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Abstract

A new mathematical representation is proposed for the con�guration space structure induced
by recombination which we called �P�structure�� It consists of a mapping of pairs of objects to
the power set of all objects in the search space� The mapping assigns to each pair of parental
�genotypes� the set of all recombinant genotypes obtainable from the parental ones� It is shown
that this construction allows a Fourier�decomposition of �tness landscapes into a superposition
of �elementary landscapes�� This decomposition is analogous to the Fourier decomposition of
�tness landscapes on mutation spaces� The elementary landscapes are obtained as eigenfunctions
of a Laplacian operator de�ned for P�structures� For binary string recombination the elementary
landscapes are exactly the p�spin functions �Walsh functions�	 i�e� the same as the elementary
landscapes of the string point mutation spaces �i�e� the hypercube�� This supports the no�
tion of a strong homomorphisms between string mutation and recombination spaces� However	
the e
ective nearest neighbor correlations on these elementary landscapes di
er between muta�
tion and recombination and among di
erent recombination operators� On average	 the nearest
neighbor correlation is higher for one�point recombination than for uniform recombination� For
one�point recombination the correlations are higher for elementary landscapes with fewer inter�
acting sites as well as for sites which have closer linkage	 con�rming the qualitative predictions
of the Schema�Theorem� We conclude that the algebraic approach to �tness landscape analysis
can be extended to recombination spaces and provides an e
ective way to analyze the relative
hardness of a landscape for a given recombination operator�

�� Landscapes on Discrete Structures

The notion of a landscape plays an important role in the theory of evolution and

in optimization theory� Implicit in this idea is a collection of genotypes arranged

in an abstract metric space� with each genotype next to those other genotypes

which can be reached by a single mutation� as well as a value assigned to each

genotype ����� Such a construction is by no means restricted to the theory of

biological evolution� Hamiltonians of disordered systems� such as spin glasses

��� ���� and the cost functions of combinatorial optimization problems ���� have

the same mathematical structure� In most applications there is an unambiguous

notion of neighborhood� which imposes the structure of a graph on the set of

con�gurations� Unfortunately� this picture is not powerful enough to deal with

crossover �recombination� where the relatedness of sequences is determined by

pairs of �parents� rather than individual ancestors�

The intuitive notion of ruggedness is closely related to the di�culty of optimizing

�or adapting� on a given landscape� It depends obviously on both the �tness

� � �
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function f � V � IR� and on the geometry of the search space� which is induced by

the search process� Two approaches have been considered for the case of landscapes

on graphs� Palmer ���� uses the number of local optima� that is of con�gurations

�x with the property that f��x� � f�y� holds for all y in the neighborhood of �x�

as the measure of ruggedness� Sorkin ��	�� Eigen et al� ��
�� and Weinberger ���

use correlation measures� This approach is closely related to the algebraic graph

theory of the con�guration space ���� ��� ���� see section ��

In order to deal with landscapes as �seen� by crossover �recombination�� as in the

case of genetic algorithms ����� we need to generalize our notion of a con�guration

space� Given a �nite set V of con�gurations endowed with some additional geo�

metric structure X � we de�ne a landscape as a real valued map� ��tness function�

f � V � IR together with a �geometric� structure X on V � This structure X can

be a neighborhood�relation implying a graph� it can be a metric� or a more general

topology� or another algebraic or combinatorial construction� The question then

becomes� given f and X � what do we mean by �ruggedness�� The �geometric�

approach based on local optima faces an immediate problem� what exactly do we

mean by �local� when the structure X does not imply a metric distance measure

in a natural way� We shall show in this contribution� that the �algebraic� ap�

proach based on correlation functions is more general� It can indeed deal with

recombination� Two fundamental problems will be addressed�

��� How can we compare two landscapes f and g given the structure X arising

from a prescribed search procedure�

��� How can we compare two search procedure inducing the structures X and Y

for a prescribed landscape f�

These two problems have been adressed in a very interesting way by Wolpert and

Macready ��	� �	�� Their �no�free�lunch theorem� shows that all algorithms that

search for an extremum of a cost function perform exactly the same� when averaged

over all possible cost functions� In particular� if algorithmA outperforms algorithm

�Alternatively	 we might view f simply as an jV j dimensional vector� The function�like notation
f�x� will prove to be useful	 however�

� � �
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B on some cost functions� then� loosely speaking� there must exist exactly as many

other functions where B outperforms A� Their theory implies that no optimization

problems are intrinsically harder than another one as long a no reference is made

to an algorithm or a class of algorithms� Classes of problems that are intrinsically

harder than others can be de�ned however by considering the level of hardness of

a combinatorial optimization problem for the optimal algorithm that exists for the

given problem� Unfortunately� this analysis is non�constructive and does not even

in principle provide us with a receipt for the construction of the optimal algorithm

for a given landscape�

It is the purpose of this manuscript to explore to what extent an �algebraic graph

theory� approach to landscapes on undirected graphs �see section � for a brief

summary� can be extended to describing �recombination spaces�� Such an exten�

sion might be useful for devising a constructive approach to the relative hardness

of optimization problems and to the relative e�ectivity of search processes�

The problem of recombination spaces is that recombination acts on pairs of types�

e�g�� chromosomes or strings� rather than single types as point mutations� The

problem was addressed by Culberson ���� for one�point recombination of Boolean

strings� Culberson started from the set of unordered pairs of complementary

strings and obtained a graph connecting each pair with each other pair that can

be reached by one application of the cross�over operator� He showed that the re�

sulting graph is a hypercube and is thus isomorphic to a one�point mutation space�

However� the isomorphism only was demonstrated between the mutation space for

strings of length n with the recombination space for strings of length n �� Hence�

the isomorphism is between mutation and recombination spaces for di�erent sets

of objects� in this case strings of di�erent length�

Another limitation of Culberson�s approach is that it only considers recombination

events among complementary strings and ignores all the other possible recombina�

tion events� The latter problem was solved by Jones ����� by constructing recom�

bination landscapes where the vertices are all possible pairs of strings� However�

with these structures it is very di�cult to see the similarity� or lack of similarity�

� � �
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to mutation spaces� The vertices of mutation spaces are single strings while the

vertices of Culberson and Jones spaces are pairs of strings� This problem was

addressed by Gitcho� and Wagner ���� who generalized the notion of a con�gu�

ration space from simple graphs to hypergraphs� In their approach each vertex is

a single type� e�g�� a string� and a generalized edge is constructed from the set of

all recombinants of a pair of strings� For strings of �xed length it has been shown

that the so constructed recombination space is actually homomorphic to the point

mutation space of the same set of strings �����

Although useful for showing the general similarity between mutation and recom�

bination spaces� hypergraphs do not contain enough information to support an

algebraic theory of recombination spaces� The main problem is that the elements

in the generalized edge of a hypergraph are treated as functionally equivalent ��

��� ���� However� it has been shown for one point recombination that only one

pair of parental strings can generate exactly this set of recombinants ����� Hence�

we need to attach to each edge of the hypergraph the pair or pairs of parental

strings which can generate this set of recombinants�

This is done in this paper by proposing so�called P�structures� which is a mapping

of pairs of types to the edges of the recombination hypergraph� see section �� We

shall see that a generalization of the spectral theory of graphs and hypergraphs

can be devised for P�structures� In section � this construction will be applied

to recombination on spaces of strings with constant length� Section � contains a

comparison of crossover and mutation for a variety of landscapes�

� � �
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�� The Algebraic Theory of Landscapes on Graphs

����Fourier Series on Graphs

Let f � V � IR be a landscape� The con�guration space is the graph ! " �V�E�

which is faithfully described by its adjacency matrix A which has the following

entries Axy
def
��� � if fx� yg is an edge of ! and Axy

def
��� � otherwise� We shall write

N def
��� jV j for the total number of con�gurations� The number of neighbors of a

vertex x � V is called the degree of x# by D we denote the diagonal matrix of the

vertex degrees� It turns out that the graph Laplacian �$ def
���D �A provides a

more convenient description of !� This matrix is related to the more familiar dif�

ferential operator $ in continuous spaces� see ��� ��� ��� �
�� The graph Laplacian

�$ is non�negative de�nite� and the smallest eigenvalue �� " � has multiplicity

� if and only if ! is a connected graph� A graph is regular is all vertices have

the same vertex degree� i�e�� D " DI� where I is the identity matrix and D is

the common degree of all vertices� Our prime interest here is sequences spaces

which are regular of degree D " ��� ��n� where n is the sequence length and � is

the number of di�erent letters in the alphabet� Throughout this section we shall

assume that ! is regular and connected�

A series expansion f�x� "
NX
i��

ai�i�x�� where the �i form a complete and orthonor�

mal system of eigenfunctions of the graph Laplacian �$� is termed a Fourier series

expansion of the landscape f � Note that we write �i�x� to mean the x�component

of the vector �i throughout this paper� A landscape is called elementary if it is of

the form f�x� " c ��x�� where c is an arbitrary constant and � is an eigenvector

of the graph�Laplacian belonging to an eigenvalue � � �� see ��� ���� Elementary

landscapes form an important class because the landscape of the most intensively

studied combinatorial optimization problems� such as the travelling salesman prob�

lem ��
�� the graph bipartitioning problem� or the graph coloring problem� are of

this type ����

� � �
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For boolean hypercubes de�ned on the alphabet f ����g� a Fourier basis can

easily be determined explicitly� It is easy to verify that �p�spin function�

�i�i����ip�x�
def
���xi�xi� � � � xip with i� 	 i� 	 � � � 	 ip ���

is an eigenvector of �$ belonging to the eigenvalue �p " �p� see e�g�� ��
�� In par�

ticular� Derrida�s p�spin models ��� ��� are superpositions of these basis functions

containing only contributions with a single interaction order p � �� This is to say

that the p�spin Hamiltonians are eigenfunctions of the Laplacian of the Boolean

hypercube irrespective of the particular choice of the interaction coe�cients�

����Correlation Functions

If a simple algebraic description of a landscape is not available we need a condensed

description of its salient features� This is because the extremely large number of

con�gurations� for instance N " �n for RNA sequences or N " n% for n�city

travelling salesman problems� renders a complete �listing� infeasible� Correlation

measures relating the values of nearby con�gurations with each other seem to be

a natural approach�

De�ning mean and variance� of a landscape f by

f def
���

�

N

X
x�V

f�x� and 
�f
def
���

�

N

X
x�V

�
f�x�� f

��
" f� � f

�

we note that 
�f " � if and only if f is constant� i�e�� for �at landscapes� Two

types of correlation functions have been investigated� Eigen and co�workers ��
�

introduced

��d� def
���

hf�x�f�y�idH�x�y��d � f
�


�f
� ���

�There is nothing �statistical� about f or ��
f
� Both quantities are functionals of f � They should

not be mistaken for the averages over di
erent instances that are commonly used in a statistical
mechanics type analysis of what one might call statistical models of landscapes �random �elds�
����

�  �
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where the notation h � id�x�y��d indicates the mean value is calculated from all pairs

of sequences x� y with Hamming distance ��
� dH�x� y� " d� An alternative ap�

proach has been explored by Weinberger ���� A simple random walk fx�� x�� � � �g

on the vertex set of ! generates a �time series� ff�x��� f�x��� � � �g with the auto�

correlation function

r�s� def
���

hf�xt�f�xt�s�ix��t � hf�xt�ix��t hf�xt�s�ix��tq�
hf�xt��ix��t � hf�xt�i�x��t

� �
hf�xt�s��ix��t � hf�xt�s�i�x��t

� ���

The notation h � ix��t emphasizes that the expectation is taken over all �times� t

and all initial conditions x�� We will refer to r�s� as the �random walk� correlation

function of the landscape f on !� A simple random walk ���� on a graph ! has

transition matrix T def
���AD��� It can be shown ���� that

r�s� "
�


�f

�
�

N
hf�Tsfi � f

�
�

���

for a regular graph !� The two correlation measures r�s� and ��d� are closely

related to each other� since r�s� "

dmaxX
d��

�sd��d�� where dmax is diameter of the

graph ! and �sd is the probability that a simple random walks of s steps ends

in distance d from its starting point ���� In particular� the nearest neighbor

correlation satis�es  " r��� " �����

It has been shown ���� that there is an intimate relationship between the Fourier

expansion of a landscape and the form of its correlation functions ��d� and r�s��

For sequence spaces� �Hamming graphs� one has

Proposition �� ���� Let f be a non�&at landscape on the sequence space �Ham�

ming graph� Qn
�� Then the following statements are equivalent�

�i� f is elementary with � " p��

�ii� The �random walk� correlation function is exponential�

r�s� " s " ��� ��D�s "

�
��

�

�� �

p

n

�s

� ���

�Analogous results hold for all distance regular graphs�

� 
 �
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�iii� The �direct� correlation function is a Krawtchouk polynomial�

��d� " �n��p �d� def
���

��
n
p

�
��� ��p

pX
j��

����j��� ��p�j
�
d

j

��
n� d

p� j

�
� ��

Since any landscape on ! is necessarily a superposition of elementary landscapes�

their correlation functions are superpositions as well� Let f "
P

j aj�j be a Fourier

expansion of f � and denote by �p the distinct eigenvalues of �$� Furthermore�

let Ip be the set of all indices k for which $�k  �p�k " �� The value p " �

corresponds to the &at component of the landscape� De�ning the amplitude of the

p�ary interactions as

Bp
def
���

P
k�Ip

jakj
�P

k ��� jakj
�
� �
�

we have Bp � � and
P

pBp " �� As a by�product of the proof of Proposition �

it can be shown ���� that the Fourier expansion of f translates directly into an

expansion of the correlation functions�

Proposition �� r�s� "
X
p ���

Bp��� �p�D�
s and ��d� "

X
p���

Bp�
n��
p �d�� �	�

Given a landscape� the crucial information about its correlation structure is there�

fore contained in the amplitudes Bp which describe the relative importance of

the di�erent elementary components and the eigenvalues �p which describe the

ruggedness of the individual components�

����Ruggedness

The eigenstructure of the graph Laplacian o�ers a promising formalism for relating

the correlation structure of a landscape to the geometry of its local optima� In

fact� the geometric structure of an elementary landscape is closely related to the

constant the eigenvalue of the graph Laplacian to which f belongs�

� The solutions of the Laplace equation $f " � form the harmonic functions on

!� It is well known that there are no non�trivial harmonic functions on �nite

� 	 �
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connected graphs# see� e�g�� ��� �
�� The harmonic functions are therefore the

&at landscapes�

� De�ne the sets V� " fx � V jf�x� � �g and V� " fx � V jf�x� � �g of all ver�

tices on which f is non�negative or non�positive� respectively� and denote the

corresponding induced subgraphs by !� and !�� The second smallest eigen�

value �� of the graph Laplacian �$� which is positive for all connected graphs�

is called the algebraic connectivity of !� A theorem by Fiedler ��	� ���� see also

��� Thm�����
�� states that both !� and !� are connected for the corresponding

eigenvectors� i�e�� there are exactly two nodal domains� Following a suggestion

by Kau�man ���� we term this type of landscape Fujijama� landscapes because

they consist of a single �mountain� !�� For Hamming graphs a much stronger

result holds� Fujijama landscapes have no non�global minima or maxima �����

� The connected components of !� and !� are called the nodal domains of f � The

geometry of the nodal domains of a landscape f is of course a very important

characteristic of the landscape� Courant�s nodal domain theorem	� which has

been proved recently for graphs ����� states that� if all eigenvalues of �$ are

labeled in ascending order� � " �� � �� � � � � � �N��� then the number of

nodal domains of an eigenfunction f belonging to �k is at most k  ��

� Grover ��� observed that the local optima have a characteristic distribution

on elementary landscapes� Let zmin and zmax be a local minimum and a local

maximum� respectively� Then f�zmin� � 'f � f�zmax�� In other words� all local

maxima are in !� and all local minima are in !� if f is an eigenvector of �$�

� A heuristic argument ���� suggests that there should be approximately one local

optimum of a landscape in a ball with a radius determined by the correlation

length

� def
���

�X
s��

r�s� � ���

Numerical computations ��� ��� ��� show that this estimate is remarkably accu�

rate for elementary landscapes ful�lling a certain maximum entropy condition�

	The original version of this theorem holds for Riemannian manifolds	 see ����

� � �
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The correlation length � de�ned in equ���� is also closely related to the spectrum�

we have

� "
X
p ���

Bp

�X
s��

��� �p�D�
s " D

X
p���

Bp�
��
p � ����

i�e�� the correlation length of a landscape is determined by the harmonic mean

of the eigenvalues of the Laplacian �p of the con�guration space weighted by the

amplitudes Bp of the landscape� For an elementary landscape we have in particular

� " D��p� In addition� there is ample evidence that the correlation length � of a

landscape is closely related to the performance of optimization heuristics� see e�g��

���� ��� ��� ���

� �� �
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�� P�Structures

Search processes using mutations� i�e�� rules to modify individual con�gurations�

impose a graph structure on V by assigning edges between con�gurations that are

accessible from each other by a single �move�� The search in genetic algorithms

works quite di�erently� two con�gurations from a population are chosen and a

so�called crossover �or recombination� operator creates �o�springs� from the two

�parents�� In this section we introduce a discrete mathematical structure which

allows for a discussion of recombination�like search by methods from algebraic

graph theory�

De�nition� Let V be a �nite set with power set P�V �� A P�structure
 is a pair

�V�R� where R � V � V � P�V �� We say that the P�structure is symmetric if

R�x� y� " R�y� x� for all x� y � V �

The �pseudo�digraph suppR with vertex set V and edge set

ER
def
���

�
�x� y� � V � V

		R�x� y� �" 	



����

will be called the support of the P�structure �V�R�� Note that suppR has a loop

at vertex x whenever R�x� x� �" 	� We set M def
��� jERj� In the case of symmetric

P�structures then we can regard suppR as an undirected pseudograph �possible

with loops�� Throughout this paper we shall assume R�x� y� �" 	 for all x� y � V �

i�e�� suppR will always be the complete di�graph with loops and thus M " N��

A hypergraph ��� consists of a vertex set V and a collection E of �not necessar�

ily� distinct subsets of V which are called �hyper�edges� The image of R is the

hypergraph imagR with vertex set V and �hyper�edge multiset

E def
��� fR�x� y� � P�V � j R�x� y� �" 	 and x� y � V g � ����

This construction has been used in ���� in order to represent the structure of

recombination on a �nite set of genotypes� The hypergraph imagR has in general


The term �P�structure� has been chosen because its image set is the power set of V �

� �� �
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multiple edges� In particular� if R is symmetric� any set R�x� y� appears at least

twice if x �" y�

Generalizing the notion of the vertex degree for graphs one de�nes the vertex

degree of x � V as the number of edges h � E which contain x� The degree of a

�hyper�edge h � E equals the number jhj of vertices that it contains� We de�ne

the degree deg�y� of a vertex y � V in the P�structure �V�R� as the number of sets

R�z� z�� that contain y� This de�nition coincides of course with the vertex degree

of the hypergraph imagR�

In appendix B we show that graphs and di�graphs can be represented as particular

P�structures� In the following we shall develop an algebraic framework for the

investigation of P�structures that can be regarded as generalization of algebraic

graph theory and as generalization of the spectral theory of hypergraphs� see

appendix A� The details of these connections are collected in appendix B since

they are not directly relevant to the main purpose of this paper� the description

of recombination spaces�

The set of pairs �x� y�� x �" y� with R�x� y� " fx� yg plays a special role in a P�

structure� Such a pair could be interpreted as an analogue of a �xed point �under

repeated application of R� which implies an intuitive notion of �closeness�� The

set of all such edges introduces a digraph on V which we call the backbone graph

bbgR of �V�R�� P�structures do not necessarily have non�trivial backbone graphs�

if imagR does not contain �hyper�edges of degree � then bbgR is the �discrete�

graph that does not contain any edges� However� if bbgR is a connected graph

then it de�nes a natural metric on V � We shall see in the next section that

the backbone graph of certain string recombination P�structures are exactly the

Hamming graphs�

The incidence matrix H� de�ned component�wise by

Hx��y�z�
def
���

�
� if x � R�y� z�
� otherwise �

����

uniquely determines the P�structure �V�R�� It has N rows and M columns� The

diagonal matrices V and W of vertex and �hyper�edge degrees play a prominent

� �� �
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role in the theory of hypergraph spectra� see appendix A� For a P�structure we

de�ne

Vxx
def
���deg�x� "

X
�y�z�

Hx��y�z� and W�x�x����x�x�� " jR�x� x��j � ����

The adjacency matrix of the backbone graph bbgR will be denoted by G� The

matrices S and Q� de�ned component�wise by

Sxy
def
��� �

X
z�V

Hx��y�z� jR�y� z�j
�� �

Qxy
def
���

X
z�z��V

Hx��z�z��jR�z� z
��j��Hy��z�z�� �

����

will play a dominant role in this contribution� In section � we shall argue that S

is directly connected to the properties of search by means of recombination� The

symmetric matrix Q is used to de�ne spectra of hypergraphs� see appendix A�

Both S and Q can be viewed as generalization of the adjacency matrix of a graph�

see appendix B for the details�

Let us now turn to the symmetries of P�structures� An automorphism of a P�

structure �V�R� is a mapping � � V � V with the property

R���x�� ��y�� " ��R�x� y�� ���

for all x� y� z � V � In terms of the incidence matrix this condition becomes

H��x�����y����z�� " Hx��y�z� for all x� y� z � V � ��
�

The set of all automorphisms of a P�structure forms of course a group �under

composition� which we shall denote by Aut�V�R�� Any automorphism of a P�

structure is a graph automorphism of suppR and bbgR as well as a hypergraph

automorphism of imagR and hence S� and G are invariant under P�structure

isomorphisms� see lemma B� in the appendix� This observation will be of particular

importance for our discussion�

� �� �
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A permutation group is said to act transitively of a set V if for any two elements

x� y � V there is a group element � � Aut�V�R� such that y " ��x�� A permu�

tation group on V is generously transitive �	� ��� if for any two elements x� y � V

there is a group element � such that ��x� " y and ��y� " x� We say that �V�R�

is vertex transitive �generously transitive� if Aut�V�R� acts �generously� transitive

on V � This is analogous to the corresponding de�nition for graphs�

Consider now the orbits of Aut�V�R� on the set V � V of vertex pairs� that is�

the sets of the form

X "

�
�x� y�

				
� � Aut�V�R� � x " ��x��� y " ��y��

�

that are generated by applying all P�structure automorphism to a pair �x�� y�� of

reference vertices� To each orbit X we can associate a characteristic matrix X�

with entries Xxy " � if �x� y� � X and Xxy " � otherwise� These matrices are by

construction invariant under all P�structure automorphisms and they form a basis

of a matrix algebra A�V�R� which is coherent in the sense of Higman ��	� ��� ����

see e�g�� �	� chap��� for detailed discussion� We note that I�J�V�S�G � A�V�R��

If the group Aut�V�R� is generously transitive then A�V�R� is a commutative

algebra consisting of symmetric matrices� It is the so�called Bose�Mesner algebra

�
� of a �symmetric� association scheme� see �	� ��� for details� For our purposes

only the following proposition� which is a trivial rewriting of well known properties

of symmetric association schemes� will be of importance�

Proposition �� Suppose the P�structure �V�R� is generously transitive� Then

there is a common basis f�kg� � � k � N � of eigenvectors for all matrices Y �

A�V�R�� which we shall call the Fourier basis of the �generously transitive� P�

structure�

� �� �
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De�nition� Suppose bbgR is a connected graph and let d � V � V � IR be the

associated metric distance on V � We say that the P�structure is distance transitive

with respect to its backbone �b�d�transitive� if for any two pairs �x� y� and �u� v�

with d�x� y� " d�u� v� there is an automorphism � � Aut�V�R� such that x " ��u�

and y " ��v��

Theorem �� If �V�R� is a b�d�transitive P�structure then its Bose�Mesner algebra

A�V�R� coincides with the adjacency algebra of the backbone graph bbgR� i�e��

A�V�R� is generated by G�

The algebraic properties of a b�d�transitive P�structure are therefore determined

already by its backbone graph� The adjacency algebra of a graph is discussed in

some detail in ���� Connectedness of bbgR is a crucial condition in the above de�ni�

tion# it cannot be relaxed� We note �nally� the backbone graph of a b�d�transitive

P�structure is distance transitive� We shall see in the next sections that some

forms of recombination P�structures have this property�
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�� Recombination of Strings

Gitcho� and Wagner ���� used the following axioms to describe the action of a

recombination in terms of what we call here P�structures�

De�nition� A P�structure �V�R� is a recombination structure if for all x� y� z � V

holds�

�i� R�x� x� " fxg�

�ii� R�x� y� " R�y� x��

�iii� fx� yg � R�x� y��

�iv� For all z � R�x� y� holds jR�x� z�j � jR�x� y�j�

In order to characterize a �tness landscape f � as it is perceived by a recombination�

driven search process� we consider a random population of strings� The probability

of constructing sequence x in a recombination event using string y as the �mother�

is Txy "
P

z�V txyzpz where pz is the frequency of the potential �father� z in the

population� The coe�cients txyz form the transmission tensor� which is de�ned as

the probability of constructing x from the parents y and z� For a uniform popula�

tion we have of course pz " ��N � In order to evaluate the transition rates we de�ne

that all possible recombination products should occur with equal probability�� In

this case we have the transmission tensor txyz " Hx��z�y� � jR�y� z�j
��� which leads

to the transition matrix

Txy
def
���

X
z�V

Hx��y�z�jR�y� z�j
�� �

N
"

�

�N
Sxy � ��	�

It is easy to check that T is in fact a stochastic matrix� because
P

x Sxy " �N � A

similar �walk� on V was used in ���� in order to generate the �times�series� for a

numerical correlation analysis of Nk landscapes under recombination�

�This assumption is not necessarily strictly satis�ed in a GA simulation� For instance	 then ��
point crossover is simulated by chosing a recombination point from a uniform distribution	 then
the frequency distribution of the recombinants depends on the position of the non�conserved
letters in the strings� We shall not persue this complication in this contribution�

� � �
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In order to determine the structure of the landscape f we consider now samples

obtained from individual �family lines�� that is sequences of vertices x�� x�� x�� � � �

such that xk � R�xk��� zk��� where the �mates� zj are random choices from the

population� The transition matrix of the associated Markov process is exactly the

matrix T de�ned above� The samples of the landscape� ff�x��� f�x��� � � �g forms

a �time�series� that generalizes Weinberger�s ��� procedure for mutation spaces�

The autocorrelation function of this time series is de�ned as in equ����� Following

the discussion in ���� we can show that equ���� holds without changes for the

transition matrix de�ned in equ���	��

Obviously� S and T have the same eigenvectors� We need more information about

S� however� in order to obtain results corresponding to the two propositions in

sect� �� In this contribution we shall restrict our discussion to recombinaton oper�

ators on strings of equal length n�

The only type of crossover operators that we consider in some depth in this con�

tribution is de�ned on the set V " Qn
� of strings of length n over an alphabet

consisting of � letters� We introduce the mapping �k � V �V � V �V de�ned as

�k�x� y�
def
���

�
�y�� y�� � � � � yk��� xk� � � � � xn� � �x�� x�� � � � � xk��� yk� � � � � yn�

�

for � � k � n� to describe the action of crossover at position k� Let us call �k an

elementary crossover operator� Note that the notation here is di�erent from �����

In particular� �� is the identity mapping� We follow here the spirit of ���� when

we regard a crossover operator as producing pairs of sequences rather than a single

sequence from a pair of �ancestors�� Another useful basis of crossover operators

consists of the mappings

k�x� y�
def
���

�
�x�� � � � � xk��� yk� xk��� � � � � xn� � �y�� � � � � yk��� xk� yk��� � � � � yn�

�

� � k 	 n� which swap position k between the two x and y� Obviously we have

�k " � � � � � � � � k�� and k " �k � �k�� � ����

� �
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The basic algebraic properties of the single position operators k follow directly

from the de�nition� They are all involutions� i�e�� k �k " ��� and since di�erent

positions do not interfer with each other they commute� k � l " l � k�

A general crossover operator � is a �nite� but otherwise arbitrary� composition

of elementary recombination operators� Details on the algebraic properties of

crossover operators can be found in appendix C�

De�nition� Let F be a family of �general� crossover operators on Qn
�� Then we

de�ne the P�structure �Qn
��R� associated with F by setting

R�x� y� "

��F

��x� y� � ����

where we interpret ��x� y� as a set rather than an ordered pair here� If � � F we

shall say that � contributes to R� and write � � F �R��

The �rst three of the following four examples are discussed in more detail in �����

where it is also shown that they ful�l the axioms of a recombination structure�

R� One�Point Crossover is de�ned by the collection of all elementary operators�

F " f������ � � � ��ng�

R� Two�Point Crossover consists of all compositions �k � �l� k� l �" �� For

technical reasons we include the identity as well�

R� Uniform Crossover allows for all possible recombinations to take place� i�e��

F �R�� "

��
�� "

Y
j�J

j

				 J � f�� �� � � � � n� �g

��
��

R� Single�Position�Exchange is given by

F �R�� " f���� � � � �n��� 'n���g�

where 'n
def
���� �� � � � ��n�� amounts to the exchange of the last string

position�

Let F be an arbitrary family of string crossover operators� Then the associated P�

structure is a recombination structure if and only if the identity �� is contained in

F � see appendix C for the proof� The fact that �� � F is required can be regarded

as a mere technicality� We conclude hence that the Gitcho��Wagner de�nition of
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a recombination structure indeed captures the most salient features of crossover�

String recombination P�structures have considerable symmetry� In appendix C

we prove the following result which forms the basis for most of the subsequent

analysis�

Theorem �� The automorphism group Aut�Qn
��R� of a string recombination

structure is generously transitive�

Corollary� The matrix S is symmetric for all string recombination P�structures�

De�nition� A string recombination structure is separable if for any two positions

k� l there is a crossover operator � � F �R� such that either k or l is contained in

the product representation of �� but not both� In other words� there is a crossover

operator that separates the sequence positions k and l�

The four string recombination P�structures de�ned above are separable� An exam�

ple of a recombination P�structure that is not separable is a subset F � of ��point

X�over operators that allow for crossover only at certain �cross�over spots� but not

at all sequence positions� As a consequence certain adjacent positions can never

be separated by recombination�

Theorem �� The backbone graph of a string recombination P�structure �Qn
��R�

is the Hamming graph Qn
� if and only if it is separable�

This result justi�es Culberson�s approach to used the Hamming distance as the

canonical distance in the context of recombination operators ����� The results of

Manderick and co�workers ���� and Jones� ��tness distance correlation� ���� are

also based on correlation lengths with respect to Hamming distance�

If a separable recombination P�structure is b�d�transitive then its Fourier basis

coincides with the Fourier basis of corresponding point�mutation space �Hamming

space� and we can immediately compare mutation with recombination�

� �� �
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�� Comparison of Operators

A generalized Laplace operator on V can be associated with any symmetric non�

negative matrix N �N matrix by de�ning

�$Cf�x�
def
���

X
y�V

Cxy

�
f�x�� f�y�

�
� ����

The operator �$C has therefore the o��diagonal entries �Cxy� while the diag�

onal is determined by ��$C�xx "
P

y ��xCxy� Laplacians are special cases of

Schr�odinger operators� see e�g� �����

Since the search by recombination is associated with S we suggest to characterize

the ruggedness of a landscape f on a string recombination structure in terms of

the spectrum of the Laplacian

�$S " �NI� S � ����

This has to be compared with the Laplacian

�$mut " DI�A ����

which is associated with the adjacency matrix A of the graph which is induced by

mutation�

Let us now consider the special case of binary strings� and suppose that the string

recombination P�structure �Qn
� �R� is separable� We have seen in the previous

section that in this case the adjacency matrix of the Boolean hypercube A is

contained in the Bose�Mesner algebra A�Qn
� �R�� and hence a Fourier basis for

this algebra consists of eigenvectors of A� We have even more information on

the eigenvectors� If � is in the Fourier basis� then it is a superposition of p�spin

functions with a common value of p� In particular� if �Qn
� �R� is b�d�transitive

then the p�spin functions are a Fourier basis and the eigenvalues depend only p�

In appendix C we prove the following result�

� �� �
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Theorem �� The recombination P�structures �Qn
� �R�� and �Q

n
� �R�� are distance

transitive with respect to their backbone graphs�

Corollary� The matrix elements Sxy of the recombination P�structures �Qn
� �R��

and �Qn
� �R�� depend only on the Hamming distance dH�x� y��

In general� not all eigenfunctions of A� i�e�� not all linear combinations of the form

X
i��i������ip

ai�i����ip�i�i����ip ����

will be eigenfunctions of all members of the matrix algebra A�Qn
� �R�� Thus we

observe a �splitting� of the eigenspaces of A� as in the case of ��point and ��point

crossover discussed below� We do not have a proof for the following conjecture at

the moment� although we have not encountered a counterexample at this point�

Conjecture� The p�spin functions �i��i������ip de�ned in equ���� form a Fourier

basis of the Bose�Mesner algebras of all separable string recombination structures

on the boolean hypercube�

The ruggedness of a landscape can be measured by its �relative� location in the

spectrum of the Laplacian that is associated with the search strategy� For instance�

landscapes on the boolean hypercube become more rugged as the interaction order

p increases� Conversely� we propose to measure the suitability of a particular

search procedure by comparing the values of Bk and �k that are obtained for the

same landscape f with di�erent Laplacians� The absolute location of �k in the

Laplacian spectrum is depends to a certain extent on the normalization of the

Laplacian � for instance� there is a factor of � between the usual de�nition of the

graph Laplacian and the de�nition of the Laplacian on hypergraphs� see ����� The

crucial information is thus contained in the relative location� Using the correlation

function r�s� or the correlation lenght � directly su�ers from a similar problem�

The diagonal entries in the transition matrix that is used to de�ne r�s� are to a

certain extent arbitrary# again� the ordering of the corresponding eigenvalues is

not a�ected by this ambiguity�

� �� �
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Figure �� Nearest neighbor correlations r��� for the landscapes that are eigenfunctions of S
for n " ��
L�h�s� uniform recombination� middle� ��point crossover� r�h�s� ��point crossover�

Eigevalues belonging to the same eigenfunction are connected by dashes lines� The

symbols on the right indicate the interaction pattern of the spins which de�nes the

classes of eigenfunctions with a common eigenvalue�

Let us now consider uniform recombination of binary strings in some details� Lem�

mas C through C	 in the appendix allow us to explicitly evaluate Sxy�

Theorem �� For the uniform string recombination structure �Qn
� �R�� we have

Sxy " ������
n��dH�x�y� � ����

Lemma C� in the appendix implies the following explicit formula for the eigenval�

ues of S�
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Theorem 	� The spectrum of S of the uniform string recombination structure

�f ����gn�R�� is given by

�Sp " �
n�� �����p � ���

The eigenvalues of both matrices are
�
n
p

�
�fold degenerate� The p�spin functions

�i��i������ip�
� with i� 	 i� 	 � � � 	 ip form an orthogonal basis of the corresponding

eigenspaces�
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Figure �� Nearest neighbor correlations r��� for the landscapes that are eigen functions of S
for n " �
L�h�s� uniform recombination� middle� ��point crossover� r�h�s� ��point crossover�

Eigevalues belonging to the same eigenfunction are connected by dashes lines� The

symbols on the right indicate the interaction pattern of the spins which de�nes the

classes of eigenfunctions with a common eigenvalue�

The situation is di�erent for one�point�crossover� Figure �� for instance� shows for

the case n " � that not all p�spin functions belong to the same eigenvalue �and
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hence to the same value of r����� Nevertheless� for the few cases that we computed

explicitly� we always found that �i��i������ip is an eigenfunction of S�

A close inspection of the �splitting� of the spectrum of a given interaction order

p shows that the relative arrangement of the interacting spins �i�e�� of the indices

i� through ip� infuences r��� is a systematic way� The eigenfunctions are charac�

terized by the pattern of spin�interactions along the sequence� The length of the

interaction is L " ip � i�  �� For instance� the class of functions 
k
k��
k�	

has interaction order p " � and interaction length L " � for all k� We shall write

������� for this type of eigenfunctions�

We observe the following rules for the nearest neighbor correlations under ��point

crossover�

��� For a given interaction order� the landscape is smoother for the more local

spin interaction� For example� ����� is smoother than ������ which is

smoother than ��������

��� For a given interaction length� the landscape with the fewer interactions is

smoother� i�e�� ����� is smoother than ������

These rules do not hold for ��point crossover� The �spectra� of nearest neighbor

correlations are shown in Figures � and � for n " � and n " � respectively�
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��Discussion

Adaptation by natural selection is based on spontaneously arising genetic vari�

ation� There are two basic classes of mechanisms generating genetic variation�

mutation� which acts on individual chromosomes and recombination� which acts

on pairs of chromosomes simultaneously� The relative importance of these two

classes of processes is still an open question� both in evolutionary genetics as well

as in evolutionary algorithms� For instance� an extensive empirical literature on

the performance of GA�s is inconclusive as of whether the success of GA�s is pred�

icated on recombination or mutation or both� Recently� the emphasis has shifted

from empirical approaches to investigations of the structure of the search spaces

induced by mutation and recombination operators ���� ��� ��� ��� ��� ��� ��� The

question about the relative role of mutation and recombination became a special

case of the question posed in the introduction� How can one compare two search

procedures inducing two di�erent structures X and Y for a prescribed �tness func�

tion f�

In this contribution� we propose a way to make recombination induced search struc�

tures directly comparable to mutation induced search structures� The approach is

based on the algebraic method for the analysis of search space structures ���� ���

��� In previsions work it has been shown that there is an intimate relationship

between auto�correlations on �tness landscapes and its Fourier�decomposition �see

���� ��� �� and sections � and ��� The problem addressed in this contribution is

that methods for Fourier decomposition of landscapes on graphs are not applicable

to recombination spaces� In ���� it is argued that recombination induced struc�

tures can not be represented by simple graphs with the same vertex set as mutation

spaces� We propose to use so�called P�structures� which essentially are mappings

from the pairs of �parental� con�gurations �e�g� chromosomes or strings� to the

set of �recombinant� con�gurations� It is argued that an algebraic analysis of the

symmetries of this structures provides insight into the expected performance of

search procedures on a given �tness function�
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The power of the algebraic approach is based on the fact that arbitrary �tness

landscapes can be decomposed into a superposition of �elementary� landscapes�

which are given by the eigenfunctions of the Laplacian operator on the search space

structure �see section � for details on graph Laplacians�� Once these eigenfunc�

tions are known� these elementary landscapes can be studied individually� The

information about the e�ective hardness of an elementary landscape is contained

in the relative ordering of the associated eigenvalues� In addition the eigenvalues

can be used to predict the expected nearest neighbor correlation�

One of the main results of this paper is implicitly contained in the Theorems �� �� �

and � as well as Proposition �� In this paragraph we provide a somewhat simpli�ed

intuitive interpretation of these results �see below for a discussion of details�� It

turns out that the algebraic properties of a P�structure and by inclusion also those

induced by recombination depend on the so�called backbone graph� A backbone

graph connects all the vertices which reproduce only themselves under application

of the recombination operator� In the case of string recombination� the backbone

graph connects all pairs of strings which have a Hamming distance of one� i�e�

those which di�er at exactly one position� The theorems mentioned above tell

that if the backbone graph ful�lls certain symmetry conditions �e�g� being gener�

ously transitive etc��� the eigenfunctions of the Laplacian of the P�structure are the

same as the eigenvectors of the backbone graph� In other words� all recombination

operators which share the same backbone graph �and ful�ll certain symmetry con�

dition� have the same elementary landscapes� In the case of string recombination�

the backbone graph turns out to be just the hypercube or the Hamming graph�

depending on the size of the alphabet� The backbone graph is isomorphic to the

point mutation space� Consequently� the recombination spaces and the mutation

space on the same set of strings have the same Fourier basis# a landscape that

is elementary for string recombination is also elementary for point mutation on

strings� This extends the results of Culberson ���� and Gitcho� and Wagner ����

about the homomorphism of mutation and recombination spaces� However� this

does not imply that the e�ective ruggedness of these elementary landscapes is the
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same for mutation and recombination or for di�erent recombination operators �see

below��

In fact the above characterization of the results is a cartoon of what the theorems

actually say� In this paragraph we want to summarize the implications of these

results for the recombination landscapes in three simple Corollaries�

Corollary �� If �V�R� is both b�d�transitive and generously transitive� then the

P�structure Laplacian has the same eigenvectors as the backbone graph Laplacian�

This corollary summarizes Proposition � and Theorem � and gives the conditions

under which the structure of the backbone graph is su�cient to determine the

eigenfunctions of the P�structure Laplacians and thus the elementary landscapes

of the recombination space� The next Corollary goes a step further and applies

this result to string recombination�

Corollary �� If �V�R� is separable �i�e� each pair of positions can be separated

by recombination� and if it is also b�d�transitive then the eigenfunctions of the

Hamming graph Laplacian are also the eigenfunctions of the P�structure Laplacian�

With this result we come closer to the relationship between mutation and recom�

bination spaces� since the Hamming graph is the con�guration space of the point

mutation space� The next corollary gives a de�nite answer as to the eigenfunctions

of the con�guration space induced by uniform recombination�

Corollary �� The eigenfunctions of the Laplacian of the uniform recombination

P�structure of binary strings are the p�spin functions� i�e� the eigenfunctions of the

corresponding hypercube Laplacian�

This last result is mainly due to Theorem � which asserts that the free recombi�

nation P�structure is distance transitive� Hence� there is an analytical proof that

the eigenfunctions of the free recombination P�structure are identical to the eigen�

functions of the point mutation space� the hypercube graph� The one�point and

two�point recombination operators� in contrast� are not distance transitive with

respect to their backbone graphs� Consequently we do not know for sure what the

� �
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Fourier bases of these P�structures are� All we know is that there is always an

orthonormal base of vectors that are eigenvectors of the Lapacians of the Ham�

ming graph and that of a separable string recombination structure� However� we

calculated the spectrum for one and two point recombination operators on binary

strings of n �  and found that they have the p�spin functions as eigenfunctions�

We suspect that this is the case in general� as expressed in the Conjecture in

section ��

As mentioned above� even if the elementary landscapes for mutation and recom�

mendation are identical� the e�ective ruggedness of the landscapes need not be

the same� Let us compare the nearest neighbor correlation on the elementary

landscapes for mutation and uniform recombination� In both cases the nearest

neighbor correlations only depend on p� the number of interacting sites� The

nearest neighbor correlation for mutation is predicted to be

rmut��� "

�
��

�p

n

�
and rfree��� "

�

�p
��
�

for uniform recombination �Theorem ��� respectively� SOne immediately observes

that the correlations for point mutations become negative as soon as �p � n� i�e�

with more rugged landscapes due to multiple interactions among the sites� mu�

tation is predicted to have more di�culty optimizing� The correlations for free

recombination are always positive� but approach zero as p approaches n� In other

words� recombination is doing increasingly better than mutation as the �complex�

ity� of the landscapes increases� While we think that this is in fact the case the

absolute magnitude of the correlations for uniform recombination is an overesti�

mate� The reason is that the Laplacian used here assumes that all con�gurations

are available for recombination with equal frequency� On the other hand the point

mutation Laplacian only considers the local topology found around each con�gu�

ration� The relatively high nearest neighbor correlations predicted for the uniform

recombination re&ects the fact that there are many pathways to produce a particu�

lar string from many pairs of strings� However� neither in natural populations nor

in GA�runs are all con�gurations simultaneously available with equal frequency�
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We interpret the present result as predicting that for recombination the e�ective

ruggedness of an landscape is decreasing as the genetic variation in the population

increases� On the other hand� if the genetic variation is low the e�ective ruggedness

of the landscape might approach that of the mutation space�

Now let us turn to the comparison of various recombination operators� in particu�

lar uniform recombination and one�point and two�point recombination� As noted

above� we do not have an analytical proof that one� and two�point recombination

have the same elementary landscapes as uniform recombination and mutation� but

in all cases where we checked they in fact do� However� what is di�erent is the

spectrum� The eigenvalues of the one� and two�point recombination Laplacians do

not only depend on p� the number of interacting sites on the string� but also on the

distribution of interacting sites along the string� Consequently also the predicted

nearest neighbor correlations can be di�erent for elementary landscapes with iden�

tical p� This re&ects the fact that one�point recombination sets are smaller than for

uniform recombination and that they are unique for each pair of parental strings if

they have a Hamming distance larger than � �for details see ������ It is interesting

to compare the nearest neighbor correlations predicted for uniform and one�point

recombination �tables � to � and Figures � and ��� In general the correlations

for a given p value can be higher or lower in the case of one�point recombination

as compared to uniform recombination� However� the mean correlation averaged

over all elementary landscapes with a given p is always higher for one�point re�

combination� Hence the one�point recombination landscape tends to be smoother

than the uniform recombination landscape� even if there are some elementary land�

scapes which are much more rugged for one point recombination than for uniform

recombination� An example is the landscape �������� in the n "  case� i�e�

the landscape caused by the interaction of sites at the end of the string� Clearly

every non�trivial one�point recombination event will separate the two interacting

sites �and may destroy a building block�� However� in the case of two�point and

uniform recombination� every recombination event with two crossover sites leaves

the two interacting positions together� Therefore uniform recombination has a

� �� �
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much higher nearest neighbor correlation on this landscape than one�point recom�

bination� On the other hand any elementary landscape which results from the

interaction of neighboring sites on the string has a higher correlation under one�

point recombination than under uniform or two�point recombination� The reason

is also quite obvious� only one in n� � recombination events will separate the two

interacting sites� However� there are many events under uniform recombination

which separate the interacting sites� The total interaction length� i�e� the num�

ber of positions that separate the interacting sites� in&uences the nearest neighbor

correlations� There is an intriguing relationship between elementary landscapes

for string recombination and schemata sensu Holland ��� ��� ���� Each elementary

landscape corresponds to a partitioning of the set of strings� Each equivalence class

in this partitioning is a schema in the sense of Holland and all the schema which

make up this partitioning have the same positions �xed� An elementary landscape

is a landscape which assumes that only the �xed positions in the schema actu�

ally in&uence �tness� This was �rst noted by Weinberger in his seminal paper on

Fourier and Taylor series of �tness landscapes ��
�� Our results� however� show for

the �rst time that this is a legitimate way of decomposing the con�guration space

of string recombination� In addition� the predicted nearest neighbor correlations

quantify the qualitative result of the schema theorem� The smaller the �de�ning

length� of a schema� the better it fares in a GA� Note� however� that there is a

fundamental di�erence between the schema theorem and the present results� The

schema theorem is a statement about whether a particular schema will or will not

be selected in competition against all other strings� i�e� whether it could act as a

�building block�� The present result about the nearest neighbor correlations on

elementary landscapes is a statement about how easily a recombination operator

is able to �nd the best schema among the set of all schemata with the same �xed

positions�

The results presented here support the view that the algebraic approach to search

space analysis can help resolving complex questions like the relative performance

of di�erent recombination operators� However� the present results leave several

questions open� which have to be addressed in the future� First among them is the

� �� �
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question whether the Laplacians of all separable recombination operators on binary

strings have the same eigenvectors as the point mutation Laplacian� As mentioned

above numerical calculations support the Conjecture but an analytical proof would

de�nitely be desirable� Then there are a few symmetry assumptions which have

been incorporated for the sake of mathematical tractability� The most important

ones are the assumption that all recombinants are produced with equal frequency�

which is not the case� and the second is the assumption that all possible con�gura�

tions are equally available for recombination� Relaxing these assumptions does not

require a fundamentally di�erent formalism� Rather it would only be necessary

to weight the terms in calculating the Laplacian S from the incidence matrix H

with the appropriate probabilities� It is easily conceivable to move from the Lapla�

cians discussed in this paper to �population�Laplacians�which take into account

the relative frequency of the strings available for recombination in the population�

Finally it is desirable to compare the present predictions about the ruggedness of

elementary landscapes with computer simulations of GA performance�
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Appendix A	 Spectra of Hypergraphs

De�nition� ��� Let V by a �nite set� and let E be a family of �not necessarily

distinct� subsets of V such that

h�E

h " V � Then we call ) " �V�E� a hypergraph

with vertex set V and edge�set in E� A hypergraph is simple if h� � h implies

h� " h for all h� h� � E�

The number of vertices is denoted by N def
��� jV j� the number of edges isM def

��� jEj�

A hypergraph ) can be represented by a N �M matrix H with entries

Hxh "

�
� if x � h
� otherwise

�A���

The matrixH is called the incidence matrix of the hypergraph )� The hypergraph

)� with the M �N incidence matrix H� is called the dual hypergraph of )� The

diagonal matrices V andW contain the vertex and �hyper�edge degrees

Vxx "
X
h�E

Hxh Whh "
X
x�E

Hxh� �A���

respectively�

A hypergraph ) is regular if V is a multiple of the identity matrix I# it is called

uniform if W is a multiple of the identity matrix� We write V " V I for regular

hypergraphs and W " W I for uniform hypergraphs� respectively� For example�

a ��uniform hypergraph is a loop�free multigraph� and a simple ��uniform hyper�

graph is a simple graph�

De�nition� �� Let H be the incidence matrix of a hypergraph ) with vertex and

edge degree matrices V of andW� respectively� Then we call

�$ def
���V�HW��H� �A���

the Laplacian 	matrix
 of the hypergraph !�

The analogy of this de�nition with the more common graph Laplacians� see e�g��

���� ��� ��� is discussed in ��� If ) is a simple graph We have W " �I and

� �� �
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HH� " V  A� where A is the adjacency matrix of the graph� see e�g�� ��� p��	��

Thus $ " V � ������A V� " ������V �A� " �����$graph coincides with the

usual de�nition of the graph Laplacian up to a factor of ��

A similar approach to hypergraph spectra was persued by Runge in the seventies�

In the PhD thesis ���� the matrix K def
���V��HW��H� was studied intensively�

The corresponding matrix for the dual hypergraphs is K def
���W��H�V��H� It

can be shown ���� that �Mdet��I �K� " �Ndet��I �K�� As a consequence the

non�zero part of the K�spectrum of a hypergraph and its dual coincide�

The transpose K� of K has a more intuitive interpretation than K itself� since it

is the transition matrix of a certain type of random walk on the vertex set V � Of

course� both matrices have the same spectrum�

De�nition� A fair random walk on a hypergraph has the following transition rule�

Given a vertex xk � V one �rst chooses a �hyper�edge h � E incident with xk

with uniform probability and then a vertex y � h is selected� again with uniform

probability�

The probability of choosing edge h � E is thus Hx�h �V��xx � while the probability

of chosing y � h given h has been selected is Hy�h �W
��
hh � Consequently we have

the transition probabilities

px�y "
X
h�E

Hx�h �V
��
xxHy�h �W

��
hh "

X
j�E

Hy�h �W
��
hhH

�
h�x �V

��
xx

" �HW��H�V���yx " �V
��HW��H��xy "" Kxy �

�A���

Therefore K� is the transition matrix of the fair random walk on the hypergraph�

This de�nition does not reduce to the usual notion of the simple random walk on a graph	
although it is closely related� If � is a graph we have

K� �
�

�
�HH��V��

�

�
�A�V�V�� �

�

�
I�

�

�
AV�� �

while Spitzer�s de�nition ���� of a simple random walk on a graph leads to the transition matrix
AV��� A corresponding de�nition for hypergraphs is obtained by replacing W by W � I�

� �� �
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The matrix K� is closely related to the hypergraph Laplacian� The matrix Q de�

�ned asQ def
���HW��H� is related to the hypergraph Laplacian and the transition

matrix of the fair random walk by �$ " Q �V and K� " QV��� respectively�

If ) is a regular hypergraphs then the matrices K " K�� Q� and �$ have the

same eigenvectors� A number of di�erent applications of hypergraphs spectra can

be found in ���� ��� and ���

� �� �
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Appendix B	 P�Structures and Spectral Graph Theory

In this appendix we explore the relation between P�structures and graphs� In

addition we prove a few technical results that are used in the main text� Our

starting point is the observation that any any pseudo�digraph ! with vertex set

V and edge set H can be interpreted as a P�structure by means of the following

construction� We set R�x� y� " fx� yg if �x� y� � H and R�x� y� " 	 for all other

pairs of vertices� By construction �V�R� is a P�structure on V � Conversely� a

P�structure with the property that R�x� y� equals either fx� yg or the empty set

de�nes a pseudo�digraph with vertex set V and edge set H " f�x� y�jR�x� y� �" 	g�

Provided R�x� x� " 	 for all x � V we have a digraph� which can be considered as

an undirected graph if and only if R is symmetric� An obvious consequence is

Lemma B�� Suppose the P�structure �V�R� represents a pseudo�digraph !� Then

! " suppR�

It will be convenient to de�ne H for all values of y and z by setting Hx��y�z�
def
��� �

whenever �y� z� �� ER� It is customary to de�ne the weight of a pair �y� z� by

wx�y
def
���

�
��jR�x� y�j if �x� y� � ER

� otherwise

For a P�structure �V�R� we de�ne the matrices S and Q component�wise by

Sxy
def
��� �

X
z��	�y�

Hx��y�z� jR�y� z�j
�� " �

X
z�V

Hx��y�z�wyz and

Qxy
def
���

X
�z�z���ER

Hx��z�z��wz�z�Hy��z�z�� �
�B���

This de�nition generalizes the discussion the main text to P�structures with non�

complete support� The adjacency matrix of suppR has the entries

Bxy
def
���

�
� if �y� x� � ER
� otherwise

�B���

Note that B is the transpose of the more conventional de�nition in ���� As an

immediate consequence of the de�nition we have Hx��y�z� " Hx��y�z�Bzy�

� �� �
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Lemma B�� Suppose the P�structure �V�R� represents a pseudo�digraph !� Then

Hx��y�z� " ��xy  �yz�Bzy � �xy�yzByy � �B���

Proof� Let us consider the case y �" z �rst� All entries with �y� z� �� ER vanish

of course# this is taken care of by the factor Bzy� For an edge �y� z� we have

Hx��y�z� " � if and only if x coincides with either y or z� which accounts for the

�rst term� If y " z and �y� y� is a loop� the only non�zero entry is obtained for

x " y " z� i�e�� Hx��y�y� " �xyByy� Substituting z " y in the expression for the

o��diagonal terms we �nd twice this entry� Subtracting this term yields the closed

formula for all entries of H�

We write ���y� def
��� fx � V j �x� y� � ER g and

�

��y� def
��� fx � V j �y� x� � ER g for

the sets of terminal vertices of edges initiating in y and the set of initial vertices of

edges terminating in y� respectively� In �V�R� is symmetric we have ���y� "
�

��y��

In this case we simply drop the direction symbols � and �� It will be useful to

de�ne the diagonal matrices
�

D and �D of the in�degrees and out�degrees of suppR

with entries
�

Dyy " j
�

��y�j and �Dyy " j���y�j� respectively� A number of quantities

can be easily obtained from the incidence matrix H and B� In particular� we have

jR�x� y�j "
X
x�V

Hx��y�z� � j���y�j "
X
x�V

Bxy � j
�

��y�j "
X
x�V

Byx � �B���

Furthermore we shall make use of the diagonal matrix V of vertex degrees of the

hypergraph imagR�

The following result shows that both Q and S are generalizations of conventional

graph spectra� see e�g� ���� ���� This suggests that they contain crucial information

about �V�R� in algebraic form�

Lemma B�� Let �V�R� be a P �structure representing a pseudo�digraph� Then

S " B �D and Qxy "
�

�
�Bxy Byx�  

�

�
�xy��Dxx 

�

Dxx��Bxx� � �B���

In particular� if �V�R� represents a simple undirected graph �without loops� we

have S " Q " B D�

� � �
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Proof� It is convenient to recast the explicit formular for H of a digraph as

Hx��y�z� " ��� �yz���xz  �xy�Bzy  �yz�xzBzy �

From this we obtain directly

Sxy " �
X
z

��� �yz���xz  �xy�Bzy �
�

�
 �

X
z

�yz�xzBzy � �

"
X
z

��xz  �xy�Bzy  
X
z

�zy����xz  �xy�  ��xz�Bzy �

It is now easy to check that the terms in the second sum cancel� and we are left

with Sxy " Bxy  �xyj���y�j�

In order to evaluate Qxx� we start with the same expression� Using B
�
zy " Bzy

and the analogous property of the Kronecker symbols we obtain

Qxx� "
�

�

X
y�z

Byz

�
��� �yz���xz  �xy���x�z  �x�y�  ��yz�xz�x�z

�
�

Expanding this expression� collecting all terms containing �yz and carrying out the

sums over y and z yields

Qxx� "
�

�
�Bxx�  Bx�x�  

�

�
�xx��j���y�j j

�

��y�j�� �xx�Bxx �

For loop�free graphs we have Bxx " �� and the lemma follows�

Finally� we compute the row sums of S and Q and �nd

X
x�V

Sxy " �j���y�j " ��Dyy

X
x�V

Qxy " deg�y� " Vyy

�B��

The following two lemmata are simple consequences of the de�nition of P�structure

automorphisms�

Lemma B�� Any automorphism of a P�structure is a graph automorphism of

suppR and bbgR� and a hypergraph automorphism of imagR�

� �
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Proof� For any automorphism � we have B��z���y� " Bzy since automorphisms

maps pairs �y� z� with R�y� z� " 	 to pairs with empty image and pairs with non�

empty image to pairs with non�empty image�

Set *Gyx
def
��� �Hx��x�y�Hy��x�y�wxy��� �xy�� For x " y the entry *Gyx vanishes by

de�nition� Thus only vertex pairs with wxy � ��� can give non�zero entries� i�e��
*Gxy � �� An entry is � if and only if R�x� y� has exactly two entries� and both x

and y are among them� Since *G is invariant under automorphisms of �V�R� by

construction� the same is true for G�

The hypergraph part follows from the fact thatH is the incidence matrix of imagR�

De�nition� We say that a P�structure is regular if �D�
�

D and V are multiples of

the identity matrix I�

Lemma B�� A vertex transitive P�structure is regular�

Proof� For the out�degrees we have for instance

�Dyy "
X
x�V

Bxy "
X
x�V

B��x���y� "
X
x��V

Bx���y� " �D��y���y� �

The same procedure shows that
�

Dyy and Vyy are independent of y � V �

Theorem �� Let �V�R� be a b�d�transitive P�structure� Then its Bose�Mesner

algebra A�V�R� coincides with the adjacency algebra of the backbone graph bbgR�

i�e�� A�V�R� is generated by G�

Proof� Consider the orbits of the automorphism groups of the full P�structure

and of its backbone graphs� respectively� In the latter case the orbits are exactly

the distance classes of bbgR� Since Aut�V�R� � Aut�bbgR� we know that the

orbits of Aut�V�R� are contained in the orbits of Aut�bbgR�� On the other hand�

the distance classes are contained in the orbits of Aut�V�R� because the backbone

graph bbgR is distance transitive as immediate consequence of the de�nition� Thus

A�V�R� coincides with the coherent algebra de�ned by the distance classes of the

backbone graph which is in turn identical with the adjacency algebra of bbgR�

again because of the distance transitivity of the backbone graph� see ��� for more

the details�

� �	 �
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Appendix C	 Algebraic Properties of String�Crossover

A general crossover operator � is characterized by a subset J of positions which

are swapped under its action� � "
Y
j�J

j � As compositions of single position

operators� all crossover operators are all involutions� i�e�� � � � " ��� From

k�x� x� " �x� x� we conclude immediately ��x� x� " �x� x�� If we set k�x� y� "

�x�� y�� then k�y� x� " �y�� x��� This symmetry is present in all recombination

operators� ��x� y� " �x�� y�� implies ��y� x� " �y�� x��� Finally� since we have not

de�ned a swap operator for the n�th position there is no recombination operator

for which ��x� y� " �y� x� for all pairs of sequences� This restriction will be useful

for some the proofs below�

Lemma C�� Let u � R�x� y�� Then

�i� ��x� y� " �x� y� implies ��x� u� " �x� u� for all � � F �R��

�ii� Set �x�� y�� " ��x� y� for an arbitrary � � F �R�� The �x�� y�� �" �x� y� implies

fx� yg � fx�� y�g " 	�

�iii� ��x� u� �" ��x� u� implies ��x� y� �" ��x� y� for any two �� � � F �R��

Proof� The condition in �i� implies that � consists only of k�s operating on

positions k where xk " yk " uk�

�ii� The sequence x occurs in ��x� y� if and only if � acts only on positions in

which x and y agree# this would imply ��x� y� " �x� y�� Since the same argument

holds for y� and the claim follows�

�iii� Since � acts position�wise we have ���x� y��i " ���x� u��i for all positions i for

which ui " yi� Since u is a recombinant of x and y this is the case for all positions

for which xi " yi� i�e�� ���x� u��i " ��x� x��i� Thus two operators � and �
� for which

��x� u� �" ���x� u� act di�erently at least on one position j for which xj �" uj � i�e��

uj " yj � Therefore we have ��x� y� �" ���x� y�� Setting �x�� y�� " ��x� y� and

�u�� v�� " ���x� y� we have fx�� y�g � fu�� v�g " 	 by the same argument as in item

�ii� above�

Lemma C�� Let F be a family of string recombination operators� Then the

associated P�structure is a recombination structure if and only if �� � F �

� �� �
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Proof� The symmetries of � imply that R�x� x� " fxg and R�x� y� " R�y� x��

From ���x� y� " �x� y� we �nd immediately fx� yg � R�x� y�� To show the con�

verse� consider two sequences x and y with Hamming distance d�x� y� " n� Recall

that there is no recombination operator � ful�lling ��x� y� " �y� x�� thus x� �" y�

The only operator for which ��x� y� " �x� y� is therefore identity since x and y

di�er by construction in all positions�

The properties of the recombinations operators described in lemma C� above im�

plies that each operator creates at least as many di�erent sequences from �x� y�

as from �x� u�� Combined with item �iii� in lemma C� this implies jR�x� y�j �

jR�x� u�j�

Let us now turn to the symmetry properties of �� The following technicality will

be used repeatedly below�

Lemma C�� Let �i� i " � through n� be a set of one�to�one mappings of the

alphabet Q� into itself� Then � def
��� ���� ��� � � � � �n� is one�to�one on Qn

� and for

any recombination operator � holds ����x�� ��y�� " ����x� y���

Proof� It is su�cient to note that �i commutes with i� A construction similar

to this one was used in �����

Theorem �� The automorphism group Aut�Qn
��R� of a string recombination

structure is generously transitive�

Proof� Given two strings x " �xi� and y " �yi� we de�ne � position wise by

�i�xi� " yi� �i�yi� " xi and �i�z� " z for all z � Q� n fxi� yig� This gives rise to

the mapping � " ���� � � � � �n� which ful�ls the conditions of the previous lemma�

From R���x�� ��y�� " f�����x�� ��y��� �����x�� ��y��� � � � � �n���x�� ��y��g "

f�����x� y��� �����x� y��� � � � � ���n�x� y��g " ��R�x� y�� we conclude immediately

that � is in fact an automorphism of �V�R�� Therefore Aut�V�R� acts generously

transitively on V �

Theorem �� The backbone graph of a string recombination P�structure �Qn
��R�

is the Hamming graph Qn
� if and only if it is separable�

� �� �
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Proof� By de�nition we have R�x� y� " fx� yg if dH�x� y� " �� i�e�� the Hamming

graph Qn
� is always contained in the backbone� If dH�x� y� � � then there are two

sequence positions k and l at which x and y di�er� Since �Qn
��R� is separable

there is a crossover operator � � F �R� that separated k and l� Thus the o�springs

of x and y are di�erent from their parents and hence jR�x� y�j � �� and thus �x� y�

is not an edge of bbg�R��

Conversely� suppose that d�x� y� " � with x and y di�ering at positions k and l�

If there is no crossover operator that separates k and l then R�x� y� " fx� yg� i�e��

�x� y� is an edge of bbgR which does not belong to the Hamming graph�

For some recombination structure we can prove even stronger symmetry properties�

Lemma C�� For any two pairs of strings �x� y� and �u� v� with equal Hamming

distance dH�x� y� " dH�u� v� there is an automorphism � of �Qn
��R�� such that

u " ��x� and v " ��y��

Proof� We have already seen that a string recombination structure is invariant

under arbitrary renamings of positions� Now consider a permutation � of the po�

sitions � through n� Since the crossover operators in F �R�� are k�s it follows

that we obtain the same result when we �a� recombine using j and permute the

positions afterwards and when we �b� permute the positions �rst and recombine

using the operator 
�j�� Thus we have ��R�� " R�� i�e�� � is an automorphism

of �V�R��� In particular� we can always �nd a permutation � that reorders the

positions such that the all positions in which to given strings x and y di�er have

index � through dH�x� y�� In a second step we can use a renaming � such that

�x " ��� � � � � �� and �y " ��� � � � � �� � � � ��� with �s in the �rst d�x� y� positions and

�s in the remaining n� d�x� y� positions� Lemma C� guarantees that � is an au�

tomorphism as well� Thus the composition � � � is also an automorphism�

Given two pairs of sequences� �x� y� and �u� v� with the same mutual distance

dH�x� y� " dH�u� y� " d we can use the above procedure to construct a two auto�

morphisms �� and �� such that ���x� y� " ���u� v� " ��x� �y�� i�e�� �
��
� ����x� y�� "

�u� v�� which is of course again an automorphism of �Qn
��R���

� �� �



P�F� Stadler and G�P� Wagner� Recombination Spaces

Lemma C�� For any two pairs of strings �x� y� and �u� v� with equal Hamming

distance dH�x� y� " dH�u� v� there is an automorphism � of �Qn
��R�� such that

u " ��x� and v " ��y��

Proof� We argue as in lemma C�� Consider a permutation � of the positions

� through n � �� Since any recombination operator is a composition of k�s

it follows that �
�J����x�� ��y�� " ���J�x� y��� Since �
�J� � F �R�� whenever

�J � F �R��� we �nd that � is a bijection in F �R��� and hence ��R�� " R�� In

other words� � is an automorphism of �V�R��� Since the order of the �rst n� �

positions can be changed without changing the P�structure we may as well place

position n where we please� The reminder of the proof is the same as for the single

position exchange operator in lemma C��

An immediate corollary of lemma C� and lemma C� is

Theorem �� The recombination P�structures �Qn
� �R�� and �Q

n
� �R�� are distance

transitive with respect to their backbone graphs�

Lemma C	� Consider �Qn
� �R��� and set dH�x� y� " d� Then

X
z

dH �y�z��d�

Hx��y�z� "

�
n� d

d� � d

�
�

Proof� Lemma C� allows us to �x �x and �y as in the proof above� The � in the

�rst d positions of �x can be obtained only if zi " � for � � i � d� In the remaining

positions we can get �xi " � from either �y or z� thus there is no restriction on z

for the latter n� d positions� Thus there are exactly �n�d sequences z for which

�x � R��y� z�� The distance d� def
��� dH�z� y� is of course d plus the number k " d��d

of positions zi " � in the latter n� d positions� Given d�� there are exactly
�
n�d
d��d

�
di�erent choices for z� Each one contributes � to the sum� and the lemma follows�

Lemma C
� For �Qn
� �R�� we �nd Sxy " ������

n��dH�x�y��

� �� �
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Proof� Using the lemma C we have

Sxy " �
nX

d���

X
z

dH �y�z��d�

Hx��y�z�jR��y� z�j
�� " �

nX
d��d

�d
�

�
n� d

d� � d

�

" � � ��d
n�dX
k��

�
n� d

k

�
��k " � � ��d��  ����n�d " ������n � ��d

where d " dH�x� y��

Lemma C�� For �Qn
� �R�� we �nd Qxy " �

n�dH �x�y��

Proof� Using jR��x� y�j " �dH�x�y� we can rewrite the de�nition of the matrix

elements as

Qxy "
nX

d���

��d
�

X
z�z�

dH �z�z���d�

Hx��z�z��Hy��z�z�� �

In order to evaluate the second sum we set x " �x� y " �y and d " dH�x� y�� For

the �rst d positions we have xi " � and yi " �� Thus �zi� z
�
i� must be either

��� �� or ��� ��� Thus we have �d choices there� and the contribution of the �rst d

positions to the distance d� " dH�z� z
�� is always d� In the remaining part of the

sequence we must be able to obtain a � in each sequence position� thus �zi� z
�
i� is

one of ��� ��� ��� ��� or ��� ��� Exactly d��d positions must be either ��� �� or ��� ��

so that the total distance between z and z� equals d�� There are
�
n�d
d��d

�
choices

for these positions and � alternatives at each one of them� Consequently there

are �d �
�
n�d
d��d

�
� �d

��d pairs of strings �z� z�� with given distance d� for which

H�x��z�z��H�y��z�z�� " �� Hence we have

Qxy "
nX

d���

��d
�

�d
�

�
n� d

d� � d

�
"

n�dX
k��

�
n� d

k

�
" �n�d �

and the lemma is proved�

Lemma C�� Let C be a �n� �n matrix with rows and colums indexed by binary

strings of length n from the alphabet f ����g such that Cxy " qdH�x�y�� and let

� 	 q 	 �� Then C is positive de�nite� has n � distinct eigenvalues

�Cp " ��  q�n
�
�� q

�  q

�p
� � p � n

� �� �
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with multiplicity
�
n
p

�
� The corresponding eigenvectors are the p�spin functions

�i��i������ip�
�
def
���
i�
i� � � � 
ip � equ����� with i� 	 i� 	 � � � 	 ip and 
 � f ����gn�

Proof� �i� Let A denote the adjacency matrix of the hypercube� Since this graph

is distance transitive the matrices A�d�� with entries A
�d�
xy " � if dH�x� y� " d and

A
�d�
xy " � otherwise� can be written as polynomials of order d in terms ofA ����� see

also ���� Since S and Q are linear combinations of the A�d� they are polynomials

of order n in A� Hence they have the same eigenvectors as A and the eigenvalues

are polynomials of the eigenvalues of A� The eigenvalues of A are �Ap " n � �p

for the
�
n
p

�
eigenvectors �i��i������ip � We conclude that the ��s are eigenvectors of

S and Q� and vectors with the same number p of indices correspond to the same

eigenvalue�

Distance transitivity implies that the eigenvalue problem can be reduced to the

�collapsed adjacency matrix� A with entries

Ad��d
def
���

X
x�dH�x�y��d�

Axy

for all y with d�y���� " d� where the �reference vertex� �� can be chosen arbitrarily�

The left eigenvectors of this matrix are the functions

�p�d� "
��
n
p

��n
d

� nX
l��

����l
�
d

l

��
n� d

p� l

�
�

the eigenvalues are the same as those of A� The sum is a Krawtchouk polynomial�

The details of this construction can be found explicitly in ����� Consequently we

have
nX

d��

�p�d�q
d " �Cp �p��� �

we �p��� " �� Thus we have to evaluate

�Cp "
��
n
p

�X
l

����l
X
d

�
n

d

��
d

l

��
n� d

p� l

�
�

It is easy to verify that
�
n
d

��
d
l

��
n�d
p�l

�
"
�
n
p

��
p
l

��
n�p
d�l

�
# thus we have

�Cp "
X
l

����l
�
p

l

�X
d

qd
�
n� p

d� l

�
"

�X
l

����l
�
p

l

�
ql

��X
d�

�
n� p

d�

�
qd
�

�

� �� �
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which simplies to �Cp " ��� q�p��  q�n�p�

The matrices S and Q of the uniform recombination structure are of the above

form with q " ��� and q " ���� up to a multiplicative constant�

� �� �
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Appendix D	 Nearest Neighbor Correlations

Table �� Nearest neighbor correlations of landscapes over the set Qn
� of binary strings of length

n � � for point mutations	 free �uniform� recombination	 and one�point recombination�

p vector r���
mut� R� R� R�

  � � � �� �� � �� ��
� � ��� �� ��� ��

� ��� ��� ��� �� �� ��� �� ��
� ��� �� ��� ��

� �� ��� ��� ���� ����
�� ���� ��� ��� ��� ��� ���� ���� ����
�� ��� ��� ���� ���

� ��� �� ��� ��� ���� ���� ��� ���� ����

Remark� We have the same spectrum for R� and R� for n " �� This is no

coincidence� of course� since R� " R� in this case�

Table �� Nearest neighbor correlations of landscapes over the set Qn
� of binary strings of length

n � � for point mutations	 free �uniform� recombination	 and one�point recombination�

p vector r���
mut� R� R� R�

  � � � �� �� � �� ��
� � ��� �� ��� ��

� ��� ��� ��� �� �� ��� �� ��
� ��� �� ��� ��
� ��� �� ��� ��

� �� ������ ���� ����� ����
�� ������ ���� ����� ����
��  ��� ������ ���� ���� ����� ���� ����
�� ������ ���� ��� ���
�� ������ ���� ��� ���
�� ������ ���� ����� ����

� ��� ��� ���� ���� ����
��� ���� ��� ��� ���� ���� ���� ���� ����
��� ��� ���� ���� ���
��� ��� ���� ���� ���

� ���� �� ���� ���� ��� ��� ���� ��� ���

� � �
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Table �� Nearest neighbor correlations of landscapes over the set Qn
� of binary strings of length

n � � for point mutations	 free �uniform� recombination	 and one�point recombination�

p vector r���
mut� R� R� R�

  � � � �� �� � �� ��
� � ��� �� ��� ��

� ��� �� ��� ��
� ��� ��� ��� �� �� ��� �� ��
� ��� �� ��� ��
� ��� �� ��� ��

� �� �������� ���� ������ ����
�� �������� ���� ������ ����
�� �������� ���� ������ ����
�� �������� ���� ������ ����
�� ��� ��� �������� ���� ���� ������ ���� ����
�� �������� ���� ������ ����
�� �������� ���� ������ ����
�� �������� ���� ����� ����
�� �������� ���� ����� ����
�� �������� ���� ����� ����

� ��� ������ ���� ������ ����
��� ������ ���� ������ ����
��� ������ ���� ������ ����
��� ������ ���� ������ ����
��� ���� ��� ������ ���� ���� ����� ���� ��
��� ������ ���� ����� ����
��� ������ ���� ����� ����
��� ������ ���� ������ ���
��� ������ ���� ������ ���
��� ������ ���� ������ ���

� ���� ����� ��� ����� ����
���� ����� ��� ����� ����
���� ���� ���� ����� ��� ��� ���� ��� ���
���� ����� ��� ���� ���
���� ����� ��� ����� ���

� ����� �� ���� ����� �� �� ���� ��� ���

� �
 �
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Table �� Nearest neighbor correlations of landscapes over the set Qn
� of binary strings of length

n � � for point mutations	 free �uniform� recombination	 and one�point recombination�

p vector r���
mut� R� R� R�

� � ����� ����� ����� ����� ����� �����
� � ��	�� ��	��

� ��	�� ��	��

 ����� ��	�� ��	�� ��	�� ��	�� ��	��
 ��	�� ��	��
	 ��	�� ��	��
� ��	�� ��	��

� �� ����� ��
��
�
 ����� ��
��

 ����� ��
��
	 ����� ��
��
	� ����� ��
��
�
 ���	� ��
��
� ���	� ��
��

	 ��


 ���	� ���	� ����� ��
�� ����

� ���	� ��
��
� ���
� ���	�
�	 ���
� ���	�

� ���
� ���	�
�	 ���	� �����
�� ���	� �����
�� ����� ���



 ��
 ���	� �����
�
 ���	� �����

	 ���	� �����
	� ���	� �����
�� ����� �����
�
 ����� �����
�
	 ����� �����
�	 ����� �����

� ����� �����

	� ����� ����	 ����� ���
� ����� ����

��	 ����� ����
�	 ����� ����
�
� ����� ����
�	� ����� ����
�
	 ���� ����
�� ���� ����
��� ���	� �����
�	� ���	� �����
�� ����� �����
�
� ����� �����

 ��
 ����� ����

�
	 ����� ����


	� ����� ����

��
	 ���		 �����
�
	 ���		 �����
�
� ���		 �����
�	� ���		 �����
��	 ���


 ����
 ���	
 ����� ����� �����
�
	� ���	
 �����
��
� ����� ���	�
�	� ����� ���	�
�
� ���	
 ���	�
��� ���		 ���
�
	� ���		 ���
��	� ����� ���
�

	 ��
	 ����
 �����
�
	� ����
 �����
��
� ������ ���
� ����
 ����
 ���
� ���	�
�
	� ����
 ���
�
��
	� ����
 ����
��	� ����
 ����

� ��
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