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OPINION

The Dreams of Theory
Computing power and sophisticated data acquisition mask the fact that, in many sciences and engineering, the 
balance between theory and experiment is getting increasingly out of whack, says Jim Crutchfield.

The twenty-one year old Werner Heisenberg, already a 
rising star in quantum theory, was mortified when his 
doctoral exam committee awarded a nearly failing grade. 

He had passed, but  excused himself early from the 
celebration party that  evening put  on by his advisor Arnold 
Sommerfeld. Boarding the midnight train, he abruptly left 
Munich to take up a previously arranged job in Göttingen, 
humiliated by his mediocre exam and concerned that  his 
boss, Max Born, would no longer have him.

Responding to criticism that  Heisenberg’s brilliance in 
theory was eclipsing a well-rounded appreciation of 
physics, Sommerfeld had required him to take Wilhelm 
Wien’s course in experimental physics and focus his 
dissertation on turbulence in fluid flows. Both Wien and 
Sommerfield were on his oral exam committee: 
Sommerfeld gave Heisenberg the highest grade, Wien 
failed him. In the early days of the 20th century, physics 
was experimental physics. Heisenberg was, plainly to 
Wien, no experimentalist [1]. The rest, they say, is history. 
Heisenberg’s towering contributions to modern physics are 
unassailable and, after a time, led to many key 
experimental discoveries. Heisenberg stands as a pre-
eminent example of the card-carrying theorist—a 
profession new to 20th century science.

Today, looking more broadly across all of science, 
theorists still have reason to worry. Advances in computing 
power combined with increasingly sophisticated data 
acquisistion technologies have led some to claim that 
theory is obsolete [2,3].

Computing technology suffuses our lives and has 
unalterably changed scientific practice. And, there is no 
hint of a let  up. The power available to the natural sciences 
and engineering have grown substantially, via 
unanticipated innovations. Cobbling together outlet-store 
PCs in large clusters has brought supercomputing-level 
performance to even small research groups and colleges. 
At the high-end, focusing on environmental concerns 
rather than following the US's focus on compliance with 

t h e n u c l e a r T e s t  B a n T r e a t y , J a p a n ' s 
Earth Simulator was the fastest machine on the planet in 
2002. Designed especially to accelerate climate studies 
and more generally high-resolution modeling and 
simulation in geophysics, it  was eclipsed just two years 
l a t e r b y I B M ' s B l u e G e n e / L m a c h i n e , 
doubling its performance. At that time, jumping by another 
factor of 5 in power to petascale computing was forecast  to 
occur in 2010. We reached the petascale in 2008. We 
search for extraterrestrial life and fold proteins at home. 
We regularly attend block-buster, feature-length, all-
digitally computed films; a commercial success the 
computer graphics community of the 1980s thought would 
be impossible [4]. We expect split-second responses to 
searches of billions of documents. We could very 
well have more computing than we know how to 
productively use. That  said, we now know there are 
problems of daunting complexity that must  be tackled and 
understood. Computing power is most likely not the 
bottleneck to the required innovation; indeed, its an 
essential driver.

A parallel acceleration has occured in extracting data from 
natural and engineered systems. The development of 
tetrodes in neurobiology that simultaneously record dozens 
of neural spike trains, sensor networks that monitor fault 
segments for immanent earthquakes, digital sky surveys 
that produce three-dimensional maps of billions of stars, 
atomic-scale microscopes that  show the structure of 
nanotubes, and scanners that record the dynamics of the 
brain are just a few notable successes in the advance of 
measurement  technology. In this setting, the familiar story 
of gene sequencing is barely worth highlighting these 
days. Now, its only one among many in the new era of the 
Data Deluge. By any measure, empiricism has come to 
dominate science.

This concerns me. Data, whether produced by massive 
simulations or automated experimentaion, is not 
understanding. Wresting knowledge from data is theory’s 
role. No surprise, the technological wizardry of the Data 
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Deluge has its seductions. My concern is that  we, happy 
victims of technological success, are on the verge of 
permanently confusing the trees for the forest.

Theory’s most important  value lies in something we were 
taught in school. Scientists, obviously enough, have 
contructed models for centuries. While guess and insight 
are key, model building is also not a random process. We 
all know, for example, that in building a model parsimony 
is helpful. This is captured by Occam's Razor: Out  of the 
range of all models consistent with observations, pick the 
smallest. Often interpreted as a convenience, we now 
know that parsimonious models are more than this, they 
capture a key aspect of understanding: Compact models 
reveal the mechanisms that produce a system’s behavior 
and how those mechanisms interact  [5,6]. One important 
methodological conclusion is that  theory is not  mere data 
compression [7]. There is meaning in our good models. 
They give insight, which is substrate for innovation.

We also should not forget the pragmatic aspects of theory's 
healthy critical role in science—aspects that complement 
this new view of theory building. First, predictive theories 
allow for a level of conceptual hygiene. Intuitions, 
hunches, and hypotheses that  can be articulated in a 
mathematical theory can be tested for consistency. 
Conceptual hygiene is also key when designing and 
implementing effective and interpretable simulations. 
Second, theory provides necessary calibrations for 
complicated simulations. It’s often essential in 
computational science to know at least those behavioral 
regimes that  can be solved analytically, so that  the code 
can be benchmarked against those cases. Finally, theory is 
frugal. It simply does not  cost  as much as either 
experiment  or supercomputing. And, perhaps more 
importantly, in a discipline with a healthy balance between 
theory and experiment, theory helps reduce costs by 
precluding unnecessary experiment.

Fo r a l l t he se r ea sons , bo th p r ac t i c a l l y and 
methodologically, theory should have a primary role in 
most all of the sciences. Despite the recent vocal attacks 
and the more-worrying mission creep away from it, theory 
may still retake its proper place. For example, the 
centuries-old observation of allometric scaling in 
biological organisms—that  metabolic rate is the three-
quarters power of an organism’s mass—was only recently 
put on a firm theoretical foundation. The underlying 
mechanism identified was the self-similar organization of 
nutrient transport  networks. This showed in a rather 
transparent  way why the previous area-to-volume 
explanation, proposed by Francis Galton in the nineteenth 
century, for allometric scaling was wrong [8]. And, the 
mechanistic insight suggested that even the organization of 
cities scales, too [9].

Another example comes from Heisenberg’s bête noire—
fluid turbulence. The basic equations of motion of fluid 
flow have been known for well over a century. Using 
these, a significant fraction of all supercomputer time is 
currently spent on flow simulations. And modern 
measurement  technique facilitates collecting vast amounts 
of data on the temporal evolution of experimental fluid 
flows. It  was only with the advent of nonlinear physics and 
mathematics, however, that  an understanding of emergent 
flow structures, and the mechanisms that  produce them, 
has now come tantalizingly within reach [10-15].

So, theory can play a positive role, but aren’t  massive data 
sets and computing power replacing theory? Can data and 
computing alone lead to understanding? Advocates 
interpret the evidence as suggesting that they can.

Today, it’s a stunning feat that  language translation engines 
have reached their levels of usability. Genuine semantic 
context is preserved in automated translation, when this 
was not previously the case just a few years ago. This 
performance is achieved not by new theoretical insights 
into human linguistic structures, rather they succeed by 
applying machine-learning techniques to mine massive 
corpora of translated written texts. In effect, the algorithms 
organize the original corpora into large, efficiently 
searchable tables. The “translation” returned is the closest 
match in the table to the input  text  [3]. This Linguist-Free 
approach is very telling on several fronts.

First, of course, is that  historical language usage—
language in the wild—appears more germane to how 
humans verbally communicate than any extant linguistic 
theory. Second, and this introduces the overarching 
philosophical concern here, these translation engines 
reduce to practice an attack against intelligent machines. 
The philosopher John Searle imagined a Chinese Room 
into which one slid paper with written Chinese text and out 
of which slipped a piece of paper with the translated 
English. With sufficient  trials one would conclude that 
someone in the Room understood Chinese. Searle then 
noted that inside was a mechanism which used a huge 
reference dictionary for the translation. Clearly, the 
mechanism does not  understand Chinese and so the 
intelligence is only imputed by the user. Moreover, Searle 
argued, not only does the device not understand Chinese, 
neither does it’s builder [16]. Such is the state of affairs 
with current automated translation.

The very real possibility now exists that the Data Deluge 
will drive scientific explanation to become a Chinese 
Room. More precisely, my concern is that  we scientific 
users will come to accept this brand of operationalism as 
understanding and this, in turn, will cost us our creativity.
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Likewise with computing power, we can predict the 
weather more than a week ahead and forecast the 
population dynamics of spreading viral pandemics. Having 
powerful computers at  hand, though, colors scientific 
practice. With modern software engineering tools we can 
now build (and manage) very large, “realistic” codes to 
simulate complicated natural phenomena. But  is 30,000 
lines of LISP code a theory of how the mind makes 
analogies? Having written that code does it  mean we 
understand the brain’s process of analogy-making? Not 
hardly. In fact, even 10 lines of computer code, such as 
that for the now-famous chaotic Logistic Map, can 
produce complex behavior that  half a century of hard 
mathematical work has yet  to completely crack. Second 
and ironically, the very advances in computing power we 
champion now translate into large, exquisitely detailed 
models as complicated as natural experiment. Hundreds of 
components and parameters obscure the essential 
mechanisms responsible for a system’s organization and 
behavior and, practically, make it  well-nigh impossible to 
systematically explore the range of possible system 
behaviors. Finally, the vast amounts of data automatically 
generated can be as rich as any empirical data set. And so, 
a computational scientist is often left with a data analysis 
task as daunting as any from experiment.

Let’s take stock. We have two trends, each driven by 
inexorably improving technology. On the one hand, we 
have Data Literalism  born of the Data Deluge: All we need 
is data. “Data describes nature”, full stop. This rides 
tandem with the skepticism experimentalists hold of 
theory: “In any case, theory leaves out essential details of 
Nature and is, perforce, incomplete.” Its a short  step to the 
production of large data sets becoming a goal unto itself. 
On the other hand, we have Computationalism  born of 
high-performance computing: A computer code is a theory 
of the phenomenon it  simulates; the programmer 
understands the mechanisms that produce the natural 
system’s behavior; and to be believable a simulation model 
must include all of a phenomenon’s detailed components.

In short, Data Literalism conflates science with data 
gathering and Computationalism conflates it with detailed 
simulation. Where is understanding in all of this? With 
Data Literalism pressing in from the side of experiment 
and Computationalism attempting an eclipse from the 
technology side, we are poised to squeeze out  the path to 
understanding through theory. This is the challenge.

A century of gathering data on metabolic rates across 
hundreds of species did not  lead to the new laws of 
biological scaling. The solution relied on the theory of 
fractional dimensions, which in turn has its origins in the 
mathematical theory of infinity developed by Georg 
Cantor. Thousands of experiments on turbulent  fluids did 
not lead to our new views of emergent flow patterns. 

Rather these arose from the theory of qualitative dynamics 
invented by the mathematician Henri Poincaré to explain 
the chaotic dynamics of the solar system [17].

There may be a saving grace, though. Recent progress in 
understanding complex systems suggests a new role for 
theory, one that relies essentially on the concepts of 
computation and information—at levels deeper than the 
tools (simulation and data acquisition) they engender. The 
hopeful view is that  we are now on the verge of a new era, 
what in 1989 I called “artificial science”: the automated 
extraction of theories from data [4]. The goal is to analyze 
how we, intelligent  agents that  we are, discover novel 
patterns in nature—patterns that we’ve never seen before.

Contrast pattern recognition. What happens when the 
airline reservation system responds to your prompted 
verbal responses for a destination? The machine has a 
built-in vocabulary and asks intentionally focused 
questions to reduce the range of your responses and so 
increase the accuracy of its estimate of your intentions. In 
modern speech recognition systems there is an internal 
vocabulary of patterns—patterns that  have been hand-
designed by a speech engineer. The spectral data of your 
utterance is matched to the closest  template in the pre-
engineered vocabulary.

Many natural systems, however, even those for which 
we’ve established the underlying principles, produce 
organization spontaneously at spatial and temporal scales 
not directly determined by the microscopic balance of 
forces or equations of motion. Of late, we refer to this 
process as emergence [18,19]. For natural systems with 
emergent  properties it  simply begs the question to appeal 
to pattern recognition, since we don’t know ahead of time 
at  which spatial and temporal scales patterns appear, let 
alone what they will be.

More to the point, what  are “patterns” in the first  place? 
How does nature form them? When is a measurement 
value due to some patternedness in the data or to some 
random component? How do we discover novel patterns? 
And, once identified, how do we build models of the 
mechanisms that  produced them? These are the questions 
we need to answer to realize artificial science. 
Constructive answers will address what I consider the most 
fundamental and abiding problem of twenty-first century 
science: Pattern discovery. Discovering the unknown is a 
conundrum that  is distinct from pattern recognition. 
Nonetheless, we as scientists do this all the time. To make 
progress on pattern discovery, a first step is to understand 
what patterns are and how to quantify them. (Is system A 
more “patterned” that  system B?) The answer to this 
comes in the realization that nature’s patterns capture how 
nature stores and processes information [5].
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With the conceptual challenge of emergence and a deeper 
understanding of the role of theory, there is now a new and 
very real possibility for a novel synthesis of advances in 
experimental technique, high-performance computing, and 
theory: automatically building theories from data  [20,21]. 
That is, to the extent we understand pattern, we can use 
machines to find emergent  organization in our vast  data 
sets. And from there, the machines can build our theories, 
most likely with guidance from a new generation of 
theorists. This suggests a new target  for scientific theory: 
A theory of theory building. Note that  success in this will 
not put theorists out  of work. Rather, it will allow them to 
work at a higher level, to be more productive, and to tackle 
systems which are that much more complex. The pace of 
progress will accelerate, yet again.

And this takes us back to May 1923 and the twenty-one 
year old budding quantum theorist. If you must  have a 
doctoral near-disaster, you can do no better than on the 
topic Sommerfeld assigned Heisenberg: fluid turbulence. 
In his later years, Heisenberg would opine that  turbulence 
was one of the most fundamental and difficult  problems of 
contemporary physics [22]. Heisenberg was stymied by the 
richness and diversity of what was, after all, an inanimate 
system. As we look forward, perhaps we’re in a similar 
humbled circumstance as we strive to understand the 
biological and then the social worlds. How are we to 
understand their emergent structures? How will we come 
to understand the underlying mechanisms well enough for 
social goals, such as human sustainability? Heisenberg’s 
doctorate challenge to understand fluid turbulence might 
end up providing a lesson for twenty-first  century science: 
a balanced interplay of experiment, computing, and theory 
will be required.

James P. Crutchfield is Director of the Complexity 
Sciences Center, Professor of Physics at the University of 
California at Davis, and External Faculty of the Santa Fe 
Institute; http://cse.ucdavis.edu/~chaos/.
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