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Abstract. In this contribution, dynamical models for decision making with and with-
out temporal constraints are developed and applied to opinion formation, migration,
game theory, the self-organization of behavioral conventions, etc. These models take
into account the non-transitive and probabilistic aspects of decisions, i.e. they reflect
the observation that individuals do not always take the decision with the highest utility
or payoff. We will also discuss issues like the freedom of decision making, the red-bus-
blue-bus problem, and effects of pair interactions such as the transition from individual
to mass behavior.

In the second part, the theory is compared with recent results of experimental
games relevant to the route choice behavior of drivers. The adaptivity (“group intelli-
gence”) with respect to changing environmental conditions and unreliable information
is very astonishing. Nevertheless, we find an intermittent dynamical reaction to ag-
gregate information similar to volatility clustering in stock market data, which leads
to considerable losses in the average payoffs. It turns out that the decision behavior
is not just driven by the potential gains in payoffs. To understand these findings, one
has to consider reinforcement learning, which can also explain the empirically observed
emergence of individual response patterns. Our results are highly significant for pre-
dicting decision behavior and reaching the optimal distribution of behaviors by means
of decision support systems. These results are practically relevant for any information
service provider.

1 Introduction

Decision theory is a central field in the socio-economic sciences, as decisions
determine a major part of human interactions. Therefore, decision theory is es-
sential for the deductive derivation and microscopic understanding of the macro-
scopic phenomena observed in society and economics, such as

e social exchange or economic markets,

e the formation of groups, companies, institutions, or settlements,

e the dynamics of stock markets, business cyles, and other instability phenom-
ena.



2 Dirk Helbing

One may hope that, once the elementary interactions among individuals are un-
derstood by means of experimental and numerical studies, all regular phenomena
should in principle be derivable from these interaction laws. This optimistic vi-
sion is motivated by the great success in the derivation of the structure, dynamic
behavior, and properties of matter from elementary physical interactions. Sci-
entists would like to understand the spatio-temporal patterns in socio-economic
systems in a similar way.

This paper is an attempt to develop a consistent theoretical approach to hu-
man decision behavior (certainly an incomplete one). In Secs. 2.2 to 2.5, we will
discuss how decisions come about, why they are so time-consuming, and what
happens, if there is not enough time to complete the decision-making process.
We also touch the topic of the freedom of will. Based on this, we will develop
a quantitative theory for the probability of decision changes. This will take into
account situations of incomplete information and limited processing capacities,
thereby generalizing the concept of homo economicus. As a consequence, our the-
ory implies a transitive preference scale only in special cases. In Secs. 2.9 to 3.6,
we also discuss the effects of non-linearities due to individual pair interactions.
In this way, we can understand fashion cycles and chaotic decision dynamics, the
self-organization of behavioral conventions, polarization phenomena, and tran-
sitions from individual to mass behavior. These phenomena can be unterstood
by means of game-dynamical equations, which are a special case of the derived
Boltzmann equations for decision changes. Other special cases are the logistic
equation, the gravity model, or social force models.

Our evaluation results of a generalized day-to-day route choice experiment
show (when we average over the behavior of all test persons) a non-transitive
behavior, because the empirical decision probability is not monotonically increas-
ing with the payoff or expected payoff gain. This can be incorporated into the
previously developed decision theories, if learning behavior is taken into account
(see Sec. 5), which has been quantified from the experimental data (see Sec. 4).

It turns out that the decision dynamics is volatile and related with con-
siderable losses in the average payoffs. We find, however, that already small
differences in the way of information presentation can reach surprisingly large
improvements. By far the best performance in terms of average and individual
payoffs can be reached by user-specific recommendations. Taking into account
the empirical compliance rates of the individuals, it is possible to solve the prob-
lem of traffic forecasts which are in harmony with the driver reactions to them.
These findings are of general importance for information service providers and for
the efficient distribution of scarce resources such as road capacities, time, space,
money, energy, goods, or our natural environment. Nevertheless, the proposed
method does not facilitate to manipulate the individuals by biased recommenda-
tions, as the compliance rate goes down accordingly: Our test persons followed
the recommendations just to the degree they were useful for them to reach the
user equilibrium.
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2 Modelling Dynamic Decision Behavior

The following sections are trying to shed some new light on several old ques-
tions in the field of decision theory. Nowadays, there exists a variety of different
models for the description of particular aspects of decision behavior, which have
been developed by psychologists, social scientists, economists, and behavioral
biologists in parallel. However, until today there is no consensus about a general
and unified description of decision behavior. Therefore, the particular challenge
will be the formulation of a consistent approach, which allows us to cover many
aspects as special cases of one single theory.

2.1 Questioning Transitive Decisions and Homo Economicus

Human decision making has been subject to scientific research for a long time.
In the beginning, there was a considerable progress in the interpretation and
quantitative description of decision making. It was, in fact, one of the few areas in
the social sciences where mathematical laws were formulated with some success.
We mention the postulate that decisions are transitive, implying that there is a
one-dimensional preference scale. In other words: If we prefer decision A to B
and B to C, we will favour A compared to C. This idea was further developed
with the concept of the homo economicus, according to which individuals would
behave perfectly rational based on immediate and complete information, i.e. one
would always choose—in a deterministic and predictable way—the alternative
with the highest utility or payoff. Great economic theories are based on this
concept, but it is more and more questioned:

e First of all, decisions are hardly predictable. This can have several reasons:
Deterministic chaos (like intermittency, see Sec. 4.3), incomplete information
(i.e., “hidden variables”), or probabilistic factors such as fluctuations.

e Second of all, individuals have to struggle with imperfect information due to
finite memory and limited processing capabilities.

e Apart from this, there are delays in information gathering, which can cause
instabilities as in other systems with delayed reaction (see Sec. 4.3 and
Ref. [1]).

e Based on behavioral studies, scientists have also recognized that emotions
affect the outcome of decisions (cf. the studies in behavioral economics [2]
and behavioral finance [3]). For example, the decision distribution regarding
emotional issues tends to be polarized, i.e. bi-modal rather than Gaussian, in
contrast to unemotional or boring issues.

e The El Farol bar problem [4] and the minority game [5-7] even show that, in
certain situations, there exists no rational (optimal deterministic) strategy.
If all individuals had perfect information and would do the same, everyone
would lose.

The facts known today call for a new theoretical approach for boundedly rational
agents [4], but the concept of the homo economicus is so wide-spread, that new
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approaches have hard times to win through. In the beginning, this concept was
a very useful tool as it allowed scientists to carry out analytical calculations and
to develop economic theories. For a certain time period, this actually justified
the simplifications made. Nowadays, however, classical economists are afraid of
a break-down of their theories, if they would permit a questioning of the un-
derlying assumptions. In fact, nobody knows exactly which chapters of economy
would have to be rewritten, to what extent, and how it would have to be done, if
these assumptions were relaxed. However, today computer simulations can com-
plement analytical calculations where the complexity of the model is too high
for obtaining rigorous results. This approach has been enormously powerful in
physics and other natural sciences. Of course, computational results must always
be checked for consistency, plausibility, and tested against empirical data. This
requires a particular experience in modelling, programming, and data analysis,
which should be a substantial part of the training of young scientists.

2.2 Probabilistic Decision Theories

Empirical studies clearly support that decision behavior is rather probabilistic
than deterministic. In many cases, the relative frequency p(¢) of usage of a strat-
egy ¢ was found to be proportional to the number N(i) > 0 of times it was
successful (which implies a ¢rial and error behavior, at least in the beginning).
In mathematical terms, this law of relative effect [8-10] reads

N N(i)
p(i) = SONG) (1)

Without loss of generality, for any parameter 1" we can introduce a function

U(i) =TIn N(3) (2)
such that
) UW/T
p(i) = W . (3)

The function U (%) is often called utility function. It reflects some preference scale
and the roughly logarithmic scaling of sensory stimuli, known as Weber’s or
Fechner’s law [11]. The relation (3) is called the multinomial logit model [12,13].
It is perhaps the most prominent example of probabilistic decision models, but
there are several other ones [13,14].

The multinomial logit model can be also derived in different ways. Notably
enough, it resembles the canonical distribution of energy levels E(i) = —kgU (i)
in physics [15,16], which can be obtained by entropy mazimization under the
constraint that the average energy kpT is given [17-19]. The parameter kg is
the Boltzmann constant, and T has the meaning of the temperature. Therefore,
the parameter 7' in formula (3) is sometimes called the “social temperature”
(a more precise interpretation of which is given later on). The parameter T
determines the sensitivity to variations of U (%), specifically the sensitivity of the
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decision behavior on the variation of the utility. High values of T" imply uniformly
distributed decisions (an equi-distribution), while the limiting case T' = 0 means
that only the alternative(s) with the highest utility U(i) is (are) chosen. (In
non-degenerate cases, this corresponds to deterministic decision behavior.)

In the classical derivation of the multinomial logit model [12], T is a measure
for the uncertainty of information. This derivation assumes that, due to limited
information, U(j) would only reflect the known part of the utility, while ¢(j)
describes the unknown, stochastically varying part:

V(i) =U0) +€0)- (4)

The fluctuating part e shall be extreme-value distributed, so that the maximum
of two extreme-value-distributed variables is again extreme-value distributed.
(One could say the extreme value distribution is the “natural” distribution for
extreme value problems in the same way as the Gaussian distribution is the
“normal” distribution for sums of variables.) The parameter T is directly re-
lated to the variance of the extreme value distribution (which is sometimes also
called Gumbel, Weibull, or Gnedenko distribution [18,19]). If individuals choose
the alternative j with the highest total utility V(i) > V(j) for all j # i, the
probability of selecting alternative i is again given by formula (3). Therefore,
probabilistic decision behavior can be interpreted as effect of incomplete or un-
certain information.

In the following, we will introduce several generalizations of the above multi-
nomial logit model. By

. oUa(it)/Ta(t)
Pali,t) = S Vel 8/Ta(®) ©)

we take into account a possible dependence of T" and U(4) on the time ¢. More-
over, we distinguish different homogeneous subgroups a reflecting different per-
sonalities, character traits, or social backgrounds. For members of the same sub-
group, the parameters T, and utilities U, () are assumed to be approximately the
same, while there are usually significant differences between subgroups. These
originate partly from the fact that the utility U () is composed of two parts S, (%)
and R, (%) [18,19]:

Ua(i,t) = So(i,t) + R(3,t) . (6)

Sa(i,t) reflects the personal preferences or the satisfaction resulting from deci-
sion ¢, while R(¢,t) describes the social reinforcement, i.e. the social support or
punishment an individual must expect as a consequence of decision 7. It is known
that individuals show a tendency to increase the consistency between their at-
titudes, behaviours, and social environment [20-24]. Therefore, three different
ways of maximizing the utility are observed:

e The individual can decide for a behavior " with S, (i',t) > S,(i,t) instead
of for behavior 3.
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o If, due to social pressure R(i,t) < 0, an individual takes a decision i’ which
does not agree with his/her attitudes, this will eventually change the assess-
ment S, (i',t) of alternative ¢’. This phenomenon is known from psychology
as dissonance reduction [24,25]. (By the way, an attitude change does not
occur in the case of a sufficiently high social reward for a behavior 7’ that is
in disagreement with his/her attitudes!)

e The individual can also look for a social environment which has a positive
attitude towards decision i: ‘Birds of a feather flock together.’

Another generalization will be the application of the above multi-nomial logit
model to decision changes from the present alternative 7 to a new one i’. That
is, we will introduce the conditional or transition probability

eUa(i']4,t)/Ta(t)

p _
pa(l |Z,t) = Zi,, eUa(i/,|i7t)/Ta(t) 9 (7)

for an individual of group a to select alternative ¢’ after i, and express it in terms
of a relative or conditional utility function U, (i'|i,t) given an individual of group
a presently pursues strategy i. The idea is that individuals try to improve their
situation compared to the present one.

Let us now decompose this relative utility into a symmetric part

Ua(i']i,t) —;— U, (i]¢', 1) Sl 1) (8)

Sa(i'li,t) =

and an antisymmetric part

Ua(@lit) = Ualili',t)

Aa(ilﬁat) = 9

We can, then, write
eAa(@|4,t)/Ta(t) eAa(@']i,t)/Ta(t)
.
Pa(i'list) = o—Sa(i'[3,8)/Ta( t)/z o—Sa (@ [i:6)/Ta(®) (10)

Herein, the contribution

Aa (i)', 1) . (9)

Dy (i, ) = e~ 5010/ = D (i 4, 1) (11)

can be interpreted as effective distance or dissimilarity, reflecting transaction
costs Sq(i'|i,t). Since the formula (10) still contains as many parameters as the
conditional transition probability p,(¢'|i,t), it is just another representation, but
not yet a model. Possible approaches to reduce the number of parameters are,
for example, the assumption of time-independent symmetric transaction costs

Saliyi'yt) = Sa(iyi') = Sa(7',4) (12)

(which implies time-independent effective distances for a constant parameter
T.(t) = T,) and/or
Aa(il“:t) = Ua(i/at) - Ua(iat) : (13)
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That is, the asymmetrical part A,(i'|i,t) would describe a wutility gain. The
resulting formula for the transition probability is

Ua(i',8)=U,, (4,8)]/ Ta(t , '
pali'list) = ol T O C DT (1) 1 QUali' 1)/ Ta(t) g =Ul (i) Ta(t)
’ Da(i7i,7t) Da(iai/at)
—— Pull factor Push factor
Distance factor
(14)
with the effective distance
D, (27 i/, t) — e—Sa(i,i/)/Ta(t) (15)
and the assessment
elUa (") =Ua (i,8)] /Ta(t)

U (i,t) = Uy iy t) + Ta( mZ

")
eUa @i, t)/T ()
lnze S () /Ta(D) (16)

According to Eq. (14), the transition probability decreases with the dissimilarity
D,(i,4,t) of two alternatives, but it increases with the pull factor (a high utility
U,(#',t) of the new alternative i') and with the push factor (a low assessment
U/ (i,t) of the previously chosen alternative ). (For a discussion of the so-called
shadow costs related to the difference between U, (', t) and U/ (4, t) see Ref. [26].)
In order to have uniquely defined utilities, one normally sets the average utilility
equal to zero or, equivalently,

> Ua(ist) =0. (17)

Note that formula (5) is a special case of Eq. (14), resulting for identical effective
distances D, (i,i’,t) = D4(t). The main advantage of the more general approach
of the conditional decision probabilities is that they take into account transaction
costs or the effective distance between two alternatives. We will see later on that
this is quite important for certain applications (see Sec. 3).

2.3 Are Decisions Phase Transitions?

Decisions are discontinuous changes of the behavior after a period of critical
fluctuations (repeatedly changing one’s mind) and of critical slowing down (hes-
itation to take the decision). This suggests that decisions are phase transitions
[18,19].

In the following, we will develop a more detailled picture of the decision-
making process based on experimental observations [27,28] (for more details see
Chap. 6 in Ref. [18,19]). According to Feger [27,28] decisions are conflict situa-
tions occuring when we can choose between several mutually exclusive behavioral
alternatives i. At the beginning of such a conflict we estimate its importance.
This is decisive for the time spent on decision-making.
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Assume we are confronted with a complex and new situation that requires
to take a decision rather than just a reflexive or automatic reaction to a stan-
dard situation (as in car driving or avoidance behavior of pedestrians). Then,
a detailed consideration of the pros and cons of the different available alter-
natives is necessary. A large number of brain variables are involved into this
consideration process, and there is some experimental evidence that they (may)
show a chaotic dynamics [29,30]. In this way, we are normally exploring a multi-
dimensional assessment space [31,18,19] rather than a one-dimensional scale of
options. Some areas of this assessment space are in favour of one decision, others
in favour of another decision (while some may be neutral or irrelevant for the
specific decision). These areas could be interpreted as basins of attraction of the
different decision alternatives. They do not need to be connected areas, but may
be fractal sets as well. When moving through this assessment space during the
consideration phase, the “relative sizes” (i.e. the measures) of these areas de-
termine the occurence probabilities of pros for the different alternatives. These
can be ranked and thereby allow us to define a one-dimensional preference scale,
although the decision-making process is clearly a probabilistic process and nor-
mally not consistent with transitivity relations (remember the multi-dimensional
and possibly fractal assessment space). Therefore, transitivity only applies to
particular (probably simple) decisions.

To be more specific, assume that the brain variables involved into the consid-
eration process produce a random series l, l1, l2, ... of (consciously) imaginated,
anticipated consequences of the possible decisions, and let [ be in favour of de-
cision ¢ = f(l). There is experimental evidence [27,28] that a decision is taken
if K consecutive arguments ly/ 41, ..., lpr+x are in favour of the same decision
i = f(lws1) =+ = f(lgr+x). Note that the number K depends on the available
decision time and the importance of the decision, which may be group-specific
and time-dependent. Therefore, we replace K by K, (t) in the following. Finally
note that a comparison of the consequences of alternative decisions continues
even after a decision was made. This is experienced as doubts about the right-
ness of the decision.

2.4 Fast and Slow Decisions

Let pl (i'|i,t) be the occurence probability of pros for alternative 4, if the in-
dividuum has previously chosen alternative . We may then define preferences
U/ (¢']i,t) = Inpl (i'|é, t) such that

PL(i'i,t) = Valit) > (18)

According to the above, the probability p,(i’|i,t) of deciding for alternative i’ is
equal to the probability of K, (t) successive favourable arguments for ', i.e.

Paldfi,t) = Vs W1t = [ (¢/]5, )] Ke® = eFaOULE i) (19)

a

with
UV (i')i,t) = Inpy(i']i, t) = Ko (£)UL(i']i,t) . (20)
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Note that, in contrast to non-exponential approaches, the expression (19) has a
invariant functional form (namely, an expontential one), which is independent
of the specific value of K,(t). The requirement of having several pros before
a decision is made does not only reduce the risk of accidentally chosing an
alternative with small preference U/ (i'|i,t). It also magnifies the differences in
the utilities of different alternatives i’ and " [18,19] because of

Ug (¢']i,t) — U5 (i"]i,1) = Ko (8)[Ug(¢']3, 1) — Ug (i"]i,1)] . (21)

Consequently, when K, (t) is reduced, there is a higher likelihood to decide for an
alternative for which we have a lower preference. To avoid this, K,(t) is larger
when the decision is important, as stated above. However, if the number of
alternatives is large, the decision-making process takes particularly long (which
is known as the pain of choice). Therefore, decision-making processes can not
always be completed, especially if there is a deadline or a pressure of time. In such
cases, the value of K,(t) is reduced, resulting in a different decision distribution.
Because of

Ko(O)U(i']i,t) = Ua(i']i, 1) /Ta(t) —In Y Ve 100/Te () (22)

i

T.(t) is basically proportional to 1/K,(t). That is, the decision distribution be-
comes more and more similar to a uniform distribution (equi-distribution), when
the time spent on the decision is reduced. In principle, this comes close to tossing
a coin, which is exactly what people tend to do when they do not have enough
time to take a well-founded decision. It would, therefore, be interesting to in-
vestigate the quality of decision-making by managers, as their time budget per
decision tends to be short. On the other hand, experience plays a role, as a small
uncertainty Ty (t) of information can compensate for a shortage of time.

2.5 Complete and Incomplete Decisions

There are other situations of incomplete decision-making, where individuals
would or actually do run out of time. In such cases, it appears that a spon-
taneous decision is taken “out of the stomach”. This could be the alternative
which got the highest relative weight in the previous, unfinished consideration
process, but it could also orient at the decisions of others based on the respective
levels of sympathy or trust. We should underline three points here:

e The brain executes geometric averaging, which corresponds to an arithmetic
average of the logarithms of p/, (i'|i,t) [11], i.e. of the utilities U/ (i'|i,t), so
that the formula for the resulting decision probability may look similar to
(19). The logarithmic scaling of physical stimuli, by the way, relates the
decision probability to the power-law Cobb-Douglas function [32,33], as is
shown in Ref. [18,19].

e Emotionally loaded arguments (re-)occur more frequently than others. There-
fore, they have a higher impact on incomplete decision-making processes than
on complete ones.
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e When there is not enough time to complete a decision, imitative or avoidance
behavior (see Sec. 2.10) play an important role.

Empirical research should focus on the investigation of incomplete decisions, as
they are quite common in our everyday life.

2.6 The Red-Bus-Blue-Bus Problem

We have seen that the exponential approach is favourable for the derivation of
the multi-nomial logit model and its properties. Modified approaches have been
mainly developed because of the so-called red-bus-blue-bus problem [13]. It occurs
when the decision alternatives are not completely exclusive, for example, when
alternative busses have different colors or when alternative routes share common
parts. In such cases, certain areas of the assessment space are in favour of several
(say, j) of the alternatives. These areas are equally shared among the alternatives
(i.e., divided by j), thereby reducing the resulting decision probabilities and the
related preferences. We may take this into account by means of weight factors
w; (with 0 < w; < 1). If w] denotes the part of the characteristics (favourable
assessment space areas) that alternative ¢ shares with j —1 of the I alternatives,
the correct formula should be

I j 1

wi:Zng with Y w! =1. (23)

j=1 j=1

However, there is no general and simple formula to determine wg (see Ref. [34]
for a related treatment of route choice behavior). The corresponding formula for
the (conditional) decision probability reads

(@i, 1) = < WO /Dy ) (24)
Pall |2, 1) = Zi// wi,,eUa(i”’t)/T“(t)/Da(i77;//7t) .

Note that the weights w; could alternatively be taken into account in the cal-
culation of U, (#',t).

2.7 The Freedom of Decision-Making

A subject of particular interest in connection with decision conflicts is what
we denote as the freedom of decision-making. One important precondition for
the freedom of decision-making is a not fully externally determined outcome of
decisions, i.e. it should not be predictable in a reliable way. This precondition is
certainly fulfilled, although we know that certain decisions are more likely than
others. The above introduced, probabilistic decision model is consistent with
this. According to it, the respective decision is a result of the internal dynamics
of the brain variables, which is to certain degree stochastic or chaotic. Whether
this result is voluntary depends on whether the brain dynamics can be mentally
controlled in a more or less arbitrary way. Recent measurements of neural activity
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seem to indicate that a decision is made (for example, body motion is initiated)
before the conscious feeling of a free decision arises [35,36]. This feeling could,
therefore, be an interpretation or rationalization of our emergent behavior.

According to psychological investigations the subjectively felt freedom of
decision-making increases with the uncertainty with respect to the final result
of a decision [37,38]. That is, the freedom of decision-making is an entropy-like
quantity. It is greater the larger the number of alternatives is and the more
equivalent they are (with regard to the related preferences). A restriction of
the freedom of decision-making gives rise to reactance (i.e. to a kind of a defiant
reaction). Either the limitation of freedom will be evaded if possible, or resistance
is formed [25,39-41].

2.8 Master Equation Description of Dynamic Decision Behavior

We will now discuss a stochastic description of dynamic decision behavior along
the lines suggested by Weidlich [42-44]. Let us assume we have N, individuals
in group a, and a considered population of altogether

N=> N, (25)

persons. The so-called occupation number n¢(t) shall denote how many individ-
uals of group a pursue alternative 7 at time ¢, i.e. we have

Z nd(t) = N, . (26)

The socio-configuration

n=(nl,ns,....nH,....,n% ... ,n2...) (27)

(2 (2

does, then, comprise the distribution of all IV individuals over the different groups
a and states ¢. We will represent the probability of finding the socio-configuration
n at time ¢ by P(n,t). This probability is reduced by transitions to other con-
figurations n’, whose frequencies are proportional to P(n,t). The proportional-
ity factor is the conditional probability or (configurational) transition probability
P(n',t + At|n,t) of finding the configuration n’ at time (¢ + At), given that
we have the configuration n at time ¢. Conversely, the probability P(n,t) in-
creases by transitions from configurations n’ to n, which are proportional to the
occurence probabilities P(n’,t) of the socio-configurations n’ and to the transi-
tion probabilities P(n,t+ At|n’,t). The resulting balance equation govering the
dynamics of the above specified Markov chain reads

P(n,t+At)—P(n,t) = Y P(n,t+Atln’,t)P(n’,t)=>_ P(n/,t+At|n,t)P(n,t)

(28)
or, considering the normalization

> P(n t+ Atjn,t) =1 (29)

n’
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of the transition probabilities,

P(n,t+ At) =Y P(n,t+ Atn/,)P(n/,t). (30)

In the continuous limit At — 0, we obtain the so-called master equation

dPE;;,t) = Z W(n|n/at)P(nl7t)_ Z W(n’|n,t)P(n,t)7 (31)

n (#n) n (#n)

Inflow into n Outflow from n

where we have introduced the (configurational) transition rates

P(n,t+ Atn’,t)
Wi, = fm, C

for  n' #n. (32)

Note that the master equation (31) assumes the Markov property according to
which the conditional probabilities P(n, t+At|n’, t) depend on t and At only, but
not on previous time steps. However, a generalized master equation for problems
with memory effects exists, see Ref. [18,19,45]. It reads

dP (n, ) /dt S Wiv(nln!, )Pt~ ') = Wi p (0|, ) P(n,t — )
e n'(#n)
(33)
with memory-dependent transition rates Wi_y (n/|n,t)P(n,t—t'). For example,
for an exponentially decaying memory with decay rate 7 we could use the formula

1 t—t
Wiy (n'|n,t) = W(n'|n,t') = exp ( ) . (34)
T T

2.9 Mean Field Approach and Boltzmann Equation

It is often useful to consider the mean value equations for the expected values
(ng) = >, n¢P(n,t), which are obtained by multiplying Eq. (31) with n,
summing up over n, and suitably interchanging n and n’:

d<;f> _ Zn dP TL t ZZ /a _n |n7t)P(n7t) — <m?(n,t)>.

n n n’/

Here, we have introduced the first jump moments
mi(n,t) = > (n'f —nf)W(n'|n,1). (36)

Let us now assume spontaneous decisions with transition rates w,(i'|i,t) from
alternative ¢ to 7’ by individuals of group a and, in addition, pair interactions
between two individuals belonging to groups a and b, leading to a change from
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alternative ¢ to ¢’ by the a-individual and from j to j' by the b-individual with
a transition rate of wap(?, 5|4, j,t). Defining the resulting socio-configurations

aa __ 1 1 a a a a a a a
ngy = (ny,ng,...,n7, ..., ng_,ng —Lnd ., ...ong_,ng+1ni q,...), (37)
aabb __ 1 a a a b b
niy =My, onf,ond =1 i+ 1 ong =10 o np +1,000), (38)

the corresponding configurational transition rates are given by

wq (1|1, t)nd if n = nf?

R
W(n'|n,t) = ¢ wap (i, §'li, j, t)ng (nf — 600)  if n’ = nggbt, (39)
0 otherwise.

Herein, 5%1’ =1if a =b and i = j (to avoid self-interactions), but 0 otherwise.
According to formula (39), the total rate of spontaneous transitions is propor-
tional to the number n{ of individuals of group @ who may change their previous
decision 7 independently of each other, while the total rate of pair interactions is
proportional to the number n{(n} —§4’) of possible interactions between a- and
b-individuals pursuing alternatives ¢ and j. Inserting Eq. (39) into (36) eventually
leads to

m?(n’t) = Z [wa(i‘i/,t) + Zzwab(ivﬂi/?j/vt)ng’}n?’

4 b 4.5
-> [wa(i’m )+ wa(d, i, 4, t)n?} g, (40)
il b 4.5’

if 6?;’ is negligible (see, for example, Refs. [18,19]). The mean field approach
assumes
(mi(n, 1)) = mi((n),t), (41)

i.e., that the system dynamics is determined by the mean value (n), which is true
for a sharply peaked, unimodal distribution P(n, t). This leads to the generalized
Boltzmann equation

dpad(ti’t) = 3 [walili' D+ D sl 5 P D) Pali' 1)
i’ b4,
_ Z [w(i/Ii,t) + ;;wab(m/ﬁ,j’ 1Py (. t)]Pa(i,t), (42)

where we have introduced the (expected) occurence probabilities P,(i,t) =
(n¢)/N, of decisions i in group a and W (', 5|3, 4,t) = Newae(?', 5|3, 4, )
[18,19,46,47]. Note that this Boltzmann equation neglects the covariances

o} (t) = ((nf — (nf))(nf — (n]))) = (nfn3) — (nf)(nf) (43)

and the corresponding correlations

rab () = o%(t)/ /ot (t)abh(t) . (44)

iJ ¥ i 37
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For the derivation of corrected mean value equations (taking into account con-
tributions by the covariances), see Ref. [48,18,19]. Without corrections, the
above Boltzmann equation can be interpreted as the systematic component of a
Langevin equation describing the most probable decision changes.

2.10 Specification of the Transition Rates of the Boltzmann
Equation

In the previous section, we have derived an equation for the temporal change
of the occurrence probabilities P,(i,t) of the decisions 7 in group a. Simplifying
the above expressions, we can write

Zw ili',t) P, Zw i'|i,t) Py(i, t) (45)

Inflow into 1% Outflow from ¢

with the (effective) transition rates

w(i|i,0) = wa (']i,6) + > > wan (i, 514, 4, ) Po (4, 1) - (46)

b 4.3’

These have to be specified for social interactions, now. There is a detailed theory
how to do this [18,19,46,47,49], but here we will only write down the finally
resulting formula. Assume that v}, (t) = ve(t)rl,(t) is the rate of imitation
pmcesses of an a-individual due to interactions with b-individuals, and v2,(t) =
Vab(t)r2,(t) the analogous rate of avoidance processes. These rates are products
of the mtemctzon rate vg, of an a-individual with b-individuals, which depends
on the social interaction network [50-52], and of the relative frequencies r}, (¢)
and 72, (¢) of imitative and avoidance processes, respectively.

Now, let p*(i’|i,t) be the probability to change from alternative i to i’ as
discussed in Sec. 2.2. The effective transition rate has, then, the form

w®(i']i, t) = wa (i, t) + p*(i'li, t) Z (Ve P (i t) + 2, (1) Py (i, )], (47)

b

because the imitation rate is proportional to the occurence probability Py (i’,t) of
the imitated decision ¢/, and the avoidance rate is proportional to the occurence
probability Py(i,t) of the presently pursued alternative ¢ [18,19].

Finally, we can write

wa(i'%t) = Vg(t)pa(i/“vt) ) (48)

where 10(t) denotes the rate of spontaneous decision changes. If the transi-
tion probabilities p,(i']7,t) and p®(i’|i, t) of spontaneous and interactive decision
changes are the same, the formula for the effective transition rate simplifies:

w (i, 1) = pal'is ) {V3(0) + 3 [Vl (ORI, 6) + V(PG 0]} (49)
b
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It makes sense to specify p,(i'|i,t) in accordance with Eq. (14).

Imitation is a very common human behavior. One also speaks of herding be-
havior [53], bandwaggon effect, or persuasion [54]. Avoidance behavior is some-
times called defiance or snobbish behavior. It originates from the desire of humans
to distinguish from people with different backgrounds. Note that homo economi-
cus should not show avoidance or imitation behavior at all, but decide on a
rational basis. Nevertheless, there are good reasons for this behavior. In many
situations, we do not have enough time to collect and evaluate the information
for a rational decision (see Sec. 2.5). (Just imagine we would really try to com-
pare all contracts of insurance companies.) Therefore, we rely on the experience
of others. The wide spreading of imitation and avoidance behavior is due to the
great success of learning by observation, which has its roots in evolution. It al-
lows us to avoid painful experiences and helps to learn faster. Therefore, we tend
to imitate (successful) decisions of people who are in a similar situation as we
are. Some indicator for similarity is sympathy, as we tend to like people whose
background is comparable. In contrast, we may show avoidance behavior with
respect to people we dislike, because we expect their decisions to be counter-
productive. That is, emotions are helpful in cases where we cannot complete our
decisions. Altogether, the combination of individual assessment with imitation
and avoidance behavior may be viewed as collective problem solving [1,55-57].
It allows us to cope with situations which one individual cannot handle on time
due to the limited capacities of information collection and data processing.

3 Fields of Application

The Boltzmann equation was originally developed for the description of particle
collisions in gases, but the mathematically related description of social interac-
tions has a wide range of applications. It turns out that many dynamical models
that have been proposed, used, and tested in the social sciences, are special cases
of the above generalized Boltzmann equation.

3.1 The Logistic Equation

Imagine a situation with one group a = 1 and I = 2 alternatives, where only
spontaneous and imitative decision changes play a role. Then, we obtain an
equation of the form
dP(1,1)
dt

with constants Cpy, Cp, and C3 given by the transition rates w(...)
[18,19,49]. Introducing the scaling z(t) = Pi(1,t) — C with C = (-Cy —

(C1)? —4CyC3)/(2Cy), the (initial) growth rate r = Cy — 2C3C, and the
capacity zg = r/Cy, one arrives at the logistic equation [58,59]

) _ o)1= 2(8)/20)] (51)

which describes many kinds of limited growth processes [60-63].

= Cy+ C1Py(1,t) + C2 P (1,1)? (50)
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3.2 The Generalized Gravity Model and its Application to
Migration

A quite successful model to estimate the origin-destination matrices describing
flows of goods, persons, cars, etc. between locations 7 and i’ is the generalized
gravity model [18,19,49]

i, 1) P, (i, 1)

a(:l; : i’ ) =U. (i Py(
w? ({']i, 1) Pa(i 1) = ; vap(t)el VO ER O = (52)
In the case of one single population a = 1, we have
P(i' t) P (i, t
w' (i'|i, £) Py (i, t) o AEYAGY (53)

Dl(iai/) 7

which looks similar to the law of gravitation and explains the name of the model
[64,65]. Tt reflects that, for example, the person flow from place i to i’ is pro-
portional to the number of people living at location ¢ (who can travel) and
proportional to the number of people in the destination town they may meet,
but the number of trips goes down with the effective distance.

Note that it was very successful to apply the above model to migration be-
tween different regions [66,67,18,19,49]. The fitted utilities even mirrored politi-
cal events such as the construction of the Berlin wall. Despite of a data reduction
by 87.2% corresponding to only 1.28 data values per year, the correlation with
the migration data was very high, namely r = 0.985 [18,19,49].

3.3 Social Force Models and Opinion Formation

In this section, we will assume a continuous and m-dimensional decision space.
For this reason, we will replace ¢ by @, i’ by «’, and sums ), by integrals
J d™a’. Moreover, we require that decision changes mostly occur in small steps
(i.e. w(x'|x,t) ~ 0 if || — x| is large). Then, it is possible to derive a
Boltzmann-Fokker-Planck equation by second order Taylor approximation of the
above Boltzmann equation. This equation is equivalent to a certain stochastic
differential equation or Langevin equation describing the decision changes of the
single individuals « belonging to group a [18,19,49,68]. It reads:

dxo (t T ;
wdt( ) = fo(xa,t) + individual fluctuations. (54)
Herein, the vector
fa(z,t) = /dm:c' (x' — x)w (z'|x, 1) (55)

has the interpretation of a (non-Newtonian) social force [69], which determines
the size and direction of the systematic part of decision changes [70,18,19,49,68].
Note that this social force does not only affect the individual behavior, but also
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changes with the decision distributions Py,(x,t). For the effective transition rates
(47), for example, we get

fa(z,t) = /dmm’ (' —x) {wa(w/|w,t)
0" (@ 2,0) 3 [ (VP 1) + VA, (O Py(@.1)] | (56)
b
The distributions can be expressed in terms of the individual decisions via
Py, 1) = ]\1%%5(:1::13@(15)), (57)

where §(x — x3) denotes a multivariate Gaussian distribution around xg with
a small variance. Considering this allows us to decompose the social force into
components due to spontaneous decision changes and due to pair interactions
[18]:

.fa(wav t) = fg(wow t) + Z [f(lzb(wcw T3, t) + fgb(wm T3, t)} (58)
Spont. force B
Pair interaction forces
with the spontaneous force
fg(l‘m t) = /dmz/ (.’I}/ - wa(t)) Wq (w,}ma(t)v t) ) (59)

the imitation force

l/l
lezb(mommﬁat) = /dmx/ (ml - wa(t)) pa (:B/|.’Ba(t),t) (}ifff 5(:13/ - .’I)g(t))

= (@5(1) ~ wa(0) " ((0) [ 0),1) 2242 (60)
and the avoidance force
V2
Foo(azant) = [a7 (@' = a0) 0 (@]0(0).0) 25 w0 (1) — 2a(0))
(61)

These expressions can be further evaluated, if w,(2'|x,t) and p®(x'|z,t) are
specified. We also point out that the above social force model shares some com-
mon features with the social impact theory [52,71-74].

Social force models have been very successful in applications to vehicle traffic
[75-77] and pedestrian flows [53,70,78,79]. Here, we will discuss an application to
opinion formation. Let us assume two groups a of people distributed over a one-
dimensional opinion scale between two extreme positions regarding a certain
issue. The utilities and transaction costs determining the conditional decision
probabilities p,(z'|x,t) are specified as follows [18,19,49,68]:

T — g |z — x|

Ua(a:,t)cx—( i )2 and  S,(z,2') . (62)

R
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dividuals, when the tolerance L, is small (from [18,19,49,68,80]). The opinion distri-

butions P,(x,t) in both groups are bimodal. Most individuals decide for an opinion x
close to their preferred opinion z,, but some are convinced by the opinion preferred in

Fig. 1. Example of opinion formation of two groups with imitatively interacting in-
the other group.
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Fig. 2. As Fig. 1, but for a higher tolerance L, (from [18,19,49,68,80]). The shape of
, we neglect spontaneous transitions by setting v

the distributions P, (z,t) has now qualitatively changed from a bimodal to a unimodal
form. This indicates a phase transition from imitative to compromising behavior at
some critical value of tolerance. In both populations, the opinions are then distributed

around a certain opinion xo, which agrees in both groups
deviations from this position, and R the range of interaction. In the discussed

Z, has the meaning of the preferred position in group a, L, is the tolerance of

and x2. Its location is closer to the preferred position x; in the group a

smaller tolerance L; < Lso.

examples
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either imitative or avoidance interactions in accordance with the interaction rates

who)=(Ly) =0 (63)

or

vh(t) =0 and (V2 (1) = (2 16) . (64)

A selection of numerical results is presented in Figs. 1 to 3. It is particularly
interesting that, in the simulation of imitative behavior, we find a phase transi-

tion to compromising behavior, when the tolerance L, is sufficiently large. For a
more detailed discussion see Refs. [18,19,49,68].
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Fig. 3. Opionion distributions P,(x,t) for two groups a showing avoidance behavior,
because the individuals in one group dislike the people of the respective other group
(from [18,19,49,68,80]). As expected, there is almost no overlap between the opinion
distributions Pi(z,t) and Pa(z,t) in the different groups. The tendency to avoid the
opinions in the other group is so large that some people in group a = 2 even show

opinions “left” of the ones found in group a = 1, although these are far away from the
preferred position x2. This occurs due to their higher tolerance Lo > L;.

3.4 The Game-Dynamical Equations
The game-dynamical equations

dPld_(tW = v(O)Pr(i ) [Fi.t) = > F( )Py 1)

Selection

+ Z [wi (i|i") Py (i, t) — wi(¢']i) P1(i, t)] (65)

Mutation
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for behavioral changes [81-84] are an adoption of selection-mutation equations
originally developed in evolutionary biology [85,86]. They describe the effects of
spontaneous transitions (so-called mutations) and a selection of those strategies
1 whose expected success or so-called fitness

F(i,t) = Pur Py(i",t) (66)
7
is higher than the average one, ., F(i',t)Pi(i',t). Herein, P;;» denotes the
payoff when strategy i is confronted with strategy ¢”.

The game-dynamical equations have been very successful in explaining ob-
servations in behavioral biology, sociology, and economics. However, in contrast
to evolutionary biology, a “microscopic” derivation based on individual interac-
tions has been missing for a long time. This has been discovered in 1992 [48,87].
Inserting v7; (t) = 0 and the expression

vi (0)p*(i'[ist) = v(t) max (F(i',t) — F(i,t),0) (67)

into the Boltzmann equation (45) with the effective transition rates (47) exactly
yields the game-dynamical equations because of

max (F(i,t) — F(i’,t),0) — max (F(i',t) — F(i,t),0) = F(i,t) — F(i',t). (68)

Formula (67) is nowadays called the proportional imitation rule [88], as it assumes
that the transition probability p!(i’|i;¢) is proportional to the expected gain
F(i’,t) — F(i,t) in success, if this is positive, but zero otherwise. Note, however,
that the game-dynamical equations can be also viewed as a first-order Taylor
approximation of a Boltzmann-equation with an imitative transition probability
of the form (47) with

Di(i,i')=2 and  F(i,t) = 2T, (0)
1

(69)

In the following, we will discuss some applications of the game-dynamical equa-
tions, which can, by the way, be transformed [84] into mathematically equivalent
Lotka-Volterra equations [89-91] used to describe predator-prey or other (ecolog-
ical) systems [84,92-94].

3.5 Fashion Cycles and Deterministic Chaos

Now, assume one population ¢ = 1, in which imitative decision changes take
place between I = 3 kinds of fashions i € {1,2,3}. If the payoff matrix is
specified according to
0 -1 1
(Piiu) =1 0 -1}, (70)
-11 0
it reflects that fashion i receives negative attention by people wearing fashion

(i +1) mod I (the avantgarde), while it receives positive attention by people
wearing fashion (¢ — 1) mod I (being behind the present fashion).
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Fig. 4. Example of fashion cycles for the case of I = 3 fashions (from [18,19,47,95]).
We observe non-linear and regular oscillations (@) in the plot of the time-dependent
proportions P (i,t) of the different fashions ¢ and (b) in the phase portraits showing
the proportion P;(3,t) of fashion ¢« = 3 over the proportion P;(1,t) of fashion ¢ = 1 for
various intial conditions.

The corresponding game-dynamical equations are

dPZi@ =vP(i,0)[Pr((i = 1) mod [,t) — Py ((i +1) mod L,)] . (71)

Apart from the normalization condition

I
> Piit) =1, (72)
i=1
these equations have an invariant of motion:

T
C= H P (i,t) = const. (73)
i=1
For I = 3 it is, therefore, possible to calculate the exact form of the resulting
phase portraits as a function of the initial conditions Pi(i,0), despite of the
non-linearity of the differential equations (71):

Pi(2,t) = 71_1321(1’” i\/[l_%(l’t)] - Plc 5 (74)

(1
where Pl(?),t) =1- Pl(].,t) - P1(2,t) and C = Pl(l,O)P1(2,0)P1(3,0) This
implies non-linear, but periodic (i.e. anharmonic) oscillations.

According to Eq. (74), there should always be the same sequence of fashions.
This is, of course, not very realistic. However, for I > 3, we find a rather irregular
sequence, as desired (see Fig. 5a). Note that, for certain specification of the payoff
matrices, the equations for the most probable decision changes can show even
more complex dynamical behavior such as deterministic chaos (see Fig. 5b). This
implies that the decision distributions P,(i,t) would, for principal reasons, be
unpredictable over a longer time period, even if we knew the transition rates
w*(i')i,t) exactly.
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Fig. 5. (a) The non-linear oscillations for the case of I = 5 different fashions are irregu-
lar in the sense that they do not show short-term periodicity. (b) The decision dynamics
can be chaotic (even if the decision dynamics is deterministic). This is illustrated by
the plot of a chaotic attractor showing the result of another opinion formation model
(a kind of periodically driven Brusselator) in scaled variables y.(7) = yJP,(t) with
T = 7ot. For details see Refs. [18,19,46,47], from which these plots were reproduced.

3.6 Polarization, Mass Psychology, and Self-Organized Behavioral
Conventions

In this subsection, we will assume individuals of one group a = 1 that can choose
between I = 2 equivalent strategies, i.e. the payoff matrix is symmetric:

()= (57 4% 5) )

An example for equivalent strategies would, for example, be the avoidance of
another pedestrian on the right-hand side (¢ = 1) or on the left-hand side (i = 2),
see Fig. 6.

With a constant spontaneous transition or mutation rate w(z|z’) = W cor-
responding to trial and error behavior, we find the specific game dynamical
equation

- ~3) reamiatnio ). oo
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Fig. 6. (a) Illustration of the avoidance problem of two pedestrians walking in opposite
directions. P;(1,t) represents the probability of deciding for an avoidance maneuver on
the right-hand side, P1(2,t) the corresponding probability for the left-hand side. (b)
Pedestrians subconsciously form lanes of uniform walking directions. In Central Europe,
these lanes appear more frequently on the right-hand side, which can be interpreted as
the result of a self-organized behavioral convention. (From [18,19,45,46,87,96]).

For Kk =1 —4W/(vA) < 0, the only stationary solution is P, (i) = 1/2. Other-
wise this solution is unstable, but there are the two stable stationary solutions
P,(i) = (1++/k)/2 and P,(i) = (1 — \/k)/2. The finally resulting solution de-
pends on the (random) initial condition (i.e., basically on initial fluctuations).
Thus, we find symmetry-breaking or, in other words, history-dependent behavior
[18,19,45,46,48,70,87,96].

;From the above, we may draw several interesting conclusions:

e If it is profitable to take the same decision as the interaction partner (i.e.
A > 0), in each group a one of the equivalent strategies will win through,
if the spontaneous transition rate W is small enough. This gives rise to a
self-organized behavioral convention. Examples are the rotation direction of
clocks, the pedestrians’ asymmetric avoidance behavior [18,19,45,46,87,96],
or the triumph of VHS over Beta video [97].

e A transition from individualistic behavior (where people choose indepen-
dently among all available alternatives) to herding behavior or mass psychol-
ogy (where people tend to join the decision of the majority) occurs when
the parameter k becomes positive. This can happen, if the advantage A or
the interaction rate v increase for some reason, or if the rate W of spon-
taneous decision changes (i.e. the readiness to check out other alternatives)
goes down.

o If we distinguish several weakly interacting groups a, for example people with
separate social backgrounds living in different parts of a city or country, the
alternative ¢ = 1 may gain the majority in some groups, and the alternative
i = 2 in others, if k > 0. This corresponds to a polarization of society, which
is common for emotional topics, possibly because of the higher interaction
rate v.

Generalizations of the above equations to I > 2 equivalent or several non-
equivalent strategies are easily possible. In the latter case, superior stategies
will tend to occur more frequently, but the polarization effect and the transi-
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tion from individual to mass behavior can still occur under similar conditions as
discussed above.

4 Decision Experiments for a Generalized Route Choice
Scenario

Destination

Alternative/
Route 1

Alternative/

Route 2
Fig. 7. Schematic illustration of the day-to-day route choice scenario (from [117]). Each
day, the drivers have to decide between two alternative routes, 1 and 2. Note that, due
to the different number of lanes, route 1 has a higher capacity than route 2. The latter
is, therefore, used by less cars.

The coordinated and efficient distribution of limited resources by individual
decisions is a fundamental and unsolved problem. When individuals compete for
road capacities, time, space, money, etc., they normally take decisions based on
aggregate rather than complete information, such as TV news or stock market
indices. The resulting volatile decision dynamics and decision distribution are of-
ten far from being optimal. By means of experiments, we have identified ways of
information presentation that can considerably improve the overall performance
of the system. We also present a stochastic behavioral description allowing us
to determine optimal strategies of decision guidance by means of user-specific
recommendations. These strategies manage to increase the adaptibility to chang-
ing returns (payoffs) and to reduce the deviation from the time-dependent user
equilibrium, thereby enhancing the average and individual outcomes. Hence,
our guidance strategies can increase the performance of all users by reducing
overreaction and stabilizing the decision dynamics. Our results are significant
for predicting decision behavior, for reaching optimal behavioral distributions
by decision support systems, and for information service providers. One of the
promising fields of application is traffic optimization.

Optimal route guidance strategies in overloaded traffic networks, for exam-
ple, require reliable traffic forecasts (see Fig. 7). These are extremely difficult
for two reasons: First of all, traffic dynamics is very complex, but after more
than 50 years of research, it is relatively well understood [1]. The second and
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more serious problem is the invalidation of forecasts by the driver reactions to
route choice recommendations. Nevertheless, some keen scientists hope to solve
this long-standing problem by means of an iteration scheme [34,98-105]: If the
driver reaction was known from experiments [106-116], the resulting traffic situ-
ation could be calculated, yielding improved route choice recommendations, etc.
Given this iteration scheme converges, it would facilitate optimal recommenda-
tions and reliable traffic forecasts anticipating the driver reactions. Based on
empirically determined transition and compliance probabilities, the new proce-
dure developed in the following would even allow us to reach the optimal traffic
distribution in one single step and in harmony with the forecast.

Let us now quantify the success or payoff P; of road users in terms of their
inverse travel times. If one approximates the average vehicle speed V; on route i
by the linear relationship

Vi) =v2 (1- 250 | (77)

the inverse travel times obey the payoff relations P;(n;) = P? — Pln; with
W

VO
P? = d Pl=—t_—.
v Li an g ngnaXLi

(78)

Herein, V,? denotes the maximum velocity (speed limit), n; the number of drivers
onroute %, L; its length, and n}*** its capacity, i.e. the maximum possible number
of vehicles on route i. For an improved approach to determine the travel times in
road networks see Ref. [118]. Note that alternative routes can reach comparable
payoffs (inverse travel times) only when the total number N (t) of vehicles is large
enough to fulfil the relations P;(N(t)) < P»(0) = PY and P»(N(t)) < P1(0) =
P. Our route choice experiment will address this traffic regime. Furthermore,
we have the capacity restriction N () < n"** +nh®*. N(t) = n{"** +ni** would
correspond to a complete gridlock.

4.1 Experimental Setup and Previous Results

To determine the route choice behavior, Schreckenberg, Selten et al. [113] have
recently carried out a decision experiment (see Fig. 8). N test persons had to
repeatedly decide between two alternatives 1 and 2 (the routes) and should
try to maximize their resulting payoffs (describing something like the speeds or
inverse travel times). To reflect the competition for a limited resource (the road
capacity), the received payoffs

Pi(n1) = P) — Plny and Py(ny) = PY — Piny (79)

went down with the numbers of test persons n; and ne = N — ny deciding for
alternatives 1 and 2, respectively. The user equilibrium corresponding to equal
payoffs for both alternative decisions is found for a fraction

eq:E: P21 _’_iPlO_PQO
""" N Pl+P; NP +P;

(80)
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Fig. 8. Schematic illustration of the decision experiment (from [117]). Several test
persons take decisions based on the aggregate information their computer displays.
The computers are connected and can, therefore, exchange information. However, a
direct communication among players is suppressed.

of persons choosing alternative 1. The system optimum corresponds to the max-
imum of the total payoff ni Py (n1) 4+ naPa(n2), which lies by an amount of
1 PY— Py
2N P!+ P}

below the user optimum. Therefore, only experiments with a few players allow
to find out, whether the test persons adapt to the user or the system optimum.
Small groups are also more suitable for the experimental investigation of the
fluctuations in the system and of the long-term adaptation behavior. Schreck-
enberg, Selten et al. found that, on average, the test groups adapted relatively
well to the user equilibrium. However, although it appears reasonable to stick
to the same decision once the equilibrium is reached, the standard deviation
stayed at a finite level. This was not only observed in “treatment” 1, where all
players knew only their own (previously experienced) payoff, but also in treat-
ment 2, where the payoffs Pj(n;) and Ps(ng) for both, 1- and 2-decisions, were
transmitted to all players (analogous to radio news). Nevertheless, treatment 2
could decrease the changing rate and increase the average payoffs (cf. Fig. 9).
For details regarding the statistical analysis see Ref. [113].

To explain the mysterious persistence in the changing behavior and explore
possibilities to suppress it, we have repeated these experiments with more iter-
ations and tested additional treatments. In the beginning, all treatments were

(81)
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consecutively applied to the same players in order to determine the response
to different kinds of information (see Fig. 9). Afterwards, single treatments and
variants of them have been repeatedly tested with different players to check our
conclusions. Apart from this, we have generalized the experimental setup in the
sense that it was not anymore restricted to route choice decisions: The test per-
sons did not have any idea of the payoff functions in the beginning, but had
to develop their own hypothesis about them. In particular, the players did not
know that the payoff decreased with the number of persons deciding for the same
alternative.

In treatment 3, every test person was informed about the own payoff Pj(n;)
[or P2(n2)] and the potential payoff

Py(N —ny + eN) = Py(ny) — eNP} (82)

[or P{(N —ng+eN) = P;(n1) — eNP}] he or she would have obtained, if a frac-
tion € of persons had additionally chosen the other alternative (here: e = 1/N).
Treatments 4 and 5 were variants of treatment 3, but some payoff parameters
were changed in time to simulate varying environmental conditions. In treat-
ment 5, each player additionally received an individual recommendation which
alternative to choose.

The higher changing rate in treatment 1 compared to treatment 2 can be un-
derstood as effect of an exploration rate v; required to find out which alternative
performs better. It is also plausible that treatment 3 could further reduce the
changing rate: In the user equilibrium with Pj(n1) = Pa(ns2), every player knew
that he or she would not get the same, but a reduced payoff, if he or she would
change the decision. That explains why the new treatment 3 could reach a great
adaptation performance, reflected by a very low standard deviation and almost
optimal average payoffs. The behavioral changes induced by the treatments were
not only observed on average, but for all single individuals (see Fig. 10). More-
over, even the smallest individual cumulative payoff exceeded the highest one in
treatment 1. Therefore, treatment 3’s way of information presentation is much
superior to the ones used today.

4.2 1Is it Just an Unstable User Equilibrium?
In this section, we will investigate why players changed their decision in the user
equilibrium at all. With Py (1,¢) = (n1(¢))/N and (n;(t)) = n;(t) (as n;(t) are

the measured numbers of i-decisions at time t), we find the following balance
equation for the decision experiment:

(n1(t +1)) —nu(t) = p(112, na; t)na(t) — p(2[1,na;t)na(t) - (83)

Assuming stationary transition probabilities p(2|1,n1) (after a transient phase),
the equilibrium distribution corresponds to

(na(t+1)) = (n1(t)) = na(t) . (84)



28 Dirk Helbing
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Fig. 9. Overview of treatments 1 to 5 [117] (with N = 9 and payoff parameters PJ = 28,
Pl =4, Pf =6, and PY = 34 for 0 < t < 1500, but a zick-zack-like variation between
P? = 44 and P = —6 with a period of 50 for 1501 < ¢ < 2500): (a) Average number
of decisions for alternative 1 (solid line) compared to the user equilibrium (broken
line), (b) standard deviation of the number of 1-decisions from the user equilibrium,
(c) number of decision changes from one iteration to the next one, (d) average payoff
per iteration for players who have changed their decision and for all players. The latter
increased with a reduction in the changing rate, but normally stayed below the payoff
in the user equilibrium (which is 1 on average in treatments 4 and 5, otherwise 10).
The displayed moving time-averages [(a) over 40 iterations, (b)-(d) over 100 iterations]
illustrate the systematic response to changes in the treatment every 500 iterations.
Dashed lines in (b)-(d) show estimates of the stationary values after the transient
period (to guide the eyes), while time periods around the dotted lines are not significant.
Compared to treatment 1, treatment 3 managed to reduce the changing rate and to
increase the average payoffs (three times more than treatment 2 did). These changes
were systematic for all players (see Fig. 10). In treatment 4, the changing rate and
the standard deviation went up, since the user equilibrium changed in time. The user-
specific recommendations in treatment 5 could almost fully compensate for this. The
above conclusions are also supported by additional experiments with single treatments.
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Fig. 10. Comparison of the individual decision behaviors in (a) treatment 1, (b) treat-
ment 2, and (c) treatment 3 (from [117]). The upper values correspond to a decision
for alternative 2, the lower ones for alternative 1. Note that some test persons showed
similar behaviors (either more or less the same or almost opposite ones), although they
could not talk to each other. This shows that there are some typical strategies how
to react to a certain information configuration, i.e. to a certain decision distribution.
The group has, in fact, to develop complementary strategies in order to reach a good
adaptation performance. Identical strategies would perform poorly (as in the minority
game [5-7]). Despite the mentioned complementary behavior, there is a characteristic
reaction to changes in the treatment. For example, compared to treatment 2 all players
reduce their changing rate in treatment 3.



30 Dirk Helbing

Consequently, the equilibrium condition
p(2[1,n1)n(t) = p(1]2,n1)n2(t) (85)

should be fulfilled for the user equilibrium n (t) = f{N and na(t) = (1— f{4)N.
This, however, is generally not compatible with the assumption

p(2|]1,n1) x exp[Po(N —ny + 1) — Py(ny)] (86)

or similar specifications of the transition probability that increase monotonically
with the payoff P, or the payoff difference P, — P;! Since normally

POILAN) 1 f0
PR fN) R &

the test persons would have serious problems reaching the user equilibrium. The
decision distribution would possibly tend to oscillate around it, corresponding
to an unstable user equilibrium.
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Fig. 11. Comparison of the group performance for treatment 2, when the user equi-
librium corresponds to (a) fi = 50% 1-decisions (for P = 32, P{ = 5, P) = 32,
Py =5) or (b) ft% = 80% 1-decisions (for P{ =42, P} =4, PY = 22, P} = 6). If the
user equilibrium were unstable for f;9 # 1/2, the changing rate and standard deviation
should be lower in (a) than in (b). The observation contradicts this assumption. The
persistent changing rate is also not caused by a difference between the system and the
user optimum, since this is zero in (a) but one in (b). Instead, the higher changing
rate for the symmetrical case f;* = 1/2 is for statistical reasons. (Remember that the
variance of a binomial distribution B(N,p) is Np(1 — p) and becomes maximal for

p=1/2.)

We have tested this potential interpretation of the on-going tendendy to
change the decision. Figure 11 compares the changing rates and the standard
deviations for a case where the equilibrium condition (85) should be valid and an-
other case where it should be violated. However, the changing rate and standard
deviation were higher in the first case, so that the hypothesis of an unstable equi-
librium must be wrong. In the user equilibrium with nq(t) = f{9N = N —na(t),
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Fig.12. (@) The netto flux p(1]2,n1)n2(t) — p(112,n1)n1(t), which reflects the sys-
tematic part of decision changes, does not significantly depend on the treatment. As
expected, it is zero in the user equilibrium, positive below it, and negative above it.
(b) The treatment can influence the occurence probability of decision distributions.
Compared to treatments 1 and 2, the probability distribution is much more sharply
peaked for treatment 3, implying a significantly smaller level of randomness during
decision changes (a smaller “diffusion coefficient”).

the inflow p(1|2, nq)ns(t) is, in fact, well balanced by the outflow p(1|2,n1)n1 (¢),
as Figure 12 shows. By the way, the results displayed in Fig. 11 also disprove
the idea that a difference between the user and the system optimum may be the
reason for the continuing changing behavior.

4.3 Explaining the Volatile Decision Dynamics

The reason for the pertaining changing behavior can be revealed by a more de-
tailed analysis of the individual decisions in treatment 3. Figure 13 shows some
kind of intermittent behavior, i.e. quiescent periods without changes, followed by
turbulent periods with many changes. This is reminiscent of volatility clustering
in stock market indices [121-123], where individuals also react to aggregate in-
formation reflecting all decisions (the trading transactions). Single players seem
to change their decision to reach above-average payoffs. In fact, although the
cumulative individual payoff is anticorrelated with the average changing rate,
some players receive higher payoffs with larger changing rates than others. They
profit from the overreaction in the system. Once the system is out of equilibrium,
all players respond in one way or another. Typically, there are too many decision
changes (see Figs. 13 and 15). The corresponding overcompensation, which had
also been predicted by computer simulations [99,102-104,111,124], gives rise to
“turbulent” periods.

Finally, we note that the calm periods without decision changes tend to
become longer in the course of time. That is, after a very long time period the
individuals seem to learn not to change their behavior when the user equilibrium
is reached. This is not only found in Fig. 13, but also visible in Fig. 9c after about
800 iterations. In larger systems (with more test persons) this transient period
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Fig. 13. Illustration of typical results for treatment 3 [117] (which was here the only
treatment applied to the test persons, in contrast to Fig. 9). (a) Decisions of all 9
players. Players are displayed from the top to the bottom in the order of increasing
changing rate. Although the ranking of the cumulative payoff and the changing rate are
anticorrelated, the relation is not monotonic. Note that turbulent or volatile periods
characterized by many decision changes are usually triggered by individual changes
after quiescent periods (dotted lines). (b) The changing rate is mostly larger than
the (standard) deviation from the user equilibrium ni; = f;j*N = 6, indicating an
overreaction in the system.

would take even longer, so that this stabilization effect could not be observed by
Schreckenberg, Selten et al. [113].

5 Simulation of Reinforcement Learning and Emergence
of Individual Response Patterns

A close look at Fig. 14a reveals additional details of decision behavior:

e Some players change their decision more frequently than others and

e some test persons show similar behaviors (e.g., players 8 and 9 or 1 and 7
for ¢t > 400), while some display almost opposite behaviors (e.g., players 7
and 8).
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The second point is very surprising, as the players could not communicate with
each other. However, both observations can be explained by the conjecture that
the individuals develop different characteristic strategies how to react to specific
information. “Movers” and “stayers” or direct and contrary strategies have, in
fact, been observed by Schreckenberg, Selten et al. [113], and it is an interesting
question, how they arise. The group has to develop complementary strategies
in order to reach a good adaptation performance. As a consequence, if some
players do not react to changing conditions, others will take the chance to earn
additional payoff. This experimentally supports the behavior assumed in the
theory of efficient markets. Note that identical strategies would perform poorly,
as in the minority game [4-7].
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Fig. 14. (a) Typical individual decision changes of 9 test persons exposed to treatment
2 with the parameters specified in Fig. 9. (b) Simulation of decision changes based on a
model of reinforment learning (see main text) with parameter values § = 0.01, go = 0.4,
and r = 0.995.
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In order to reproduce the above described evolution of complementary strate-
gies and other observed features, we have developed a simulation model based
on reinforcement learning [119,120]. At first, it appears reasonable to apply a
learning strategy that reproduces the ‘law of relative effect’; according to which
the probability p/, (i,t+1) of an individual « to choose alternative i at time ¢+ 1
would reflect the relative frequency with which this alternative was successful in
the past. This can, for example, be reached by means of the reinforcement rule

1—qo[l — pL(i,t)] in case of a successful decision

qopi, (i,t) otherwise (88)

(i, t+1) = {
[120], where the way in which a successful decision is defined may vary from one
situation to another. However, a probabilistic decision strategy, when applied by
all individuals, produces a large amount of stochastic fluctuations, i.e. the user
equilibrium is hard to maintain. More importantly, although the above learning
strategy may explain a specialization in the individual behaviors (i.e. different
decision probabilities, depending on the respective success history), it does not
allow to understand the state-dependent probability of decision changes (see
Fig. 18). We will, therefore, develop a model for the conditional (transition)
probability p,(i|i',n1;t) of individual « to select alternative i, given that the
previous decision was i/ and n; individuals had taken decision 1. Furthermore,
let us assume that each individual updates this transition probability according
to the following scheme:

G [ max[1 — §,pa(i]i',n15t) + q(t + 1)] for a successful decision,
pali', s t41) = {min[é, pa(ili’,ny;t) — q(t +1)] otherwise.
(89)
Due to the normalization of transition probabilities, we have the additional re-
lation

Pa(3—ili',nist +1) =1 —po(ili',ni;t + 1), (90)

as 3 — i is the alternative of decision ¢ € {1,2}. The parameter § ~ 0 reflects
a minimum changing probability, which ensures that there is always a certain
readiness to adapt to a potentially changing environment. It is responsible for
the stochastic termination of quiescent phases, in which nobody changes the
decision. Our simulations were run with § = 0.01, i.e. the minimum changing
probability was assumed to be 1 percent.

The parameter ¢(t) denotes the size of the adaptation step, by which the
transition probability is increased in case of success or otherwise decreased, while
the minimum and maximum functions guarantee that the transition probabilities
Da(i]i’,n1;t+1) stay between the minimum value § and the maximum value 1—4.
A time-dependent choice such as

q(t) = qor’ (91)

with an initial value ¢o of ¢ (0 < g9 < 1) and a value of r slightly smaller
than 1 allow one to describe that the learning rate is large in the beginning,
when the different possible strategies are explored, but it eventually goes down,
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as the optimum strategy becomes more and more clear. In the course of time,
this leads to the stabilization of a particular, history-dependent response pat-
tern that characterizes the individual decision strategy. The resulting response
pattern shows either a high likelihood to stay with the previous decision (with
Do & 0) or a high likelihood to change it (with p, ~ 1—4), depending on the re-
spective system state ni and previous decision i’. That is, the resulting strategy
tends to be approximately deterministic, reflecting that the individual believes
to know what is the ‘right’ decision. This is markedly different from other deci-
sion models with reinforcement learning [119,120]. Nevertheless, when averaging
over all occuring system states, the individuals appear to play mixed strategies,
i.e. they seem to show probabilistic (rather than almost deterministic) decision
behavior (see Fig. 18). Therefore, our approach is expected to be consistent with
the law of relative effect, but only in the statistical sense. Altogether, formula
(91) reflects the observed trial-and-error behavior in the beginning (the ‘experi-
mentation phase’), but a tendency to follow learned strategies later on without
significant changes. The parameters J, qg, and r may, of course, be individual,
but for reasons of simplicity we have assumed identical values in our simulations.

The way, in which a successful decision is defined, may depend on the respec-
tive situation or experiment. In our simulations of treatment 2, we have assumed
that the decision is valued as successful, when

,PZ(’I’LZ(t + 1)) Z P3,Z‘(N — ni(t + 1)) = P3,i(n3,i(t + 1)) (92)

and
Pi(ni(t +1)) > Py (ny(t)), (93)

i.e. when the payoff was at least as large as for the other alternative 3 —4 and not
smaller than in the previous time step. The first first decision was made randomly
with probability 1/2. The following decisions were also randomly chosen, but
in accordance with the respective transition probabilities, which were updated
according to the above scheme.

The simulation results are in good qualitative agreement with the features
observed in our experiments. We find an adaptation of the group to the user
equilibrium with an average individual payoff of approximately 8.5, as in our
experiments. Moreover, the changing rate is high in the beginning and decreases
in the course of time (see Fig. 14b). As experimentally observed, some players
change their decision more frequently than others, and we find almost similar
or opposite behaviors after some time. That is, our simulations allow to repro-
duce that players develop individual strategies (i.e. response patterns, “roles”,
or “characters”) in favour of a good group performance.

By means of our simulations, we can not only reproduce the main experimen-
tal observations. One can also optimize the group sizes and number of iterations
of decision experiments. The above simulation concept is now used to design new
experiments, which try to improve the system performance or even to establish
the social optimum by particular information strategies. In the following section,
we will, for example, introduce a possible concept for decision guidance.
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5.1 Potentials and Limitations of “Decision Control”
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Fig. 15. Measured overreaction, i.e., difference between the actual number of decision
changes (the changing rate) and the required one (the standard deviation) [117]. The
overreaction can be significantly influenced by the treatment, i.e. the way of information
presentation. The minimum overreaction was reached by treatment 5, i.e. user-specific
recommendations.

To avoid overreaction, in treatment 5 we have recommended a number
14t +1)N — ny(t) of players to change their decision and the other ones to
keep it. These user-specific recommendations helped the players to reach the
smallest overreaction of all treatments (see Fig. 15) and a very low standard
deviation, although the payoffs were changing in time (see Fig. 16). Treatment
4 shows how the group performance was affected by the time-dependent user
equilibrium: Even without recommendations, the group managed to adapt to the
changing conditions surprisingly well, but the standard deviation and changing
rate were approximately as high as in treatment 2 (see Fig. 9). This adaptability
(the collective “group intelligence”) is based on complementary responses (direct
and contrary ones [113], “movers” and “stayers”, cf. Fig. 10). That is, if some
players do not react to the changing conditions, others will take the chance to
earn additional payoff. This experimentally supports the behavior assumed in
the theory of efficient markets, but here the efficiency is limited by overreaction.
In most experiments, we found a constant and high compliance Cg(t) ~ 0.92
with recommendations to stay, but the compliance C(t) with recommendations
to change (to ‘move’) [109,110,125,126] turned out to vary in time. It decreased
with the reliability of the recommendations (see Fig. 17a), which again dropped
with the compliance.

Based on this knowledge, we have developed a model, how the competition
for limited resources (such as road capacity) could be optimally guided by means
of information services. Let us assume we had n(¢) 1-decisions at time ¢, but the
optimal number of 1-decision at time ¢+1 is calculated to be f{%(t+1)N > ny(t).
Our aim is to balance the deviation f;®(t+1)N —ny(t) > 0 by the expected net
number

(An1(t+ 1)) =(ni(t+1) —n1(t)) = (i (t+ 1)) — ny () (94)
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Fig. 16. Representative examples for (a) treatment 4 and (b) treatment 5 (from [117]).
The displayed curves are moving time-averages over 20 iterations. Compared to treat-
ment 4, the user-specific recommendations in treatment 5 (assuming Cy = Cg = 1,
R1 =0, Ry = max([f{2(t+1)N —n1(t)+ B(t+1)]/n2(t), 1), [ = I, = 1) could increase
the group adaptability to the user equilibrium a lot, even if they had a systematic or
random bias B (see Fig. 17a). The standard deviation was reduced considerably and
the changing rate even more.

of transitions from decision 2 to decision 1, i.e. f{4(t+1)N—n(t) = (Any(t+1)).
In the case f{%(t + 1)N — ny(t) < 0, indices 1 and 2 have to be interchanged.
Let us assume we give recommendations to fractions I (¢) and I (t) of players
who had chosen decision 1 and 2, respectively. The fraction of changing recom-
mendations to previous 1-choosers shall be denoted by R;(t), and for previous
2-choosers by Ra(t). Correspondingly, fractions of [1 — R1(¢)] and [1 — Ra(t)] re-
ceive a recommendation to stick to the previous decision. Moreover, [1 — Cp/(?)]
is the refusal probability of recommendations to change, while [1 — Cg(t)] is the
refusal probability of recommendations to stay. Finally, we denote the sponta-
neous transition probability from decision 1 to 2 by p,(2|1,n1;t) and the inverse
transition probability by p,(1|2,n1;t), in case a player does not receive any rec-
ommendation. This happens with probabilities [1 — I (¢)] and [1 — I5(¢)], respec-
tively. Both transition probabilities p,(2]|1,n1;t) and p,(1]2,n1;t) are functions
of the number n;(t) = N — na(t) of previous 1-decisions. The index a allows
us to reflect different strategies or characters of players. The fraction of players
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Fig.17. (a) In treatment 5, the compliance to recommendations to change dropped
considerably below the compliance to recommendations to stay. The compliance to
changing recommendations was very sensitive to the degree of their reliability, i.e. par-
ticipants followed recommendations just as much as they helped them to reach the user
equilibrium (so that the bias B did not affect the small deviation from it, see Fig. 16b).
While during time interval A, the recommendations would have been perfect, if all
players had followed them, in time interval B the user equilibrium was overestimated
by B = +1, in C it was underestimated by B = —2, in D it was randomly over- or
underestimated by B = +1, and in E by B = £2. Obviously, a random error is more se-
rious than a systematic one of the same amplitude. Dotted non-vertical lines illustrate
the estimated compliance levels during the transient periods and afterwards (horizontal
dotted lines). (b) The average payoffs varied largely with the decision behavior. Players
who changed their decision got significantly lower payoffs on average than those who
kept their previous decision. Even recommendations could not overcome this difference:
It stayed profitable not to change, although it was generally better to follow recom-
mendations than to refuse them. For illustrative reasons, the third and fourth line were
shifted by 15, while the fifth and sixth line were shifted by 30 iterations. (From [117].)

pursuing strategy a is then denoted by F,(t). Applying methods summarized
in Ref. [18,19], the expected change (Anq (¢ + 1)) of ny is given by the balance
equation

(Any(t+1)) = > pa(1]2,n1: 1) Fo()[1 — L(t)]na(t)
= pa2lL,n:t) Fa(t)[1 = L (8)]na (t)
+ > {CH®R(t) + [1 — CEB)[1 — Ra(t)]} Fa(t) I2(t)na(t)

= D ACHORL(D) +[1 = CEOIL — RO} Fa(O L (H)na(t), (95)
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which should agree with f{9(t + 1)N — ny(t). We have evaluated the overall
transition probabilities

p(1]2,n15t) Zpa 12,n1;8)Fa(t) and  p(2[1,n;¢ Zpa 211, n1; 1) Fu(t) -

(96)
According to classical decision theories [13,14,18,19,127], we would expect that
the transition probabilities p, (2|1, n1;t) and p(2|1, nq;t) should be monotonically
increasing functions of the payoff Po(N — ny(t)), the payoff difference Py(N —
n1(t))— Py (nq1(t)), the potential payoff Po(N —nq(t)+€eN), or the potential payoff
gain Po(N —nq(t) + eN) — Pi(ni1(t)). All these quantities vary linearly with n,
so that p(2|1,n1;t) should be a monotonic function of nq(t). A similar thing
should apply to p(1]2,m1;t). Instead, the experimental data point to transition
probabilities with a minimum at the user equilibrium (see Fig. 18a). That is,
the players stick to a certain alternative for a longer time, when the system
is close to the user equilibrium. This is a result of learning [128-133]. In fact,
we find a gradual change of the transition probabilities in time (see Fig. 18b).
The corresponding “learning curves” reflect the players’ adaptation to the user
equilibrium.
After the experimental determination of the transition probabilities
p(2|1,n1;t), p(112,n1;t) and specification of the overall compliance probabili-

ties
=Y CutFa.(t),  Cs(t)=> C&(t)Fa(t), (97)

we can guide the decision behavior in the system via the levels I;(¢) of infor-
mation dissemination and the fractions R;(t) of recommendations to change
(i € {1,2}). These four degrees of freedom allow us to apply a variety of guid-
ance strategies depending on the respective information medium. For example,
a guidance by radio news is limited by the fact that I1(t) = I3(t) is given by
the average percentage of radio users. Therefore, equation (95) cannot always be
solved by variation of the fractions of changing recommendations R;(t). User-
specific services have much higher guidance potentials and could, for example, be
transmitted via SMS. Among the different guidance strategies fulfilling equation
(95), the one with the minimal statistical variance will be the best. However, it
would already improve the present situation to inform everyone about the frac-
tions R;(t) of participants who should change their decision, as users can learn
to respond with varying frequencies (see Fig. 18). Some actually respond more
sensitively than others (see Fig. 10), so that a group of users can reach a good
overall performance based on individual strategies.

The outlined guidance strategy could, of course, also be applied to reach the
system optimum rather than the user optimum. The values of An;(t+ 1) would
just be different. Note, however, that the users would soon recognize that this
guidance is not suitable to reach the user optimum. Consequently, the compliance
probabilities would gradually go down, which would affect the potentials and
reliability of the guidance system.
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Fig. 18. Illustration of group-averaged decision distributions P(i|n1) and transition
probabilities p(i’|i,n1;t) measured in treatment 3 (from [117]). (a) The probability
P(1|n1) to choose alternative 1 was approximately 2/3, independently of the number n;
of players who had previously chosen alternative 1. The probability P(2|n1) to choose
alternative 2, given that ni players had chosen alternative 1, was always about 1/3.
In contrast, the group-averaged transition probability p(1]|2,7n1) describing decision
changes from alternative 2 to 1 did depend on the number n; of players who had
chosen decision 1. The same was true for the inverse transition probability p(2|1,n1)
from decision 1 to decision 2. Remarkably enough, these transition probabilities are not
monotonically increasing with the payoff or the expected payoff gain, as they do not
monotonically increase with ni. Instead, the probability to change the decision shows
a minimum at the user equilibrium ny = fj*N = 6. Figures 10 and 14 suggest that
this transition probability does not reflect the individual transition probabilities. There
rather seem to be typical responce patterns (see Sec. 5), i.e. some individuals react only
to large deviations from the user equlibrium, while others already react to small ones,
so that the overall response of the group reaches a good adaptation performance. (b)
The reason for the different transition probabilities is an adaptation process in which
the participants learn to take fewer changing decisions, when the user equilibrium is
reached or close by, but more, when the user equilibrium is far away. (The curves were
exponentially smoothed with oo = 0.05.)

In practical applications, we would determine the compliance probabilities
C;(t) with j € {M, S} (and the transition probabilities) on-line with an expo-
nential smoothing procedure according to

Ci(t+1) =aCj(t) + (1 —a)Cj(t) with a=0.1, (98)

where C;» (t) is the percentage of participants who have followed their recommen-
dation at time t. As the average payoff for decision changes is normally lower than
for staying with the previous decision (see Figs. 17 and 9d), a high compliance
probability C)y is hard to achieve. That is, individuals who follow recommenda-
tions to change normally pay for reaching the user equilibrium (because of the
overreaction in the system). Hence, there are no good preconditions to charge
the players for recommendations, as we did in another treatment. Consequently,
only a few players requested recommendations, which reduced their reliability,
so that the overall performance of the system went down.
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5.2 Master Equation Description of Iterated Decisions

The description of decisions that are taken at discrete time steps (e.g. on a day-
to-day basis) is different from decisions in continuous time. We can, however,
apply the time-discrete master equation (30) with At = 1, if there is no need
to distinguish several characters a. As the number of individuals changing to
the other alternative is given by a binomial distribution, we obtain the follow-
ing expression for the configurational transition probability to be inserted into
Eq. (30):

P((nl,ng),t +1 ’ (n1 — Any,no + Anl),t)

min(n;—Any,ng)
<n2 + An1

n no—k
B Z Any + k )p(1|2,n1 - Ang;t)* 1+k[1 —p(1|2,n1 — Any;t)]
k=0

nlfAnlfk

« <n1 —kA”I > p(21,n1 — Anl;t)k [1 —p(2|]1,n1 — Am;t)] (99)

This formula sums up the probabilities that Any + k& of ny + Any previous
2-choosers change independently to alternative 1 with probability p(1|2,n1 —
Anq;t), while k of the n; — An; previous 1-choosers change to alternative 2
with probability p(2|1,n; — Ang;t), so that the net number of changes is An;.
If An; < 0, the roles of alternatives 1 and 2 have to be interchanged. Only in
the limits p(1]|2,n1 — Ang;t) & 0 and p(2|1,n1, — Anq;t) ~ 0 corresponding to
At ~ 0 do we get the approximation

P((nl,ng),t+ 1 | (n1 — Any,no + Anl),t)

p(112,n1 — L;t)(na + 1) if Any = +1
0 otherwise,

which is relevant for the time-continuous master equation.

The potential use of Eq. (99) is the calculation of the statistical variation of
the decision distribution or, equivalently, the number n; of 1-choosers. It also
allows one to determine the variance, which the optimal guidance strategy should
minimize in favour of reliable recommendations.

6 Summary and Outlook

In the first sections of this contribution, we tried to develop a consistent theory
of decision behavior. We started from socio-psychological observations regarding
single decision-making processes and concluded that decisions can be interpreted
as phase transitions. Moreover, a transitive preference scale was found to be re-
stricted to particular situations. Our probabilistic approach improves the concept
of homo economicus, as it takes into account limited or uncertain information,
limited processing capabilities (e.g. incomplete decisions), and emotional aspects
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of decision-making. We have also considered non-linear interactions among in-
dividuals, which allowed us to understand polarized decision behavior (in par-
ticular regarding emotionally loaded issues), the self-organization of behavioral
conventions, and the transition from individual to mass behavior. Several fields
of application have been outlined, such as opinion formation, fashion cycles, so-
cial force models, logistic and gravity models, or dynamical game theory, which
have all been special cases of the developed dynamical decision theory.

With the finally described decision experiments, we have explored different
and identified superior ways of information presentation that facilitate to guide
user decisions in the spirit of higher payoffs. By far the least standard devia-
tions from the user equilibrium could be reached by presenting the own payoff
and the potential payoff, if the respective participant (or a certain fraction of
players) had additionally chosen the other alternative. Interestingly, the deci-
sion dynamics was found to be intermittent similar to the volatility clustering
in stock markets, where individuals also react to aggregate information. This
results from the desire to reach above-average payoffs, combined with the imma-
nent overreaction in the system. We have also demonstrated that payoff losses
due to a volatile decision dynamics (e.g., excess travel times) can be reduced
via user-specific recommendations by a factor of three or more. Such kinds of
results will be applied to the route guidance on German highways (see, for exam-
ple, the project SURVIVE conducted by Nobel prize winner Reinhard Selten and
Michael Schreckenberg). Optimal recommendations to reach the user equilibrium
follow directly from the derived balance equation (95) for decision changes based
on empirical transition and compliance probabilities. The quantification of the
transition probabilities requires a novel stochastic description of the decision be-
havior, which is not just driven by the potential (gains in) payoffs, in contrast
to intuition and established models. To understand these findings, one has to
take into account reinforcement learning, which can also explain the emergence
of individual response patterns (see Sec. 5).

Obviously, it requires both, theoretical and experimental efforts to get ahead
in decision theory. In a decade from now, the microscopic theory of human in-
teractions will probably have been developed to a degree that allows one to
systematically derive social patterns and economic dynamics on this ground.
This will not only yield a deeper understanding of socio-economic systems, but
also help to more efficiently distribute scarce resources such as road capacities,
time, space, money, energy, goods, or our natural environment. One day, similar
guidance strategies as the ones suggested above may help politicians and man-
agers to stabilize economic markets, to increase average and individual profits,
and to decrease the unemployment rate.
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