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Commonly observed patterns typically follow a few distinct families of probability distributions.
Over one hundred years ago, Karl Pearson provided a systematic derivation and classification of
the common continuous distributions. His approach was phenomenological: a differential equation
that generated common distributions without any underlying conceptual basis for why common
distributions have particular forms and what explains the familial relations. Pearson’s system and
its descendants remain the most popular systematic classification of probability distributions. Here,
we unify the disparate forms of common distributions into a single system based on two meaningful
and justifiable propositions. First, distributions follow maximum entropy subject to constraints,
where maximum entropy is equivalent to minimum information. Second, different problems asso-
ciate magnitude to information in different ways, an association we describe in terms of the relation
between information invariance and measurement scale. Our framework relates the different contin-
uous probability distributions through the variations in measurement scale that change each family
of maximum entropy distributions into a distinct family.

I. INTRODUCTION

Commonly observed patterns follow a few families of
probability distributions. For example, Gaussian pat-
terns often arise from measures of height or weight, and
gamma patterns often arise from measures of waiting
times. These common patterns lead to two questions.
How are the different families of distributions related?
Why are there so few families, when the possible pat-
terns are essentially infinite?
These questions are important, because one can hardly

begin to study nature without some sense of the funda-
mental contours of pattern and why those contours arise.
For example, no one observing a Gaussian distribution
of weights in a population would feel a need to give a
special explanation for that pattern. The central limit
theorem tells us that a Gaussian distribution is a natural
and widely expected pattern that arises from measuring
aggregates in a certain way.

With other common patterns, such as power laws, the
current standard of interpretation is much more vari-
able. That variability arises because we do not have a
comprehensive theory of how measurement and informa-
tion shape the commonly observed patterns. Without a
clear notion of what is expected in different situations,
common and relatively uninformative patterns frequently
motivate unnecessarily complex explanations, and sur-
prising and informative patterns may be overlooked [3].

Currently, the differences between families of common
probability distributions often seem arbitrary. Thus, lit-
tle understanding exists with regard to how changes in
process or in methods of observation may cause observed
pattern to change from one common form into another.

We argue that measurement, described by the rela-
tion between magnitude and information, unifies the dis-
tinct families of common probability distributions. Vari-
ations in measurement scale may, for example, arise from
varying precision in observations at different magnitudes
or from the way that information is lost when measure-
ments are made on aggregates. Our unified explanation
of the different commonly observed distributions in terms
of measurement points the way to a deeper understand-
ing of the relations between pattern and process.

We develop the role of measurement through maxi-
mum entropy expressions for probability distributions.
We first note that all probability distributions can be ex-
pressed by maximization of entropy subject to constraint.
Maximization of entropy is equivalent to minimizing to-
tal information while retaining all the particular infor-
mation known to constrain underlying pattern [7–9]. To
obtain a probability distribution of a given form, one
simply chooses the informational constraints such that
maximization of entropy yields the desired distribution.
However, constraints chosen to match a particular distri-
bution only describe the sufficient information for that
distribution. To obtain deeper insight into the causes of
particular distributions and each distribution’s position
among related families of distributions, we derive the re-
lated forms of constraints through variations in measure-
ment scale.

Measurement scale expresses information through the
invariant transformations of measurements that leave the
form of the associated probability distribution unchanged
[4]. Each problem has a characteristic form of informa-
tion invariance and symmetry that sets the measurement
scale [5, 15, 20] and the most likely probability distribu-
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tion associated with that particular scale [4]. We show
that measurement scales and the symmetries of informa-
tion invariances form a natural hierarchy that generates
the common families of probability distributions. We use
invariance and symmetry interchangeably, in the sense
that symmetry arises when an invariant transformation
leaves an object unchanged [25].

The measurement hierarchy arises from two processes.
First, we express the forms of information invariance and
measurement scale through a continuous group of trans-
formations, showing the relations between different types
of information invariance. Second, the types of aggre-
gation and measurement that minimize information and
maximize entropy fall into two classes, each class setting
a different basis for information invariance and measure-
ment scale.

The two types of aggregation correspond to the two
major families of stable distributions that generalize the
process leading to the central limit theorem: the Lévy
family that includes the Gaussian distribution as a spe-
cial case, and the Fisher-Tippett family of extreme value
distributions. By expressing measurement scale in a gen-
eral way, we obtain a wider interpretation of the families
of stable distributions and a broader classification of the
common distributions.

Our derivation of probability distributions and their
familial relations supersedes the Pearson and similar clas-
sifications of continuous distributions [11]. Our system
derives from a natural description of varying information
in measurements under different conditions [4], whereas
the Pearson and related systems derive from phenomeno-
logical descriptions that generate distributions without
clear grounding in fundamental principles such as mea-
surement and information.

Some recent systems of probability distributions, such
as the unification by Morris [17, 19], provide great in-
sight into the relations between families of distributions.
However, Morris’s system and other common classifica-
tions do not derive from what we regard as fundamental
principles, instead arising from descriptions of structural
similarities among distributions. We provide a detailed
analysis of Morris’s system in relation to ours in Ap-
pendix C.

We favor our system because it derives the relations be-
tween distributions from fundamental principles, such as
maximum entropy and the invariances that define mea-
surement scale. Although the notion of what is fun-
damental will certainly attract controversy, our favored
principles of entropy, symmetries defined by invariances,
and measurement scale certainly deserve consideration.
Our purpose is to show what one can accomplish by start-
ing solely with these principles.

II. MAXIMUM ENTROPY AND

MEASUREMENT SCALE

This section reviews our prior work on the roles of in-
formation invariance and measurement scale in setting
observed pattern [4]. The following sections extend this
prior work by expressing measurement in terms of the
scale of aggregation and the continuous group transfor-
mations of information invariance.

A. Maximum entropy

The method of maximum entropy defines the most
likely probability distribution as the distribution that
maximizes a measure of entropy (randomness) subject to
various information constraints [9]. We write the quan-
tity to be maximized as

Φ = E − κC0 −
n
∑

i=1

λiCi, (1)

where E measures entropy, the Ci are the constraints to
be satisfied, and κ and the λi are the Lagrange mul-
tipliers to be found by satisfying the constraints. Let
C0 =

∫

pydy − 1 be the constraint that the probabili-
ties must total one, where py is the probability distri-
bution function of y. The other constraints are usually
written as Ci =

∫

pyfi(y)dy − f̄i, where the fi(y) are
various transformed measurements of y, and the overbar
denotes mean value. A mean value is either the average
of some function applied to each of a sample of observed
values, or an a priori assumption about the average value
of some function with respect to a candidate set of prob-
ability laws. If fi(y) = yi, then f̄i are the moments
of the distribution—either the moments estimated from
observations or a priori values of the moments set by
assumption. The moments are often regarded as “stan-
dard” constraints, although from a mathematical point
of view, any properly formed constraint can be used.
Here, we confine ourselves to a single constraint of mea-

surement. We express that constraint with a more gen-
eral notation, C1 =

∫

pyT (fy)dy − T̄f , where fy ≡ f(y),
and T (fy) ≡ Tf is a transformation of fy. We could, of
course, express the constraining function for y directly
through fy. However, we wish to distinguish between an
initial function fy that can be regarded as a standard
measurement, in any sense in which one chooses to inter-
pret the meaning of standard, and a transformation of
standard measurements denoted by Tf that arises from
information about the measurement scale.
The maximum entropy distribution is obtained by solv-

ing the set of equations

∂Φ

∂py
=

∂E
∂py

− κ− λTf = 0, (2)

where one checks the candidate solution for a maximum
and obtains κ and λ by satisfying the constraint on total
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probability and the constraint on T̄f . We assume that
we can treat the entropy measures and the maximization
procedure by the continuous limit of the discrete case.
In the standard approach, we define entropy by exten-

sion of Shannon information

E = −
∫

py log

(

py
my

)

dy, (3)

in which this expression may be called Jaynes’s differen-
tial entropy [9], which is equivalent in form to the con-
tinuous expression of relative entropy or the Kullback-
Leibler divergence [1]. Here, we will interpret my by in-
formation invariance and measurement scale as discussed
below. With these definitions, the solution of Eq. (2) is

py ∝ mye
−λTf , (4)

where λ satisfies the constraint C1, and the proportion-
ality is adjusted so that the total probability is one by
choosing the parameter κ to satisfy the constraint C0.

B. Information invariance and measurement scale

Maximum entropy must capture all of the available
information about a particular problem. One form of in-
formation concerns transformations to the measurement
scale that leave the most likely probability distribution
unchanged [3, 4, 9]. Here, it is important to distinguish
between measurements and measurement scale. In our
notation, we start with measurements, fy, made on the
measurement scale y. For example, we may have mea-
sures of squared deviations about zero, fy = y2, with
respect to the measurement scale y, such that f̄y is the
second moment of the measurements with respect to the
underlying measurement scale.
Suppose that we obtain the same information about

the underlying probability distribution from measure-
ments of fy or transformed measurements, G(fy). Put
another way, if one has access only to measurements
G(fy), one has the same information that would be ob-
tained if the measurements were reported as fy. We
say that the measurements fy and G(fy) are equivalent
with respect to information, or that the transformation
fy → G(fy) is an information invariance that describes a
symmetry of the measurement scale.
To capture this information invariance in maximum

entropy, we must express our measurements so that

T (fy) = δ + φT [G(fy)] (5)

for some arbitrary constants δ and φ [4]. Putting this
definition of T (fy) ≡ Tf into Eq. (4) shows that we get
the same maximum entropy solution whether we use the
observations fy or the transformed observations, G(fy),
because the κ and λ constants will adjust to the constants
δ and φ so that the distribution remains unchanged.

III. DERIVING PROBABILITY

DISTRIBUTIONS

The prior section established two key steps. First,
maximum entropy probability distributions have the
form given in Eq. (4) as py ∝ mye

−λTf . Second, the
expression of T (fy) for each problem comes from the
particular information invariance G(fy) associated with
that particular problem. To derive specific probability
distributions, we must pass three further steps, which we
develop in the following sections.

First, we turn the abstract notions of information in-
variance and measurement scale into specific expressions
for the measurement scale function, T (fy). We accom-
plish this by developing the continuous group transfor-
mations for information invariance. Those continuous
transformations provide an abstract hierarchy of forms
for probability distributions based on the scale factor,
my, the specific measured attribute, fy, and how the
information and precision of measurements change with
magnitude expressed by the measurement scale T (fy).

Second, we define my as the relation between the scale
of information invariance and the scale on which we ex-
press probability. To use the maximization of entropy
and the associated minimization of information, we must
relate the information invariance of measurement to the
scale on which underlying processes dissipate informa-
tion. We consider alternative interpretations of scale that
may be associated with the dissipation of information by
aggregation of random perturbations and by measure-
ments of extreme values. We also consider measurements
on a scale that differs from the basis for dissipation of in-
formation.

Third, we consider how to interpret fy, which is the
value used to describe the informational constraint in re-
lation to the measurement scale T (fy), leading to the
constraint T̄f . We discuss fy as a reduction in the dimen-
sionality of information to a single sufficient dimension.
That sufficient dimension sets the form of probability un-
der the various processes of information dissipation that
lead to the common probability distributions.

IV. CONTINUOUS GROUP

TRANSFORMATIONS OF MEASUREMENT

The transformation in Eq. (5) sets the relation between
information invariance and measurement scale. However,
that expression does not show in a simple way the rela-
tions between information and measurement.

To understand commonly observed patterns in relation
to the families of probability distributions, it is help-
ful to express in a general way the underlying symme-
try that determines information invariance and measure-
ment scale. From that underlying symmetry, we may see
more clearly the associated relations between the forms
of probability distributions.
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A. The affine structure

The relation between information invariance and mea-
surement scale in Eq. (5) arises directly from the form
of maximum entropy solutions in Eq. (4), in which prob-
ability distributions are exponentials of the transformed
constraint measures, Tf . In particular, the probability
distribution associated with a constraint is invariant to
an additive shift of the constraint and a multiplicative
change in the scale of the constraint, given by the param-
eters δ and φ in Eq. (5). It is that symmetry in the affine
structure of invariant transformation that ultimately sets
the underlying relations between information, measure-
ment, and the familial forms of the common probability
distributions.
To understand the affine structure of the invariant

transformation in Eq. (5) more clearly, we can express
that invariant transformation as a continuous operator.
First, rearrange Eq. (5) as an equivalent expression

T [G(fy)] = a+ bT (fy) (6)

with new parameters a and b that are easily calculated
from Eq. (5). We show in Appendix A that we can ex-
press the same information invariance of G(fy) by the
differential operator defined as

vw = (α+ βT )
d

dT
(7)

that can be applied to T as

vw(T ) = α+ βT. (8)

Recursive application of vw preserves the affine structure
and so keeps the successive transformations within the
group of admissible invariance relations.
We can express vw as

vw =
d

dw
, (9)

where w ≡ w(fy) is some function of fy. We then have a
differential equation for T as

dT

dw
− βT = α, (10)

which has solutions of the general form

T (fy) = T0e
βw +

α

β

(

eβw − 1
)

, (11)

which as β → 0 goes to T (fy) → T0+αw. Eq. (11) gives
the most general class of measurement functions, T (fy),
for which the associated transformations generated by vw
preserve information invariance.
The operator vw can be applied repeatedly, creating a

recursively generated sequence of deformations that all
satisfy the fundamental relation between deformations

of measurement and information invariance. By think-
ing of w(fy) as a parameter that expresses the defor-
mation of measurement associated with a measurement
scale, T (fy), we can create a sequence in which each suc-
cessive deformation corresponds to a successive class of
probability distributions with familial relations to each
other defined by the structure of the sequence of defor-
mations to w(fy).

B. The general form of probability distributions

From Eq. (4), the maximum entropy solution is

py ∝ mye
−λTf . (12)

From Eq. (11), we can now express the maximum entropy
solution as

py ∝ mye
−Λeβw

, (13)

where Λ = λ(T0 + α/β), and w ≡ w(fy). In the limit
β → 0, this becomes

py ∝ mye
−γw

where γ = λα.
In Appendix B we describe the case of extreme values,

for which we will use my = dT (fy)/dy. When fy = y
and my = dT (y)/dy = T ′, it will be convenient to write

T ′ ∝ w′eβw, (14)

where w′ = dw(y)/dy, and as β → 0, T ′ ∝ w′.

V. INTUITIVE DESCRIPTION OF

MEASUREMENT AND PROBABILITY

Intuitively, one can think of the symmetry of informa-
tion invariance and measurement scale in the following
way. On a linear scale, each incremental change of fixed
length yields the same amount of information or surprise
independently of magnitude. Thus, if we change the scale
by multiplying all magnitudes by a constant, we obtain
the same pattern of information relative to magnitude.
In other words, the linear scale is invariant to multiplica-
tion by a constant factor so that, within the framework of
maximum entropy subject to constraint, we get the same
information about probability distributions from an ob-
servation y or G(y) = cy. In this section, we use fy = y
to isolate the symmetry expressed by particular choices
of T and G.
On a logarithmic scale, each incremental change in pro-

portion to the current magnitude yields the same amount
of information or surprise. Information is scale depen-
dent. We obtain the same information at any point on
the scale by comparing ratios. For example, we gain the
same information from the increment dy/y = d log(y) in-
dependently of the magnitude of y. Thus, we achieve in-
formation invariance with respect to ratios by measuring
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increments on a logarithmic scale. Within the framework
of maximum entropy subject to constraint, we get the
same information about probability distributions from
an observation y or G(y) = yc, corresponding to infor-
mationally equivalent measurements T (y) = log(y) and
T (yc) = c log(y) (see ref. [4]).
The form of a probability distribution under maximum

entropy can be read directly as an expression of how the
measurement scale changes with magnitude. From the
general solution in Eq. (4), linear scales T (y) ∝ y yield
distributions that are exponential in y, whereas logarith-
mic scales T (y) ∝ c log(y) yield distributions that are
linear in yc. Exponential distributions of the form e−λy

arise from underlying linear scales, whereas power law
distributions of the form y−c arise from underlying loga-
rithmic scales.
Many common distributions have compound form, in

which one can read directly how the underlying mea-
surement scale changes with magnitude. For example,
the gamma distribution has form y−ce−λy. When the
magnitude of y is small, the shape of the distribution is
dominated by the power law component, y−c. As the
magnitude of y increases, the shape of the distribution is
dominated by the exponential component, e−λy. Thus,
the underlying measurement scale grades from logarith-
mic at small magnitudes to linear at large magnitudes.
Indeed, the gamma distribution is exactly the expression
of an underlying measurement scale that grades from log-
arithmic to linear as magnitude increases. Nearly every
common probability distribution can be read directly as
a simple expression of the change in the underlying mea-
surement scale with magnitude.

VI. HIERARCHIES OF COMMON

PROBABILITY DISTRIBUTIONS

Given a particular form for the function w(fy), the
measurement scale T (fy) follows from Eq. (11) and the
associated probability distribution follows from Eq. (13).
Although we can choose w in any way that we wish, cer-
tain measurement scales and information invariances are
likely to be common. We discussed in our earlier pa-
per the importance two scales [4]. The first scale grades
from linear to logarithmic as magnitude increases, which
we call the linear-log scale. The second scale inverts the
linear-log scale to be logarithmic at small magnitudes and
linear at large magnitudes, giving the log-linear scale.
The inversion relating the two scales can be expressed by
a Laplace transform, showing the natural duality of the
scales and a connection to recent studies on superstatis-
tics [4].

A. The linear-log scale

In terms of the notation in the present paper, we can
define w to establish a hierarchy of measurement defor-

mations, in which each level in the hierarchy arises from
successive application of the linear-log scaling to the scale
in the previous level in the hierarchy.
To define the linear-log measurement function in terms

of w, note from Eq. (11) that, as β → 0, the forms of w
and the measurement function T become equivalent with
respect to setting the associated probability distribution.
Thus, by setting w, we are defining the limiting form of
the measurement function. With these issues in mind,
define

w(i) = log
(

ci + w(i−1)
)

,

with w(0) = fy. The constant ci sets the transition be-
tween linear and logarithmic scaling: the scale is linear
when w(i−1) is small relative to ci and logarithmic when
w(i−1) is large relative to ci. As ci → 0, we can use
w(i) = log

(

w(i−1)
)

.
It is easiest to see the abstract structure of the mea-

surement hierarchy and the associated forms of probabil-
ity distributions in the limiting case ci → 0, leading to
purely logarithmic deformations. The first row of Table I
begins with the base measurement w(0) = fy. The fol-
lowing two rows show the first two deformations for the
sequence i = 0, 1, 2.

w(fy) py py|β→0

fy mye
−Λeβfy

mye
−γfy

log fy mye
−Λfβ

y myf
−γ
y

log log fy mye
−Λ(log fy)β my (log fy)

−γ

TABLE I. The logarithmic measurement hierarchy and the
associated form of the probability distribution function py
from Eq. (13). Note that β → 0 of each line corresponds to
β = 1 of the following line.

This table gives the hierarchy of probability distribu-
tions that arise from successive logarithmic deformations.
With this structure in mind, we give the full expansion
with ci 6= 0 in Table II.
We discuss the interpretation ofmy and fy below. The

different interpretations of those values lead directly to
specific forms for probability distributions. Before inter-
preting my and fy, we present an alternative measure-
ment scale.

B. The log-linear scale

We obtain the log-linear measurement deformation hi-
erarchy [4] from

w(i) = ciw
(i−1) + log

(

w(i−1)
)

,

from which we obtain the probability distributions in Ta-
ble III. The log-linear scale changes logarithmically at
small magnitudes and linearly at large magnitudes.
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w(fy) py py|β→0

fy mye
−Λeβfy

mye
−γfy

log (c1 + fy) mye
−Λ(c1+fy)

β

my (c1 + fy)
−γ

log (c2 + log (c1 + fy)) mye
−Λ(c2+log(c1+fy))β my (c2 + log (c1 + fy))

−γ

TABLE II. The linear-log measurement hierarchy.

w(fy) py py|β→0

fy mye
−Λeβfy

mye
−γfy

c1fy + log fy mye
−Λfβ

y ec1βfy
myf

−γ
y e−c1γfy

c2 (c1fy + log fy) + log (c1fy + log fy) mye
−Λeβw

mye
−γw

TABLE III. The log-linear measurement hierarchy. In the last line of the table, we use w ≡ w(fy) to shorten the expression.

C. Other scales

The linear-log and log-linear scales describe common
forms of measurement functions. In this section, we
briefly mention some other scales listed in Table IV.
These additional scales illustrate the ways in which mea-
surement relates to the patterns of probability.
The first line of Table IV shows a log-linear-log scale

for a measure on the interval (c1, c2). That scale changes
logarithmically near the boundaries and linearly near the
middle of the range, in which log b describes the skew in
the scaling pattern.
The second line of Table IV shows a linear-log-linear

scale for fy > 0. That scale changes linearly near the
lower boundary of zero, linearly at large magnitudes, and
logarithmically at intermediate values.

VII. THE SCALE OF INFORMATION

The prior section presented probability distributions in
terms of my and fy. This section develops the interpre-
tation of my, which arises from the relation between the
scale of information invariance and the scale on which we
express probability.
The key issue is that maximum entropy requires some

underlying process to dissipate information. With re-
gard to deriving probability distributions, we may con-
sider three aspects of scale in relation to the dissipation
of information. First, we may measure an outcome that
arises from the aggregation of a series of random pertur-
bations. Second, we may measure only the extreme val-
ues of some underlying process, thereby throwing away
all information about the underlying process except the
form of the upper or lower tail of the underlying distribu-
tion. Third, the dissipation of information may occur on
one scale, but we may wish to make our measurements
with respect to another scale.
Each of these three aspects of the scale of information

dissipation leads to a simple interpretation of probabil-

ity measure in maximum entropy analysis. We give a
brief description each scale of information dissipation in
relation to calculating my.

A. Aggregation of perturbations

In the standard application of maximum entropy, ac-
cumulation of random perturbations without constraint
leads to a uniform probability measure, which has maxi-
mum entropy and minimum information. Thus, the scale
at which information dissipates is the same as the scale of
the probability measure. In this case, our formulation of
maximum entropy has my ≡ 1, because any information
that arises from deformation of measurement relative to
the uniform default is included in our expression of mea-
surement scale, T (fy).

B. Extreme values

The distribution of extreme values depends only on
the total (integral) of the probability measure in the tail
of an underlying probability distribution [2]. Because
extreme value distributions arise from integrals of prob-
ability measures, the dissipation of information and the
associated measurement scale for extreme values is ex-
pressed in terms of the cumulative distribution function
(see Appendix B). To obtain the associated form of the
probability measure with respect to the probability dis-
tribution function, py, we must transform the invariant
measurement scale originally expressed with respect to
the integral of the underlying probability measure.
To change from the integral scale of the cumulative

distribution to the scale of the probability measure asso-
ciated with the probability density function, we simply
differentiate the initial measurement scale, T (fy), from
the cumulative distribution scale to obtain the associ-
ated change in probability measure (Appendix B). For
fy = y, we obtain my = dT (y)/dy = T ′. We gave the



7

w(fy) py py|β→0

log
(

(c2 − fy)(fy − c1)
b
)

mye
−Λ(c2−fy)

β(fy−c1)
bβ

my(c2 − fy)
−γ(fy − c1)

−bγ

c2fy + b log(c1 + fy) mye
−Λ(c1+fy)

bβec2βfy
my(c1 + fy)

−bγe−c2γfy

TABLE IV. As β → 0, line 1 is a log-linear-log measurement scale, and line 2 is a linear-log-linear measurement scale.

general form of my = T ′ in Eq. (14).

C. Change of variable

In some cases, information may dissipate on one scale,
but we choose to express probability on another scale.
The log-normal distribution is the classic example. Us-
ing Table I, we may consider measurements that lead to
the Normal or Gaussian distribution by either analyzing
squared deviations from a central value, fy = (y − µ)2

in line one of Table I with β → 0 or, equivalently, linear
perturbations of fy = (y − µ) in line two of Table I with
β = 2. In these cases, the perturbations are direct mea-
sures rather than the tail probabilities of extreme values,
so my = 1, and we have the standard form of the Gaus-

sian as py ∝ e−γ(y−µ)
2

.
If we prefer to analyze values on a logarithmic scale,

then we make the transformation y → log y. This case
does not arise from invariant information and the asso-
ciated measurement transformation, but rather from a
change of variable to a different scale. So we must change
our measure, as in any standard change of variable. In
this case, the change of measure is mydy = d log y =
dy/y, thus my = y−1 and we obtain the log-normal dis-

tribution py ∝ y−1e−γ̃(log y−µ̃)
2

, where γ̃ and µ̃ are trans-
formed appropriately.

VIII. SUFFICIENCY: REDUCTION OF

INFORMATION

The algorithm of maximum entropy allows us to choose
any constraint T (fy). However, one of our main goals is
to provide a clear rationale for the choice of constraint,
so that maximum entropy is more than a tautological de-
scription of probability distributions. We have expressed
the choice of the measurement scale, T , in terms of in-
formation invariance set by the underlying problem. Al-
though information invariance may take various forms,
we followed our earlier paper [4] in which we defended
the linear-log and log-linear scales as likely to be common
scales associated with common information invariances.
Once we have set the transformation T (fy) by these

common information invariances, many widely observed
probability distributions follow. In some cases, deriv-
ing probability distributions requires using an observ-
able, fy 6= y, that differs from the scale y of the un-
derlying probability measure. For example, we may use

the squared deviations from a central location, or a frac-
tional moment fy = yα, where α is not an integer [3].
Use of fy = y or of squared deviations fy = (y − µ)2 is
widely accepted. Such choices lead to fy being a suffi-
cient reduction of all of the information in observations
in order to express common probability distributions.
For our purposes in this paper, we simply note that

we can derive many common distributions by the widely
accepted use of fy = y or fy as a squared deviation. But
the reasons that particular choices of fy are sufficient
have not been fully explained with regard to maximum
entropy, particularly fractional moments such as fy = yα

[3]. Those reasons probably have to do with the sort
of analysis described by large deviation theory [24], in
which the retained information arises from the minimal
descriptions of location and scale that remain when one
normalizes the consequences of a sequence of perturba-
tions so that one obtains a stable limiting form.

IX. CONCLUSIONS

Table V shows many of the commonly observed prob-
ability distributions. Those distributions arise directly
from maximum entropy applied to various natural mea-
surement scales. The measurement scales express infor-
mation invariances associated with particular types of
problems and the scale on which information dissipation
occurs. We confined ourselves to various combinations
of linear and logarithmic scaling, which were sufficient to
express many common distributions. Our method read-
ily extends to other types of information invariance and
measurement scale and their associated probability dis-
tributions.
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Distribution py T.L.C my fy Notes and alternative names

Gumbel eβy−Λeβy

I.1.2 T ′ y

Gibbs/Exponential e−γy I.1.3 T ′, 1 y

Gauss/Normal e−γy2

I.1.3 1 y2

Log-Normal y−1e−γ(log y)2 I.1.3 y−1 y2 Change of variable y → log y

Fréchet/Weibull yβ−1e−Λyβ

I.2.2 T ′ y

Stretched exponential e−Λyβ

I.2.2 1 y Gauss with β = 2

Symmetric Lévy e−Λ|y|β (Fourier domain) I.2.2 1 |y| β ≤ 2; Gauss (β = 2), Cauchy (β = 1); ref. [3]

Pareto type I y−γ I.2.3 T ′, 1 y

Log-Fréchet y−1(log y)β−1e−Λ(log y)β I.3.2 T ′ y Also from Fréchet: y → log y, my = y−1T ′(y)

?? e−Λ(log y)β I.3.2 1 y Also stretched exponential with fy = log y

Log-Pareto type I y−1 (log y)−γ−1 I.3.3 T ′ y Log-gamma; Pareto I: y → log y, my = y−1

?? (log y)−γ I.3.3 1 y Also from Pareto I with fy = log y

Pareto type II (c1 + y)−γ II.2.3 1 y Lomax

Generalized Student’s
(

c1 + y2
)−γ

II.2.3 1 y2 Pearson type VII, Kappa; includes Cauchy

?? (log (c1 + y))−γ II.3.3 1 y c2 = 0; also Pareto I with fy = log(c1 + y)

Gamma y−γe−c1γy III.2.3 1 y Pearson type III, includes chi-square

Generalized gamma y−kγe−c1γy
k

III.2.3 1 yk Chi with k = 2 and c1γ = 1/2

Beta (c2 − y)−γ(y − c1)
−bγ IV.1.3 1 y Pearson type I; log-linear-log on (c1, c2)

Beta prime/F y−bγ(1 + y)(b+1)γ IV.1.3 1 y

1+y
Pearson type VI, y > 0

Gamma variant (c1 + y)−bγe−c2γy IV.2.3 1 y Linear-log-linear pattern as y rises from zero

TABLE V. Some common probability distributions. The column T.L.C gives the table, line, and column of the underlying
form presented in the earlier tables of abstract distributions. For example, I.1.2 refers to Table I, first line, second column.
The measurement adjustment is given as either my = 1 for direct scales, or my = T ′ for extreme values as in Eq. (14), along
with any consequences from a change of variable such as y → log y. Cases in which the same structural form arises for either
my = T ′ or my = 1 are shown as T ′, 1, without adjusting parameters for trivial differences. The value of fy gives the reduction
of data to sufficient summary form. Direct values y, possibly corrected by displacement from a central location, y − µ, are
shown here as y without correction. Squared deviations (y−µ)2 from a central location are shown here as y2. See refs. [11–13]
for listing of distributions. Many additional forms can be generated by varying the measurement function. In the first column,
the question marks denote a distribution for which we did not find a commonly used name.

APPENDICES

Appendix A: On the association between

measurement functions and classes of scale

transformations

If the transformation fy → G(fy) is an invariance of
a measurement function T , it is clear that repeated ap-
plications of G, expressed as G ◦ G,G ◦ G ◦ G, . . ., are
also invariances of T . It is the larger group of invariances
that we wish to identify with the measurement scale that
defines T , and not only a single transformation. To sim-
plify notation in this Appendix, we use fy = y. The same
analysis applies to fy.

In general, making a unique association between a
transformationG and a measurement function T is incon-
venient for finite transformations, because G combines a
magnitude and a direction of deformation. The magni-
tude is added under compositions G ◦ G . . ., while the
direction remains invariant. As we will derive below, the
relevant measure of the magnitude of a transformation
as in Eq. (6) will be ∼ log b, and the relevant measure
of direction will be a/ (b− 1). To isolate the direction of

G that may be associated with a measurement function
T , we work with infinitesimal rather than finite affine
transformations.
Infinitesimal transformations are constructed from

Eq. (6) in the text by writing a ≡ ǫα, (b− 1) ≡ ǫβ, and
then taking ǫ → 0 for fixed α and β. An infinitesimal
transformation Gǫ then satisfies Eq. (6) in the form

T [Gǫ(y)] = T (y) + ǫ [α+ βT (y)] . (A1)

G itself must therefore also be infinitesimally different
from the identity, and must have the form

Gǫ(y) = y + ǫv(y) . (A2)

for some function v(y).
We introduce a quantity v̂ called the generator of the

deformation, such that the operator eǫv̂ generates the in-
finitesimal transformations Eqs. (A1,A2), and such that
finite transformations G or affine transformations Eq. (6)
are produced by the exponential operation of v̂ with non-
infinitesimal ǫ. Compounding a function corresponds to
addition of parameters ǫ, as may be checked from the
power-series definition of eǫv̂ within its radius of conver-
gence.
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We define a representation of the generator v̂ as an
explicit differential operator that produces the correct
transformation on the argument y or T (y), as appropri-
ate. The two representations of the generators are related
as

T [y + ǫv(y)] =

[

1 + ǫv(y)
d

dy

]

T (y)

=

[

1 + ǫ (α+ βT )
d

dT

]

T.

(A3)

From the requirement that the two expressions produce
the same result, we may assign the representations

v̂ ↔ v(y)
d

dy
≡ d

dw

↔ (α+ βT )
d

dT
(A4)

for some function w(y) =
∫ y

dy′1/v(y′).
Regarding T as a function of argumentw rather than y,

and setting equal the two coefficients of ǫ in Eq. (A3), we
obtain a relation between any function w(y), coefficients
α and β, and the function T in the form

dT

dw
= α+ βT. (A5)

This is rearranged to produce Eq. (10).

From the solutions to Eq. (A5), we may readily check
that the action of the transformation eǫv̂ for arbitrary ǫ
(not necessarily small) is

T [G(y)] = eǫv̂T (y) =
α

β

(

eǫβ − 1
)

+ eǫβT (y) , (A6)

from which we recover expressions for the coefficients a
and b in Eq. (6). Under composition G → G ◦ G, the
parameter ǫ → 2ǫ. The composition rules for a and b

under composition of G may be worked out easily, but
depending on the function w(y), the direct composition of
finite transformations G on y may be quite complicated.

Appendix B: Information measures for cumulative

distributions

The presence of the measure my in the probability
density function in Eq. (12) complicates the discussion
of measurement invariance, because in the general case
my is not required to obey any prescribed transforma-
tion when fy → G(fy). In general, y need not even be
a numerical index, whereas T (fy) is necessarily numeri-
cal because it is proportional to an information measure
− log (py/my).
The class of cases in which the measurement function,

T , completely controls the properties of py are those in
which measurement constrains the cumulative probabil-
ity distribution function rather than the probability den-
sity function. For these cases my is not independent, but
is given in terms of T and fy, as we now show.
Relative entropy is ordinarily defined for the probabil-

ity density. However, if we set

my =
dT (fy)

dy
=

dfy
dy

T ′(fy) , (B1)

then my becomes a Lebesgue measure on y with re-
spect to the increment dT . The probability density from
Eq. (12) becomes

py ∝ d

dy
e−λT (fy). (B2)

Eq. (B2) defines the relation between a probability den-
sity and its cumulative distribution, meaning that under
a suitable ordering of y, we may take e−λT (fy) to be the
cumulative distribution.
With this choice of measure, the relative entropy E

from Eq. (3) becomes

−
∫

dy py log

(

py
my

)

= −
∫

dy
dT

dy

(

py
dT/dy

)

log

(

py
dT/dy

)

= −
∫

dTpT log pT , (B3)

in which pT is the probability density defined on the vari-
able T . Since the maximum-entropy solution is always
exponential in T , the relative entropy of Eq. (B3) is ef-
fectively an information function for the cumulative dis-
tribution.

An application in which constraints under aggregation
apply by construction to the cumulative distribution is
the computation of extreme-value statistics [14]. The cu-

mulative probability distribution for the maximizer or
minimizer of a sample of n realizations of a random vari-
able is the product of n factors of the cumulative distri-
bution for a single realization.

It was also noted in ref. [3] that the relative entropy
may be evaluated on the characteristic function (Fourier
or Laplace transform) of a distribution, and that the
maximum-entropy solutions in the transformed domain
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are the Lévy stable distributions. The characteristic
function at frequency argument k = 0 always takes value
unity. Therefore it, like a cumulative distribution, has
a reference normalization of unity, and indeed, the sym-
metric Lévy-stable distributions [21] correspond in form
to the Weibull family of extreme value distributions.
Both are obtained within our classification for my de-
fined by Eq. (B1), for suitable reductions fy.

Appendix C: The Morris Natural Exponential

Families in relation to entropy-maximizing

distributions

1. Symmetry-based approaches to select or to

classify probability distributions

Many systems, since Pearson’s, for either selecting or
classifying probability distributions, have been based on
symmetry groups, as our method is. (Pearson’s system
may be seen as one based on the analytic structure of the
log-probability, a criterion that we will return to con-
sider in a moment.) The systems differ in generality,
depending on the space in which the symmetry group
acts, and depending on whether it constrains a single
distribution or a family. Two methods based on sym-
metry (ours and that of Carl Morris, described below)
have interpretations in terms of scale invariance of ob-
servables. Both systems collect probability distributions
into families, whose members differ only by a scale factor.
A third approach (known as Objective Bayesian meth-
ods) applies symmetry to the underlying measure space
which, as we note in Appendix B, may be very different
from the space of observed magnitudes. This approach
is concerned not directly with families of distributions,
but with the particular distribution defined by a refer-
ence measure. We will briefly summarize the overlaps
and differences of these methods.
Objective Bayesian methods, initiated by Jeffries [10]

but given the interpretation of objectivity largely by
Jaynes [6], recognize that the reference measure my

in a relative entropy—beyond being needed to make
logarithms well-defined and independent of change of
variables—may reflect information about measurement
scales. By ensuring that the reference measure is consis-
tent with known symmetries of the phenomenon under
study (which are not generally expressed within partic-
ular sample observations), Objective Bayesian methods
seek to systematize the entire maximum-entropy proce-
dure. This use of the reference measure is consistent
with our treatment of measurement, though by itself it
is more limited, as we discuss in Ref. [4], and it may also
be misleading in cases [22]. In the context of the present
discussion, the most important limitation of Objective
Bayesian methods is that they select properties of a sin-
gle distribution my, rather than properties of a family.
Our approach broadens the class of symmetries that

can be considered, beyond those available to Objective

Bayesian methods, as discussed in Sec. 7 of Ref. [4].
Through the measurement function, it relates a poten-
tially nonlinear contour of deformations of measured
magnitudes to a linear transformation within the affine
group that exists for general maximum-entropy prob-
lems. We have embedded distributions within a hier-
archy by using the two-parameter freedom of the affine
group to provide a range of responses of information to
the change in the scale of measurement.

2. The Morris classification of distributions in

relation to maximum entropy

In a pair of papers in 1982 and 1983 [17, 18], Carl
Morris proposed another classification system for prob-
ability distributions, which overlaps both with Objec-
tive Bayesian methods and with our approach. Like our
method, Morris’s concerns families of probability distri-
butions generated by a change in constraint or measure-
ment scale. Like all of the approaches we have mentioned,
Morris’s system uses relative entropy in a conventional
maximization framework. That system differs from ours
in using only a linear constraint on what Morris terms the
natural observation, and obtaining nonlinear dependence
on that constraint through a second boundary condition
placed on entropy.
The Morris system blends interesting elements of Pear-

son’s restrictions on analytic structure, our use of sym-
metry, and the Objective Bayesian concern with the ref-
erence measure, as follows: Morris considers distribu-
tion families that are invariant under offset and rescaling
of the natural observation, which Morris labels X , and
which is analogous to using a coordinate system that is
always linear in our fy. His classification therefore does
not not invoke any explicit representation of the sym-
metries inherent in differing measurement systems. In
order to encompass distributions that are not simply ex-
ponential in the values x (taken by the observation X),
he instead restricts the form of the reference measure in
a relative entropy, analogous to our my. Unlike Objec-
tive Bayesian methods, however, this restriction does not
come from the direct action of a symmetry on the refer-
ence measure, but rather from the form of the relative
entropy across the family of distributions produced by
scale change.
The classification system of Ref. [17] derives from the

cumulant-generating function and the relation between
the variance and the mean as the parameter in this gen-
erating function is shifted. The distributions that define
the cumulant-generating function constitute what Mor-
ris calls natural exponential families (NEF), and the de-
pendence of variance on mean within these families is
restricted in his system to be an exact quadratic polyno-
mial. The resulting subclass of distributions within the
NEF class is termed QVF (for quadratic variance func-

tion). The mean-variance relation that defines the NEF-
QVF distributions is preserved under offset and rescal-
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ing of the natural observation, and under convolution.
Therefore, the distributions in this class would be ex-
pected to arise frequently in problems of aggregation. We
show in this appendix that the QVF condition is equiv-
alent to the requirement that the relative entropy over
a family has the form (up to analytic continuation) of
a Kullback-Leibler divergence. The analytic continua-
tion is determined by the roots of the quadratic variance
polynomial, and these roots in turn have a relation to the
roots for log-probability in the Pearson system.

The distributions selected by Morris’s criterion are ei-
ther bounded, or have exponential or faster decay in their
tails. We show that, when they are classified according
to their analytic structure, they are in fact either inte-
rior members or degenerate limits of only two families
of distributions: One family of continuous-valued dis-
tributions is associated with complex-conjugate roots of
the variance function, and a complex analytic continu-
ation of the Kullback-Leibler form for relative entropy.
A second family of discrete-valued distributions is asso-
ciated with real-valued roots, and real-valued continu-
ations of the Kullback-Leibler relative entropy. In this
sense, the Morris classification shows that six important
distribution families are in fact selected by a single set
of invariances—of these, the offset and scale invariances
are instances of our linear measurement rescaling. These
selected families are therefore very commonly observed,
but also rather tightly restricted. Preservation of a func-
tional class under convolution is similar to the criterion
leading to the extreme-value or Lévy distributions, as we
have discussed in the main text, and is therefore one of
many forms of measurement invariance that may be con-
sidered.

Here we will re-formulate the Morris criterion and its
solutions within a standard framework of maximum en-
tropy. We will show that the role of the reference mea-
sure in a relative entropy is equivalent to that of a second

observed quantity, which will generally be linearly inde-
pendent of the natural observation X . Scale change of
the natural observation defines what is known as an ex-
pansion path, which consists of the distributions within
an exponential family. The second observed quantity, as-
sociated with the reference measure, is given a gradient
constraint rather than a value constraint. It is through
the interaction of these two constraints that nonlinear
dependence on x is obtained in the log-probability. At
the end of the Appendix we mention a relation between
the Morris system and the Pearson system based on the
log-probability. When the Morris QVF criterion is ex-
pressed as a formal constraint on entropy, this form is
imposed on the leading terms of log-probability by the
large-deviations property of cumulant-generating func-
tions.

3. Definition of the natural exponential families

The NEF distributions are defined in relation to the
cumulant-generating function, which arises naturally in
the method of maximum entropy. The most direct way
to re-formulate the original presentation of Refs. [17, 18]
in terms of maximum entropy is to assume a (Shannon-
type) entropy in a higher-dimensional state space than
the univariate space of the natural observation X . The
high-dimensional states have non-uniform density when
they are projected onto the one dimension in which the
probability distribution varies. Once a Lagrangian is de-
fined from this initial re-formulation, it becomes easy to
re-interpret the density of states as a reference measure in
a relative entropy (and the latter interpretation is more
general). The cumulant-generating function is then the
Legendre transform of this relative entropy. We develop
the two interpretations in order, to connect the deriva-
tions of Refs. [17, 18] systematically to the formulation
we use in the main text.

a. The Stieltjes measure as a density of states

Ref. [17] introduces a Stieltjes measure dF (x), and an
initial probability distribution P0 associated with this
measure, defined by

P0(X ∈ A) =

∫

A

dF (x) , (C1)

for an arbitrary set A in the range of x. With respect
to this original probability measure, Morris introduces
the exponential families in terms of a probability mass
function

φ(x | θ) = exθ−ψ(θ), (C2)

which multiplicatively weights the original measure
dF (x). The normalizing constant ψ(θ) in Eq. (C2) is
the cumulant-generating function, given by

eψ(θ) ≡
∫

dF (x) exθ. (C3)

The NEF distributions are the normalized versions of the
distributions that define the cumulant-generating func-
tion. In the original Stieltjes measure, the probabilities
defined from these distributions are

P (X ∈ A) =

∫

A

dF (x) exθ−ψ(θ). (C4)

With respect to the measure dF (x), we may obtain the
solutions (C2) by extremizing the Lagrangian

L = −
∫

dF (x) φ(x) logφ(x) + θ

(
∫

dF (x) φ(x) x− µ

)

− κ

(
∫

dF (x) φ(x)− 1

)

(C5)
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over its natural argument φ(x) and the Lagrange multi-
pliers θ and κ. Here we have replaced the notation λ from
the text with Morris’s θ for ease of reference. From its
role as a normalization constant, the multiplier κ must
evaluate to the cumulant-generating function ψ(θ) on so-
lutions.
Lagrangian problems of this form arise frequently in

systems where a high-dimensional state space is pro-
jected down onto a single coordinate x, which is the only
observed property on which distributions depend. The
Lagrangian (C5) effectively treats φ(x) as the ratio of a
probability density to a uniform reference measure on the
original high-dimensional space. The Stieltjes measure
dF (x) is the marginal projection of the original measure
onto the coordinate x, and the derivative dF/dx is known
as the density of states. (dF (x) need not be smooth,
and dF/dx may readily be a non-continuous distribu-
tion, such as a sum of Dirac δ-functions, representing a
discrete rather than continuous probability density).
The entropy in this formulation appears as a standard

Shannon entropy (equivalent to a relative entropy with a
uniform reference measure) in the high-dimensional co-
ordinates. It evaluates to the Legendre transform of the
cumulant-generating function,

S(µ(θ)) ≡ −
∫

dF (x) p(x | θ) log p(x | θ)

= −θµ(θ) + ψ(θ) , (C6)

in which µ(θ) is the mean value in the distribution
p(x | θ). θ is the natural argument of ψ, while µ from
the variational problem is the natural argument of S.
Therefore it is usual to write this Legendre transform
pair as

ψ(θ) = S(µ)− µ
dS

dµ

∣

∣

∣

∣

µ=µ(θ)

S(µ) = ψ(θ)− θ
dψ

dθ

∣

∣

∣

∣

θ=θ(µ)

(C7)

In the second line, θ(µ) is the inverse function to µ(θ).
(In statistical mechanics, where −θ is the inverse temper-
ature if x is the energy, ψ arises as θ times the Helmholtz

Free Energy.)

We note several properties of these functions that will
be useful in understanding Morris’s NEF-QVF families.
When θ = 0 no correction to the normalization is needed
in P (X ∈ A), so we have immediately that ψ(0) = 0
as well. If we denote by µ0 ≡ µ(0), then it follows that
S(µ0) = 0 also. The definition of the Legendre transform
pair (C7) gives the important dual relations

dψ(θ)

dθ
= µ(θ)

dS(µ)

dµ
= −θ(µ) . (C8)

It follows that dS/dµ|µ0
= 0. With these two constants

of integration, S(µ) will be completely specified by the
form of its second derivative.

b. Replacing the density of states with a reference measure

in relative entropy

For the univariate distributions, whether continuous
or discrete, we may define a shorthand for Eq. (C4) by
identifying the probability density function on x as

px|θ ≡
dF

dx
exθ−ψ(θ). (C9)

The Lagrangian (C5) becomes, under this change of vari-
able,

L = −
∫

dx px log

(

px
dF/dx

)

+ θ

(
∫

dx pxx− µ

)

− κ

(
∫

dx px − 1

)

. (C10)

The constraint terms are unchanged, but the entropy is
now manifestly a relative entropy for the density px with
reference measure dF/dx.

c. Arriving at nonlinear expansion paths through mixed

boundary conditions

The Morris families, like the Pearson families and like
our classes based on measurement, include distributions
that are nonlinear in the values x taken by the natu-
ral observation X . Both Morris’s families and ours are

based on affine transformation, so that their distribu-
tions form what are known as expansion paths. (This
term is used also in economics for constrained maximiza-
tion problems, in which µ generally describes a budget
constraint. The original usage, in statistics, is mentioned
in Ref. [17].) Whereas we achieve nonlinear dependence
on x by considering the symmetries of measurement,
the Morris system achieves nonlinearity through the use
of mixed boundary conditions, when this system is de-
scribed in terms of entropy maximization. By using two
constraints—one to specify the family and the other to
fix a point on the expansion path—Morris is able to apply
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a fixed-gradient condition with respect to one constraint,
and a fixed-value condition for the natural observation.
Because we specify distributions from the affine trans-
formation of a single observable, we must incorporate
nonlinearities into the measurement function itself.

Here, we derive the NEF criterion by converting the
relative entropy to a form in which the reference mea-
sure may be interpreted as a second observable. The
ubiquitous use, in statistical physics and thermodynam-
ics, of cumulant-generating functions and their Legendre

transforms under mixed boundary conditions, provides
intuition from familiar systems for the meaning of the
resulting expansion paths. In the next section we de-
rive the way in which the QVF condition of Morris then
places constraints on the reference measure, which plays
the role of the secondary observation.
The Lagrangian (C10) is an instance of a more general

class of maximum entropy problems in which the rela-
tive entropy has uniform measure (and therefore has the
form of a Shannon entropy), and the reference measure
appears as an additional constraint term,

L = −
∫

dx px log px + θ

(
∫

dx pxx− µ

)

+ λ

∫

dx px log

(

dF

dx

)

− κ

(
∫

dx px − 1

)

. (C11)

Here a variable λ has been added as a parameter in the
variational problem, parallel to the parameter µ in the
constraint on

∫

dx pxx. When λ = 1, Eq. (C11) reduces
to Eq. (C10). and the choice of reference measure does
not matter because it cancels in the two logarithms. For
more general λ, a uniform reference measure is explic-
itly required to make the logarithms well-defined. The
distribution solving Eq. (C11) is

px = eλ log(dF/dx)+θx−κ. (C12)

The Shannon entropy of Eq. (C11) is maximized sub-
ject to mixed constraints, which may be seen as follows.
The entropy with two constraint terms is a function of
two arguments S(µ, ξ), where ξ = 〈log (dF/dx)〉 at the
given values of λ and µ. Then λ = −∂S/∂ξ, just as
θ = −∂S/∂µ from Eq. (C8). Because µ is an argument to
the entropy, whereas λ is a gradient, problems of this sort
resemble solutions to differential equations under mixed
Dirichlet and Neumann boundary conditions.

The set of distributions (C12), as λ is held fixed and
µ is varied, make up the expansion path for the entropy
with respect to constraint

∫

dx pxx. The natural expo-
nential families are the distributions on this expansion
path, given a gradient constraint with respect to the ob-
servable

∫

dx px log (dF/dx).

4. The subset of natural exponential families with

quadratic variation

Any reference measure may in principle form the
basis for an expansion path with mixed constraints.
In contrast to Objective Bayesian methods, in which
log (dF/dx) is constrained by symmetry, the Morris sys-
tem constrains reference measures by restricting the form
of the variance function—equivalent to restricting the
form of the entropy—along the nonlinear expansion path.

a. The QVF family and Kullback-Leibler entropies

The definition of the cumulant-generating function is
that, not only does dψ/dθ = µ, but d2ψ/dθ2 is the vari-
ance of the observation X . Morris defines its relation to
the mean µ as a variance function V (µ). The quadratic

variance relation is the dependence

dµ

dθ
= v0 + v1µ+ v2µ

2. (C13)

By definition of θ(µ) and µ(θ) as inverse functions,
it follows that the variance is also the (geometric and
algebraic) inverse of the curvature of the relative entropy.
We differentiate the second line in Eq. (C7) twice and
substitute Eq. (C13), to produce

d2S

dµ2
= − dθ

dµ
=

−1

v0 + v1µ+ v2µ2
. (C14)

Because we have first and second constants of integra-
tion from the relations following Eq. (C7), Eq. (C14) has
an unambiguous integral. To assign meaning to this in-
tegral, however, and in the process to expose a relation
between the Morris and Pearson approaches to classifica-
tion, we first factor the variance function into an overall
normalization and the roots of the polynomial. Write

v0 + v1µ+ v2µ
2 ≡ v2 (µ− µ1) (µ− µ2) , (C15)

with the solutions

µ1,2 = − v1
2v2

∓

√

(

v1
2v2

)2

− v0
v2
. (C16)

Then the integral of Eq. (C14) becomes

v2S =
(

µ2 − µ

µ2 − µ1

)

log

(

µ2 − µ

µ2 − µ0

)

+

(

µ− µ1

µ2 − µ1

)

log

(

µ− µ1

µ0 − µ1

)

.

(C17)
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If we denote by ϕ ≡ (µ− µ1) / (µ2 − µ1), the analytic
continuation of a partition of the unit interval, we may
write Eq. (C17) as

v2S = (1− ϕ) log

(

1− ϕ

1− ϕ0

)

+ ϕ log
ϕ

ϕ0

= D(~ϕ||~ϕ0) . (C18)

In the second line we use ~ϕ to stand for the “probabil-
ity distribution” (ϕ, 1− ϕ) on two atoms, and likewise
for ~ϕ0. D(~ϕ||~ϕ0) is the Kullback-Leibler divergence of
~ϕ from the distribution ~ϕ0 defined by the equilibrium
mean µ0 and the variance function. The standard form
for the curvature of a Kullback-Leibler divergence S may
be written

v2(µ2 − µ1)
2 d

2S

dµ2 =
1

ϕ (1− ϕ)
. (C19)

A slight variation on the formula (C17), making use of
forms (C16) for the roots, the Legendre transform rela-
tions (C7), and the constants of integration, reads

2v2ψ(θ) + v1θ = log

(

(µ2 − µ) (µ− µ1)

(µ2 − µ0) (µ0 − µ1)

)

= log

(

ϕ (1− ϕ)

ϕ0 (1− ϕ0)

)

. (C20)

This integral relation between the cumulant-generating
function and the variance function appears as Eq. 3.7 in
Ref. [17].

b. Two fundamental NEF-QVF families, and various limits

Working in terms of the signs and magnitudes of the
coefficients v0, v1, v2, Morris identifies exactly six in-
equivalent natural exponential families with quadratic
variance functions. Three are continuous (Gaussian,
gamma, and hyperbolic-cosecant probability density
functions), and three are discrete (binomial, negative-
binomial, and Poisson probability mass functions), up
to offset and scaling of the natural observation X . We
will see here that, working in terms of the analytic struc-
ture of the entropy (C17), and a simple classification of
the roots µ1,2, we may identify two main classes, cor-
responding to the continuous and discrete distributions,
and various limiting forms of these, which complete Mor-
ris’s families.
The quantity that distinguishes the continuous from

the discrete NEF-QVF families is the discriminant d ≡
v21 − 4v0v2 = 4v22(µ2 − µ1)

2
(which is unchanged by off-

set of X). In the case where d > 0, the variance func-
tion (C13) has two real roots, while if d < 0, it has two
complex-conjugate roots. By choice of offset and scale,
we may obtain Morris’s canonical families by making the
complex-conjugate roots purely imaginary when d < 0,
or by taking one of the two real roots to lie at the origin
if d > 0.

We begin with the imaginary roots, which select the
continuous-valued NEF-QVF distributions. The canoni-
cal form for these is obtained when v1 ≡ 0, and v0, v2 > 0.
We may then define

µ1,2 ≡ ∓iΛ, (C21)

with Λ ≡
√

v0/v2.
The relative entropy, about a distribution px|0 in the

NEF-QVF family with mean µ0, must have the form

v2S =
1

2
log

(

Λ2 + µ2

Λ2 + µ2
0

)

+
µ

Λ

[

tan−1
(µ0

Λ

)

− tan−1
(µ

Λ

)]

=
1

2
log

(

Λ2 + µ2

Λ2 + µ2
0

)

+
µ

Λ

[

tan−1

(

Λ

µ

)

− tan−1

(

Λ

µ0

)]

.

(C22)

The relation of θ to µ and µ0 is

v2θ =
1

Λ

[

tan−1
(µ

Λ

)

− tan−1
(µ0

Λ

)]

. (C23)

If we choose a background in which µ0 = 0 (by freedom
to offset X), it follows that we may write the cumulant-
generating function as

v2ψ =
1

2
log
(

1 + tan2 (v2Λθ)
)

. (C24)

The canonical normalization for this family of distri-
butions is given by v2 = 1. One may check directly that
they are produced by the family of hyperbolic-cosecant
density functions

px|0 =
1

Λ

1

eπx/2Λ + e−πx/2Λ
(C25)

(The proof is by contour integral. Check that

cos (Λθ) eψ(θ) =
1

π

∫ ∞

0

du

1 + u2

(

(iu)
θ̃
+ (−iu)θ̃

)

=
1

π

∫ ∞

−∞

du (iu)
θ̃

1 + u2
= 1, (C26)

with integration variable u ≡ eπx/2Λ and shifted param-
eter θ̃ ≡ 2Λθ/π. The contour that avoids branch cuts, in
the log-transform to variables u, closes in the negative-
imaginary half-plane, encircling the pole u = −i.) The
distributions at Λ = 1 are the canonical densities given
in Ref. [17], Eq. 4.2
It is straightforward to check that, as Λ → ∞, the

relative entropy (C22) reduces to the form

S → − (µ− µ0)
2

2v0
, (C27)

for a Gaussian distribution

px|0 =
1√
2πv0

e−(x−µ0)
2/2v0 (C28)
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with arbitrary mean. We have used v2Λ
2 ≡ v0 as v2 → 0.

In the other limit, as Λ → 0, it is convenient to take
v2 = 1/q ≡ 1/µ0, in which case we recover the relative
entropy

S → µ0 − µ+ µ0 log

(

µ

µ0

)

, (C29)

appropriate to the standard gamma distribution

px|0 =
1

Γ (q)
x(q−1)e−x. (C30)

Two of the three continuous-valued NEF-QVF fami-
lies, therefore, are degenerate limits of the hyperbolic-
cosecant distribution, which represents the generic case.
The discrete-valued families, following when the vari-

ance function has real roots, may be handled in similar
fashion. We choose canonical forms by offsetting x to set
µ1 = 0, and attain this in the variance function by taking
v0 → 0. The canonical scale for x is then given by taking
v1 = 1.
For the discrete distributions, there are two “interior”

families of solutions (the binomial and negative bino-
mial), and one limiting family (the Poisson) that may
be reached from either of them. The root µ2 = −v1/v2
in all cases. To obtain the binomial distribution on N
samples with mean µ0 = pN ,

px|0 =

(

N

x

)

px(1− p)
N−x

, (C31)

we take µ2 = N , corresponding to v2 = −1/N . For this
distribution only, the range is finite, 0 ≤ x ≤ N . The
relative entropy takes the standard form of a Kullback-
Leibler divergence without extending the definition of ϕ
by analytic continuation,

S → −N
{

(

1− µ

N

)

log

(

1− µ/N

1− p

)

+
µ

N
log

(

µ/N

p

)}

= −N
{

(

1− µ

N

)

log

(

1− µ/N

1− µ0/N

)

+
µ

N
log

(

µ

µ0

)}

= −ND(~µ/N ||~p) . (C32)

The negative binomial distribution is immediately ob-
tained by taking N → −N in the second line of Eq. (C32)
while holding µ0 fixed. The corresponding distribution
is

px|0 =

(

N − 1 + x

x

)

px(1− p)
N
, (C33)

with p = µ0/ (N + µ0). This is the other “interior” solu-
tion, with µ2 = −N and therefore v2 = 1/N .
The Poisson distribution is the limit of either of the

previous two forms as v2 → 0, so µ2 → ±∞, at p = µ0

fixed. The distribution is

px|0 = e−µ0
µx0
x!
, (C34)

and the entropy becomes

S → µ− µ0 − µ log

(

µ

µ0

)

, (C35)

For either of the negative binomial or the Poisson, the
range of x is unbounded, x ≥ 0.
The relative entropy expressions (C29,C35) for the

gamma and the Poisson distributions are the same func-
tional form, under exchange of the reference mean µ0

with the distribution mean µ. Their respective distribu-
tions are likewise interchanged under exchange of x with
µ0, except that in the gamma case (C30), a further shift
µ0 → µ0 − 1 must be performed as well. We will return
to integer shifts of this form in the next section.
(We note that the association of imaginary roots

with continuous-valued distributions, and of real roots
with discrete-valued distributions, is a defining struc-
tural feature of quantum-mechanical distributions for
particles with finite temperature but continuous time-
dependence [16]. This is one of many interesting connec-
tions to the NEF-QVF families that it will not be possible
to explore in this publication.)

5. Relations to the Pearson system through

large-deviations formulae

It is instructive to compare the forms for the entropies
of the distributions in the NEF-QVF families to the log-
arithms of the probability densities or mass functions
themselves. By virtue of the entropy as a large-deviations
measure [24], it and the log-probability will coincide to
leading exponential order for sufficiently sharply peaked
distributions.
The entropy is defined in the Morris system as a second

integral of a rational function with two poles. The log px|0
is defined in the Pearson system similarly, except that it
is a first-integral of a rational function with two poles [11].
The difference between these two degrees of integration
leads to non-coincidence of the two families, though in
many parameter limits they overlap.
We begin by comparing the continuous distributions.

For the Gaussian, the two functions are identical up to a
constant

log px|0 = − (x− µ0)
2

2v0
− 1

2
log (2πv0)

S = − (µ− µ0)
2

2v0
. (C36)

For the standard gamma with mean µ0 = q,

log px|0 = q − 1− x+ (q − 1) log

(

x

q − 1

)

S ≈ q − x+ q log

(

x

q

)

, (C37)

in which the ≈ in the second line keeps the first two
terms in Stirling’s formula for log Γ(q). The functions
are identical in form but differ by an offset q → q − 1.
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The hyperbolic cosecant density shows the least simi-
larity in its domain of small argument. However, at small
Λ, where it is sharply peaked, and at fixed x or µ, the
following expansion becomes informative,

log px|0 = −π |x|
2Λ

− log Λ− log
(

1 + e−π|x|/Λ
)

S = −µ

Λ
tan−1

(µ

Λ

)

− log Λ +
1

2
log
(

µ2 + Λ2
)

.

(C38)

For µ/Λ ≫ 1, tan−1 (µ/Λ) → sgn(µ) π/2, giving the
same two leading terms for x and for µ.
The discrete distributions behave similarly. For the

binomial,

log px|0 ≈ −ND
(

~x

N

∣

∣

∣

∣

∣

∣

∣

∣

~µ0

N

)

S = −ND
(

~µ

N

∣

∣

∣

∣

∣

∣

∣

∣

~µ0

N

)

, (C39)

and for the Poisson

log px|0 ≈ x− µ0 − x log

(

x

µ0

)

S = µ− µ0 − µ log

(

µ

µ0

)

, (C40)

where again ≈ stands for the first two terms in Stirling’s
formula for factorials. Within these approximations, the
two functions are identical. The negative binomial dif-
fers by terms at O(x/N), but within a similar Stirling
approximation, it may be written

log px|0 ≈ (N + x) log

(

N + x

N + µ0

)

− x log

(

x

µ0

)

+ (N + x) log

(

1− 1

N + x

)

−N log

(

1− 1

N

)

− log

(

1 +
x

N − 1

)

≈ (N + x) log

(

N + x

N + µ0

)

− x log

(

x

µ0

)

−O
(

x

N − 1

)

S = (N + µ) log

(

N + µ

N + µ0

)

− µ log

(

µ

µ0

)

. (C41)

The leading terms, corresponding to the analytic contin-
uation of the Kullback-Leibler form, again coincide. The
only differences arise from shifts N → N − 1 in a subset
of terms, similar to the shift q → q − 1 in Eq. (C37).

The equivalence of log px|0 and S to leading expo-
nential order is a consequence of the large-deviations

property [24] for these distributions. The cumulant-
generating function is the integral of the shifted density,

eψ(θ) =

∫

dx px|0e
θx. (C42)

The exponential of the entropy cancels the absolute mag-
nitude of the inserted weight factor eθx near the max-
imum of the shifted distribution, because for sharply
peaked distributions the maximum is near x ≈ µ,

eS(µ) =

∫

dx px|0e
θ(µ)(x−µ). (C43)

(This property of the entropy is equivalent to that of
functions known as effective actions, as developed in
Ref. [23].) S (µ) is therefore approximately equal to
px|0, evaluated at x ≈ µ. Thus, the Morris restriction
to quadratic variance functions implies that log px|0, at
leading order, will equal the analytic continuation of a
function of Kullback-Leibler form.
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