributions
(Amaral et al. 2000). Barabasi and Albert (1999)
developed a simple “scale-free model” that
produces networks with power-law degree
distributions. This model incorporates two generic
mechanisms that they argue are common to real-
world networks: 1) growth of the network by
addition of nodes and links at each time step and
2) preferential attachment of new nodes to existing
nodes with a high number of links. While these
assumptions may be useful for describing
evolution of the WWW or citation networks (but
see Kleinberg et al. 1999, Adamic and Huberman
2000), they appear less appropriate for ecosystems
and some other types of networks. Alternate
models that remove either of the assumptions
(Barabasi and Albert 1999, Barabasi et al. 1999) or

incorporate “aging” (some nodes cannot accept
new links) or “cost” (a maximum number of links
per node) eliminate scale-free topology and
produce broad- or single-scale degree distributions
(Amaral et al. 2000).

In ecosystems, both assumptions of the
scale-free model may be problematic. In
particular, the simple growth assumption is
violated since there are both additions and losses
of nodes (species) at ecological and evolutionary
time scales via immigration, emigration, evolution,
and extinction. The net effect of such changes can
be expansion, contraction, or no change of species
richness (as well as trophic links) within an
ecosystem over time. Whether new species
preferentially link to highly connected species
already in the food web is less clear. Data from a
wide range of studies suggest that generalist
consumers (species with a large number of links to
prey) are more likely to prey on invasive species
than specialist consumers, as observed for insect
herbivores of invasive plants (Connor et al. 1980,
Strong et al. 1984) and parasitoids of invasive
insect herbivores (Cornell and Hawkins 1993).
This supports the preferential attachment
hypothesis. However, we can also hypothesize
that an invasive species will be more likely to
establish successfully if it has few consumers.
Initial data from some Hawaiian food webs
suggests that there are more successfully
established alien parasitoids than alien herbivores
or plants, which may be attributable to parasitoids
typically having fewer consumers than species at
lower trophic levels (J. Memmott, pers. com.).
Regarding predation links to resource species,
there is little data to suggest whether invasive
consumers have any tendency to prey on species
that already have a large number of consumers.
Theoretically, competitive exclusion causes
overlapping niches to repulse each other (Begon et
al. 1996), reducing the average number of
consumers preying upon resource Species.
However, a species may have many consumers
because it is relatively abundant, which may make
it more likely to be preyed upon by new species.
Empirically, a balance of these two mechanisms is
suggested by the success of the niche model,
which randomly distributes niches free of



repulsion or attraction. ~ The niche model
successfully predicts a wide range of observed
food-web properties (Williams and Martinez 2000,
Williams et al. 2001) but has yet to be tested
against clustering and degree distribution.

A clear understanding of the structure of
food webs from a variety of ecosystems is useful
for developing a more general understanding of
biological and non-biological network topology.
In particular, while food webs display far less
clustering than expected in small world networks,
we have shown how low clustering in food webs
represents an extreme in a continuum of clustering
dependent on the size of networks. Also, the small
size and relatively high connectance of most food
webs compared to other real-world networks has
provided insight into what types of networks can
be expected to display various kinds of degree
distributions. From a more applied, conservation-
minded perspective, an understanding of food web
topology can help us to explore and predict
functional responses of ecosystems to structural
changes. The most dramatic structural change that
many ecosystems face is  human-driven
biodiversity loss. Structural analyses can provide
another tool for exploring how robust or fragile
ecosystems are to species loss (Solé and Montoya
2002, Dunne et al. 2002), as assessed for Internet
and WWW topology (Albert et al. 2000) and
metabolic and protein networks (Jeong et al. 2000,
2001). Such analyses can also more generally
provide evidence of whether and what aspects of
topology and network complexity drive robustness
(Dunne et al. 2002).
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Table 1. Food webs examined for network topology, listed in order of increasing connectance
(links/species’).

Food Web Citation Habitat
Grassland Martinez et al. 1999 Grassland
Scotch Broom Memmott et al. 2000 Shrubland
Ythan Estuary 1 Huxham et al. 1996 Estuary
Ythan Estuary 2 Hall and Raffaelli 1991 Estuary
El Verde Rainforest Waide and Reagan 1996 Rainforest
Canton Creek Townsend et al. 1998 Stream
Stony Stream Townsend et al. 1998 Stream
Chesapeake Bay Baird and Ulanowicz 1989 Estuary
St. Marks Seagrass ~ Christian and Luczkovich 1999 Estuary
St. Martin Island Goldwasser and Roughgarden 1993  Island
Little Rock Lake Martinez 1991 Lake
Lake Tahoe Martinez unpublished data Lake
Mirror Lake Martinez unpublished data Lake
Bridge Brook Lake Havens 1992 Lake
Coachella Valley Polis 1991 Desert
Skipwith Pond Warren 1989 Pond
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Table 2. Topological properties of empirical and random food webs networks.

Taxa S C@/S) LSS D Dwy Cl  Cla CUClay
Grassland 75 61 0.026 1.59 3.74 - 0.11 - --
Scotch Broom 154 85  0.031 262 3.11 282 0.12 004 3.0
Ythan Estuary 1 134 124  0.038 467 234 239 015 004 3.8
Ythan Estuary 2 92 83 0.057 476 220 219 0.16 0.06 2.7
El Verde Rainforest 156 155  0.063 974 220 195 0.12 007 14
Canton Creek 108 102 0.067 6.83 227 201 002 007 03
Stony Stream 112 109 0.070  7.61 231 196 003 0.07 04
Chesapeake Bay 33 31 0.071 2.19 265 240 0.09 009 1.0
St. Marks Seagrass 48 48  0.096  4.60 2.04 194 0.14 0.11 1.3
St. Martin Island 44 42 0116 4.88 1.88 1.85 0.14 0.13 1.1
Little Rock Lake 182 92  0.118 1084 189 1.77 025 0.12 2.1
Lake Tahoe 800 172 0.131 2259 1.81 1.74 0.14 0.13 1.1
Mirror Lake 586 172 0.146 2513 176 1.72 0.14 0.15 09
Bridge Brook Lake 75 25 0.171 428 1.85 168 0.16 019 0.8
Coachella Valley 30 29 0312  9.03 142 143 043 032 13
Skipwith Pond 35 25 0315 788 133 141 033 033 1.0

Table 2 footnotes: “Taxa” refers to the number of compartments in the original food web, which
can range from ontogenetic stages (e.g., largemouth bass juveniles) to non-phylogenetic categories
(e.g., detritus, seeds) to highly aggregated taxa (e.g., microbes). S refers to trophic species, C refers
to connectance, L refers to trophic links. D refers to characteristic path length, and CI refers to the
clustering coefficient. D,,, and Cl,,, refer to the mean D and C/ for 100 random webs. D,,, and
Clygn could not be calculated for the Grassland web due to the difficulty of assembling non-
fragmented random webs with very low average node degree (2L/S < ~4).
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Figure 1. Log-log plot of the clustering coefficient ratios (empirical:random web values) as a
function of size of the network. Open circles represent data from 15 trophic food webs (all but the
Grassland web, Table 2) from the current analysis. Dark circles represent data from previous
studies of 18 scale-free small-world networks summarized in Albert and Barabasi (2002): 2
taxonomic food webs (Montoya and Solé¢ 2001); E. coli substrate and reaction graphs (Wagner and
Fell 2001); C. elegans neural network, movie actors, and power grid (Watts and Strogatz 1998); 4
science coauthorship data sets (Newman 2001a,b); 2 math and science coathorship data sets
(Barabasi et al. 2001); low and high estimates for Internet domains (Yook et al. 2001, Pastor-
Satorras et al. 2001); WWW sites (Adamic 1999); and concurrence and synonomy of words
(Cancho and Solé 2001, Yook et al. 2001). If the current set of 15 food webs are excluded, the

power-law exponent is 0.89 and 2 = 0.83.
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Figure 2. Linear-log plots of the cumulative distributions of links per species (both incoming links
from predators plus outgoing links to prey) in 16 food webs. Webs are ordered by increasing
connectance (see Table 1). Lines and » values show the fit to the data of the best of three simple
models: power-law distribution (upward curved line), exponential decay (straight line), or uniform
distribution (downward curved line). No food web is well fit by a Poissonian or Gaussian
distribution.
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Figure 3. Log-log overlay plot of the cumulative distributions of links per species (both incoming
links from predators plus outgoing links to prey) in 16 food webs. The link data are normalized by
the average number of links/species in each web. If the distributions followed a power law, the data
would tend to follow a straight line.
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