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We introduce an analytical model that predicts the dynam	
ics of a simple evolutionary algorithm in terms of the 
ow in
the space of �tness distributions� In the limit of in�nite popu	
lations the dynamics is derived in closed form� We show how
�nite populations induce periods of stasis
��tness epochs�

and rapid jumps
�innovations�� The analysis identi�es the
epochs with the 
ow�s metastable �xed points and gives exact
predictions of epoch �tness level and population distribution�

Evolutionary search comprises a set of optimization
and learning techniques�based loosely on ideas from bi�
ological evolution�in which individuals in a population
�typically candidate solutions to a given problem� are se�
lected for replication based on a ��tness� measure de�ned
by some externally imposed criterion� Genetic variation
is introduced into the population by stochastically mod�
ifying the selected individuals� In practice evolutionary
search methods have often been applied successfully to
optimization and learning problems in in poorly under�
stood high�dimensional problem spaces� For overviews of
such methods and their applications� see� e�g�� ���� In the
following we analyze one particular evolutionary search
method� a simpli�ed genetic algorithm �GA��
One common feature of the dynamics of evolutionary

search is metastable behavior�the average �tness in the
population goes through periods of stasis� which we will
call ��tness epochs�� alternating with rapid jumps in av�
erage �tness� which we will call �innovations�� Such be�
havior has been reported in many applications of evo�
lutionary search as well as in models of evolution �e�g��
����� As has often been found� the length� location� and
shape of these �tness epochs and innovations depend on
di�erent control parameters of the evolutionary method�
such as population size and mutation and crossover rates�
This dependence is complicated and� as yet� poorly un�
derstood�
There has been a moderate amount of theoretical work

on evolutionary algorithms� The approach of Vose� Nix�
and Liepins� for example� describes the state of a genetic
algorithm at a certain time by a vector on the simplex of
a high�dimensional Euclidean space� Each dimension of

this space represents either a certain genome ��� or the
state of the population as a whole �
�� The GA dynamics
is speci�ed by a nonlinear matrix operator that acts on
this vector to produce the state at the next time step�
Although this formalism exactly captures the detailed
�microscopic� GA dynamics� in practice the large size of
these matrices makes it impossible to obtain quantita�
tive results� Here� a matrix operator will be constructed
that is similar in spirit to the Vose et al� operators but
that has vastly reduced dimensionality since it acts on
vectors representing �tness distributions� This makes a
quantitative analysis of this operator possible� allowing
speci�c quantitative predictions to be made about the
GA�s behavior�
Another theoretical approach is a formalism developed

by Pr�ugel�Bennett� Shapiro� and Rattray that uses a sta�
tistical mechanics approach to analyze the dynamics of
genetic algorithms �	�� In their formalism the focus is
also on the evolution of �tness distributions� but gener�
ally only the average evolution of the �rst few cumulants
of the �tness distribution are studied� This averaging of
the dynamics over a large number of runs makes it im�
possible to describe the epoch�innovation structure of the
dynamics in which we are interested�
The GA�s population will consist of bit strings of length

L � NK� The �tness function f considers each string
s to consist of N contiguous blocks of K bits� For each
block of length K� f speci�es a particular desired bit
con�guration �schema�� Without loss of generality� this
desired con�guration can be taken to be K �s for each
block� The �tness f�s� of a string s is then simply the
number of blocks in string s that consist ofK ones� Thus�
� � f�s� � N �
This type of �tness function� a so�called �Royal Road�

function� was initially designed to address questions
about the processing and recombination of schemata by
GAs� Such block�based �tness functions were thought
to lay out a �royal road� on which genetic algorithms
would optimally search� In fact� the GA dynamics is
substantially more complicated than originally hypothe�
sized for these idealized �tness functions ���� Here we use
f because it is simple enough to be analyzed and yet the
dynamics of the GA on this �tness function exhibits the
epochal dynamics so often encountered in evolutionary
search�
Our analysis assumes the following simpli�ed genetic
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algorithm� Initially� the GA generates a population P�
of M bit strings of length L � NK� chosen with uniform
probability from the space of all L�bit strings� It then
evaluates the �tness f�s� of each string s � P�� Next�
it creates a new population of M strings� by selecting
strings from the current population with replacement�
and with probability proportional to �tness� Finally� it
mutates each selected string at each site with a �xed
probability q� At this point a new population P� has been
created and the cycle starts over by re�evaluating the
�tnesses of the new strings� Formally� the GA behavior
is speci�ed by an iterated procedure� Pt�� � GPt� in
which the dynamic G represents the implementation of
the selection and mutation steps�
Unlike many GAs this algorithm does not include

crossover�the exchange of components from two or more
parent strings� Since the main qualitative feature of
the dynamics�the occurrence of �tness epochs�is not
changed by omitting crossover and the analysis is sim�
pli�ed considerably without it� it is not included in this
initial work� Also� this GA is simple in that there is a
trivial mapping from the genetic speci�cation to a phe�
notype� the �tness is evaluated directly on the genome�
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FIG� �� Average �tness in the population over ���� gen	
erations for a GA run with N � �� K � �� q � ������ and
M � ���� The horizontal lines are the predicted �tness val	
ues for the epochs� The inset plots compare the speed of the
innovations at early �lower inset� and late �upper inset� gen	
erations� At later generations they are slower� note that the
upper inset plot covers a time scale that is more than three
times longer than the lower�

Figures � and � display the results of two runs of this
GA with di�erent parameter settings� The average �t�
ness in the population hfi over time t �generation num�
ber� is shown in both� Figure �� in addition� shows the
best �tness in the population as a function of time� In
these plots the �tness epochs are clear� The larger block
size and the lower mutation rate of the run in Figure �
seem to lead to more sharply de�ned epochs than in the
run of Figure �� We would like to be able to explain why
the �tness follows this pattern of stepwise increase� In
particular� a complete analysis of the simpli�ed GA on
this class of �tness functions would provide an analytical

framework that� given a set of parameters �N � K� q� and
M�� can answer the following questions� �i� How many
�tness epochs can possibly occur� �ii� At what �tness
levels do the �tness epochs occur� �iii� What is their ex�
pected duration� �iv� What is the expected speed of the
innovations between �tness epochs� In this paper we will
answer the �rst two questions and give some preliminary
insights into the last two�
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FIG� �� Average �tness �solid line� and best �tness �dia	
monds� in the population over ��� generations for a GA run
with N � �� K � �� q � ������ and M � ���� The horizontal
lines are the predicted �tness values for the epochs�

We assume that the dynamics of the population Pt can
be captured by analyzing the dynamics of the distribu�

tion �P �t� of �tnesses in the population� In the M � �

limit of in�nite population size� the dynamics of �P �t� will
become deterministic and can be solved analytically�

A �tness distribution �P � �P�� � � � � PN � is a point on
the N � � dimensional simplex� where Pf is the propor�
tion of individuals with �tness f � � � f � N � and the
distribution is normalized� Thus� the state space is the

simplex �� � f�P � R
N�� �

PN

f�� Pf � �g� The average

�tness hfi in the population is simply hfi �
PN

f�� fPf �
To obtain the in�nite�population dynamics we construct
a generation operator G that incorporates the e�ects of
selection and mutation on the population at the level of
the time�dependent �tness distribution� that is� the GA

dynamics are now speci�ed by �P �t��� � G��P �t��� where
G �M � S is the product of the mutation and selection
operatorsM and S� respectively�
To construct the mutation operator� we assume that

all �incorrect� blocks �those not consisting of all �s� in
the population can be taken to be independent and� fur�
thermore� that all incorrect blocks have not been correct
in their past� In other words� strings in the population
are not too similar and strings in which blocks have just
been destroyed have a low probability of being selected�
Under these assumptions� we can consider the dynamics
of a string s consisting of a single block of K bits under
mutation alone to obtain an approximation to the prob�
ability that mutation will turn an incorrect block into a
correct block� At each time step� each bit in s is mu�
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tated with probability q� Starting from a random K�bit
string at time t � �� a Markov chain analysis gives the
average time T �q�K� until the correct constellation of
K �s appears for the �rst time� Our calculation shows
that the �rst�passage�time distribution for this problem
is exponential to a high approximation� As a result� the
probability A that an �incorrect� block will be trans�
formed into a correct block in one time step is constant�
A � ��T �q�K�� The probability D that a correct block
is transformed into an incorrect block in one time step is
D � �� ��� q�K �
Using the single�block expressions for A and D we can

determine the probability Mij that a string s of length
NK with �tness j will be transformed into a string with
�tness i in one time step� Mij is the sum over all the
probabilities that k incorrect blocks in the string will
become correct in that time step and l correct blocks will
become incorrect in that time step� such that j�k�l � i�
The matrix entries of the mutation operatorM are thus
given by

Mij �
PN�j

k��

Pj

l�� �j�k�i�l
�
N�j
k

�
Ak���A�N�j�k

�
j
l

�
Dl���D�j�l ���

where �i�j is the Kronecker delta function�
To construct the selection operator� recall that our sim�

ple GA uses �tness�proportionate selection� This means
that the fraction P s

f of strings with �tness f after se�
lection is proportional to both f and the fraction Pf of
strings with �tness f before selection� That is� P s

f � fPf �

Since �P s remains normalized� it can easily be seen that
P s
f � f Pf�hfi� where hfi is the mean �tness of the dis�

tribution �P � We can therefore write the matrix entries
Sij of the selection operator S as Sij � i�ij�hfi� Notice
that� in contrast to the mutation operatorM� the selec�
tion operator S is nonlinear� S scales with the inverse of
the average �tness hfi�
The generation operator G is simply the product of

mutation and selection operatorsM and S�

Gij �

NX
k��

MikSkj � ���

Note that the �tness distribution in the population at
time t is given by the t�th iterate of G�

�P �t� � Gt��P ����� ���

To analyze Gt we will �rst construct a linearized version
�G �M � �S� linearizing the selection operator by setting
S � �S�hfi� Since �G is proportional to G at each time
step� we can formally write the t�th power of G as�

G
t��P ���� � C�t� �P ���� �Gt � �P ��� �
�

where C�t� �P ���� is a constant that depends on t and the
�tness distribution at time t � ��

Since� in general� �G has N � � distinct eigenvalues fi
and N � � distinct normalized eigenvectors �V i� its diag�
onal form is given by R�� � �G � R� where Rij � V j

i is
the similarity transformation matrix� The �tness distri�
bution in this basis is

�P �t� �

NX
i��

�i�t��V
i� �	�

and we can think of a given �P �t� as a distribution ���t�

over the di�erent eigenvectors �V i� In this basis� equation
� takes on a very simple form�

�i�t� � C�t� ������ f ti�i��� �
f ti�i���P
i f

t
i�i���

� ���

where the constant C�t� ������ is easily determined by de�
manding that the distribution ���t� over the eigenvectors
be normalized� Equation � shows that the fractions �i�t�

of the nonprincipal eigenvectors �V i eventually all become
exponentially damped� In the limit of t � � the frac�

tion �N of the principal eigenvector �V N exponentially
approaches �� �
�� Furthermore� we obtain a simple ex�
pression for the average �tness in the population as a
function of time�

hf�t�i �

P
i f

t��
i �i���P

i f
t
i�i���

� �
�

Figure � shows the predicted in�nite�population dy�
namics for N � �� K � 
 and q � ���� together with the
average experimental results over �� runs of the GA using
those parameters and a large population �M � ����� The
error�bars denote plus or minus two standard deviations
from the average over the �� runs� For large populations
�M � �NK� the actual dynamics is accurately predicted
by the in�nite�population dynamics� Notice that for pop�
ulations of this size the average �tness increases smoothly
as a function of time and there are no discernible �tness
epochs�
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FIG� �� Theoretical prediction of average �tness over time
for the parameters N � �� K � �� q � ����� and M � ���

�solid line� along with average experimental results over ��
runs with the same parameters� The error	bars give plus and
minus two standard deviations from the experimental average�
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Several additional properties of the GA�s behavior fol�
low directly from our analysis of the in�nite�population
dynamics given in equation 
� First� for any � � � and
� 	 
 	 � and any �nite number of time steps t� there is
a population sizeM��� such that with probability greater
than 
 the �nite�population trajectory stays within a dis�

tance � of the in�nite�population trajectory �P �t� for all t
time steps� for population sizesM �M��� � �The proof of
this is analogous to a similar proof in �
��� Second� the av�
erage �tness hf�t�i is a monotonically increasing function
of time� Finally� using Perron�s theorem for positive ma�
trices� we can show that the in�nite�population dynamics
has a unique asymptotic �xed�point �tness distribution
�P ��� which is given by �G�s principal eigenvector �V N �
For �nite populations of size M � the �tness�

distribution state space is a lattice �M over the N � �
dimensional simplex �� with lattice spacing M���

�M � f�P � Pf �
nf
M

� nf � N�

NX
f��

nf �Mg� ���

where nf is the number of individuals with �tness f in
the population�
As in the in�nite�population case� applying G to a �t�

ness distribution �P in �M gives the expected �tness dis�

tribution h �P �i � G��P � at the next generation� The ac�

tual �tness distribution �P � at the next time step will be a

random sample of size M of the distribution G��P �� This
induces stochasticity in the �nite�population dynamics�
In general� for a �nite population of size M � the proba�

bility Pr��P � �P �� that a �tness distribution Pf � nf�M
will go to a �tness distribution P �

f � mf�M under mu�
tation and selection will be given by a multinomial dis�

tribution with mean G��P �� That is�

Pr��P � �P �� �M �

NY
f��

�Gf ��P ��
mf

mf �
� ���

where Gf ��P � is the expected proportion hP
�
f i of individ�

uals with �tness f at the next generation�
The expected change h Pf i in the fth component

of the �tness distribution is given by the di�erence

Gf ��P � � Pf � If h Pf i is much smaller than the lat�
tice spacing ��M � the number of individuals with �tness
f most likely will not change� Imagine the case where no
individual has a �tness higher than k� i�e� Pf � �� f � k�
and the population is con�ned to the k � � dimensional
subsimplex �kM � If the probability of creating new blocks
is small with respect to ��M then the higher components
�f � k� of the �tness distribution are likely to remain
� for some time and the population will stay in �kM �
In other words� the !ow h Pf i out of the subsimplex
�f � k� is small with respect to the lattice spacing ��M �
At the same time� mutation �which continues to de�

stroy blocks� and selection will steer the population to a
metastable �xed point within �kM � where it remains until

a new block is created and the associated string spreads
in the population� This metastable �xed point is given by
the largest eigenvalue of the k���dimensional submatrix
of �G� For small mutation rates q it can be shown that
the largest eigenvectors of the k ���dimensional subma�

trices lie close to the eigenvectors �V k of the full matrix
�G� So� although the generation operator G has only one

�xed point in ��� it�s nonprincipal eigenvectors �V
k lie

very close to the !ow�s metastable �xed points in the
lower dimensional subsimplices �kM � around which the
population stabilizes until strings with �tness f � k are
discovered� In short� the combination of the state�space
discreteness and the stochasticity of the GA dynamics�
both induced by the population�s �nite size�causes pop�
ulations moving in �kM to temporarily stabilize within
these subsimplices� In this way� metastability is induced
via �nite populations�
Using the fact that the mutation operator M is a

stochastic matrix� we can show that each eigenvalue fi of
�G is equal to the average �tness hfi in the population for
the �tness distributions of the corresponding eigenvector
�V i� We therefore expect the �tness epochs to occur at
�tness levels that simply correspond to the eigenvalues
of �G� Using a second order perturbation analysis in q of
the eigenvalues of �G� the �tness levels are approximated�
at low mutation� by

fi�q� � i� �i�K � i�N � i�A��q �O�q
�� ����

where A�q is the probability to align a block to �rst or�
der in q�that is� A � A�q � O�q���and where A��

� �

��K
PK

j�� j
��
�
K
j

��� �Pj��

i��

�
K
i

���
�

In addition to the experimental data from the GA sim�
ulation runs� Figures � and � show the �tness values cor�
responding to the eigenvalues fi of �G� which were calcu�
lated numerically� as horizontal dashed lines� It is clear
that the eigenvalues accurately predict the �tness levels
at which the epochs occur�
Figures � and � show that epoch duration varies among

the di�erent epochs and that not all possible �tness
epochs occur in any particular run of the genetic algo�
rithm� Moreover� we observe that on average the higher
�tness epochs have longer durations and are more likely
to be visited in a given run�
These observations can be understood by a linear sta�

bility analysis of G around the metastable states �V k�
Solving for the spectrum of the Jacobian matrix DG� we

�nd that the eigenvalues �ki of the Jacobian matrix at
�V k

are given by�

�ki �
fi�q�

fk�q�
� �k 	� i� ����

From this� we see that the number of stable dimensions

of a metastable state �V k is equal to k �where � � k � N��
Since the actual center of the �tness epoch� given by the
largest eigenvalue of the k � ��dimensional submatrix of






�G� is slightly o�set from �V k in the direction of the unsta�
ble dimensions� one sees that qualitatively the duration
of an epoch is inversely proportional to the number of
unstable dimensions and the size of the eigenvalues �ki of
the unstable dimensions �i � k�� For larger k there are
fewer unstable dimensions and the sizes of the �ki are rel�
atively smaller� Therefore� we expect the higher��tness
epochs to have a longer duration on average� The prob�
ability that the population will visit a particular epoch
is determined by the probability that the population will
fall onto one of the attracting dimensions of that epoch
in the course of its evolution� Again qualitatively� we
expect that an epoch with a larger number of stable di�
mensions will therefore also have a higher probability of
being visited in any particular run�
We see from equations �� and �� that for all unsta�

ble dimensions ��ki � �� of a metastable state �V k we
have �ki 
 � � ��k as q � �� For small values of k
�� O���� the eigenvalues corresponding to the unstable

dimensions of �V k are therefore considerably larger than
�� This means that as soon as the �tness distribution
acquires a minimal component of size ��M or more in an
unstable dimension� it will start moving away from the
metastable state exponentially fast� This explains the
occurrence of the steep innovations between the epochs�
Once an unstable dimension directed towards a higher
metastable state is discovered by evolution� the �tness
distribution will move to this new metastable state ex�
ponentially fast� For higher mutation rates� the range
of the ratios fi�fk about � decreases� and we expect the
innovations to become less steep� We indeed see more
gradual innovations in the run with the higher mutation
rate �Figure ��� The eigenvalues fi�fk of the unstable
dimensions �i � k� approach � from above for increasing
values of k� We therefore expect the innovations between
higher��tness epochs to be slower than the innovations
between lower��tness epochs� This e�ect is enhanced by
the fact that the �rst�order term i�N increases with i�
The inset plots in Figure � show that innovations at later
generations are indeed slower� The time scale for the up�
per plot �later generations� is three times that of the
lower �earlier generations�� Finally� since there are fewer
stable dimensions for smaller k and the stable dimension
eigenvalues �ki are smaller as well� we expect the �tness
!uctuations in the lower��tness epochs to be smaller than
the !uctuations in the higher��tness epochs� The plots
also illustrate this phenomenon�
To summarize and conclude� evolutionary search al�

gorithms are stochastic dynamical systems in which a
large set of identical elements evolve in parallel and un�
der the in!uence of one another through a state space�
Macroscopic states for these systems are often de�ned
in terms of the �rst moments of the distributions over
the state variables of the elements� A commonly ob�
served qualitative behavior is that the mean of some state
variable alternates between periods of stasis and sudden
change� In this paper we analyzed a simpli�ed genetic

algorithm as an example of such a system and derived
macroscopic equations of motion� from the microscopic
dynamics speci�ed by the GA� that explain the occur�
rence of these periods of stasis and sudden change�
We constructed an operatorG that describes the GA�s

deterministic dynamics in the limit of in�nite popula�
tions� By diagonalizing the linearized version �G we
were able to obtain closed�form expressions for the evolu�
tion of the population �tness distribution� In the �nite�
population case the dynamics was still governed by the
operator G� Due to the �nite population� however� the
state space became discrete and the �nite�population
sampling noise caused the dynamics to become stochas�
tic� This� in turn� led to the appearance of metastable
�tness distributions in the vicinity of the hyperbolic �xed
points of G� We were able to identify the �tness epochs
in the dynamics with these hyperbolic �xed points� This
gave us both the �tness levels at which the epochs occur
and the associated metastable �tness distributions� We
also explained several other dynamical features� such as
the innovations� short durations and the appearance and
disappearance of epochs�
The behavior of evolutionary search algorithms is of�

ten informally described as moving along a ��tness land�
scape� directly de�ned by a �tness function� cf� ���� It is
clear from our experiments and our analysis of the un�
derlying mechanisms that this geographic metaphor is
misleading� First� the �tness function is only a partial
determinant of the search dynamics� Population size�
mutation rate� and other parameters can radically alter
the time�dependent metastable behavior�revealing� hid�
ing� or even inducing much of the structure in the �tness
landscape� Note� for instance� that our �tness function
is simple� it has a single peak� but otherwise no local op�
tima� and it is not �rugged�� Second� our analysis sug�
gests that by combining the �tness landscape with the
population dynamics�as we did in constructing G�one
can obtain an e�ective� but di�erent� �landscape� that
guides the evolutionary search�
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