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Abstract: 
Is there an ideal city form? As cities proliferate worldwide this has become a central 
question underpinning sustainable development and economic opportunity for billions of 
people.  We provide extensive empirical evidence, mathematical analysis and a set of 
theorems to show that the answer to this question is topological, not geometric.  We show 
that cities can be decomposed into two types of networked spaces – accesses and places - 
and prove that these spaces display universal topological characteristics common to all 
cities, provided specific mathematical conditions are met. While exceptions to these 
conditions are rare in developed cities, many urban slums fall into a different topological 
class.  This expresses the central difficulty of developing cities as a rigorous 
mathematical problem that we show how to solve optimally through the introduction of 
infrastructure networks into city blocks at minimal disruption and cost.  
 
One sentence Summary: 
All cities are shown mathematically to share a common topology, manifested by 
transformations between any two street layouts and the gradual evolution of their 
neighborhoods.  
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Cities exist in many different geometries (1), from regular grids to curvy mazes of streets 
and alleys.  City geometries are shaped by processes that are essential for all cities, such 
as the circulation of people, goods and information; and processes that are particular to 
each place, like geography, defense and the choices made by planners in response to 
crisis, growth, or change (1, 2).  This diversity of form is aesthetically appealing (1–3) 
but has defied quantitative explanations or replication by known practices.  A long 
history of urban planning (1–6) and, more recently, of data-driven statistical analysis (6–
9) has attempted to classify urban spatial patterns with an eye towards optimal design, but 
the quest for ideal forms has remained elusive.   
 
Similarly, the morphology of other complex systems, from river basins (10, 11) to 
vascular systems (12, 13), to neural networks (14, 15) or human social organizations (16) 
shows substantial variation around ideal templates derived from encoding minimal 
energy dissipation or optimal communication. Thus, we need to identify what is essential 
versus what is variable in the architecture of complex systems (17). 
 
Here we show that the essential spatial architecture of cities is dictated by topology, not 
geometry. Topology provides a general quantitative measure of surfaces emphasizing the 
equivalence between diverse shapes when they can be continuously deformed into each 
other (18, 19). Consequently, topological invariance allows for considerable freedom of 
form so long as certain spatial relationships are preserved.   
 
Graph theory and topology are intimately connected branches of mathematics (18, 19). 
They were born out the need for formal tools to analyze relationships between (urban) 
spaces. By transforming specific places into nodes and accesses between them (bridges) 
into edges, Leonhard Euler created a graph representing Königsberg in 1735, which he 
used to prove the non-existence of a walk crossing each of its seven bridges only once 
(19). This showed for the first time how questions about the relationships between 
physical spaces -topological problems- can be analyzed and answered regardless of 
geometric details through the analysis of graphs.  
 
Taking this as our starting point, we derive here the general topology of cities. We divide 
urban built space into two categories (20): i) access systems (roads and paths), and ii) 
places (buildings, public spaces).  These two spaces span the entire city and are 
interconnected (Fig. S1-3) as each other’s negative spaces.  Then, we can conceive each 
city as a series of interconnected blocks, each of which is an “island” surrounded by 
infrastructure that mediates access to each place internal to the block, Fig. 1.  We now 
show how the topology of cities can be systematically characterized by successively 
considering the topology of their access systems, followed by the relationship between 
places and their accesses and finally among different places (parcels) within each block. 
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The topology of the access system is relatively simple. The physical volume of all paths 
and roads is a connected 2D surface: any point on its surface can be reached from any 
other point traveling on this surface. However, these surfaces end where buildings begin 
and at the external city boundaries. Thus, the urban access surface has a number of 
internal boundaries, b, one for each city block and another for city limits, for a total of 
B=b+1. We prove (Section SD) that such a surface is topologically equivalent to a disk 
with b perforations (or a sphere with B disks removed). It follows that all urban access 
systems with the same number of blocks, b, are topologically equivalent and share an 
invariant number, the Euler characteristic, 𝜒 = 1− 𝑏, which is independent of geometry.  
 
The topology of places depends on their organization relative to each other and to the 
surrounding access system.  To see this, consider city blocks with very different 
geometries (Fig. 1A-D).  The distinctive feature of Figs. 1B and C showing typical blocks 
in New York and Prague (Fig S4), is that, despite different geometry, all places are 
adjacent to streets. This is a general property of developed cities and, when it applies, we 
call the block universally accessible.  We use graph theory methods (Section SE) to 
prove that the space of universally accessible places is isomorphic to its access network. 
This is an intuitive result that follows from the fact that each accessible place has a path 
or street uniquely dedicated to itself, which in turn is the basis of several urban scaling 
relations, e.g. between infrastructure volume and built space and city population size 
(Section SH).  
 
It follows that cities that are universally accessible share the topology of their access 
systems (Section SF).  This result reveals the general topology of cities provided all their 
places are accessible. The Euler characteristic gives a topologically invariant measure of 
city size and expresses a surprising type of self-similarity between urban spaces, where 
sections of one city can be mapped to entire towns provided they share the same number 
of blocks. These results establish formally the universal character of urban built spaces 
and show how they can be transformed without loss of function. 
 
However, the structural transformations that render each block universally accessible 
should not be taken for granted, especially as cities develop quickly.  To analyze this 
issue we represent the space of places in each block by its own graph S0, where edges 
represent the boundaries of each parcel and nodes their intersection. Each interior face in 
S0 represents one parcel (21) (Fig. 1A).  This graph reveals complex networks whose 
topology is not immediately apparent.  This process of graph construction, taking faces 
for nodes and their adjacency for edges, can be repeated successively resulting in new 
graphs called weak duals (18, 19) (Section SG). The weak dual of S0 is a graph where 
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each parcel is a node and where physical adjacency becomes an edge. We denote this 
new graph by S1, S1’s weak dual by S2 and so on.  
 
These graphs reveal the topology of places within city blocks through the presence of 
loops. The block topology is simple when the second weak dual, S2, is a tree (no loops), 
Fig. 1. We prove in Section SG that this is a necessary and sufficient condition for blocks 
to be universally accessible.   
 
Fig. 1D shows a block in Harare, Zimbabwe, (see also S3-5) that does not share these 
properties.  If higher order graphs S3, S4,…, Sk are not trees then the neighborhood has 
several layers of internal parcels: to access parcels in the Sk graph from the outside one 
needs to cross at least (k-1)/2 internal boundaries (Section SG). This situation is 
characteristic of informal settlements in many of the world’s urban slums (22–24) (Fig. 2, 
S5-S8). 
 
The lack of spatial access is a major obstacle to individual mobility, the provision of 
emergency services and (physical) neighborhood development (water, sanitation, etc) in 
most developing cities, a situation currently affecting about a billion people worldwide 
(25, 26). In such situations, providing public services to an informal settlement is 
prohibitively complicated, expensive and slow (27). However, this is made possible and 
relatively straightforward after the neighborhood becomes universally accessible, an 
operation known as re-blocking.  
 
Optimal re-blocking can be generated algorithmically by successively minimizing k>2, 
for which Sk is not a tree, under the constraint that a minimal length of accesses is 
introduced into the neighborhood. This constraint implements minimal disruption and 
construction costs (4), see Figs. 2D-E. Then, there is only one access solution that 
achieves the desired topological transformation (Section SE).  
 
We can also allow the constraint of absolute minimal new access length to be relaxed. 
Then, a (much) larger number of re-blocking strategies become possible. These can be 
sampled statistically from an ensemble of access configurations characterized by a total 
mean access length, which plays a role analogous to temperature in statistical mechanics 
(28). The possibility of generating diverse proposals for optimal re-blocking is important 
because many local factors play a role in deciding implementable solutions, including the 
existence of incipient accesses and other forms of informal land-use. 
 
Re-blocking configurations obtained under strict length constraints are shown in Figs. 
2D-E. We observe that new infrastructure segments often appear as cul-de-sacs (a proof 
is given in Section SG), because tree graphs minimize the number of edges necessary to 
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connect a number of nodes and thus new road length. Similar configurations result from 
minimizing energy dissipation in fluid flows, a principle used to derive optimal 
transportation networks in river basins (10, 11) and vascular systems (12, 13). 
 
A proliferation of cul-de-sacs is not typical of most neighborhoods because it results in 
long distances over the network between places that are spatially close. The problem of 
reducing travel costs (time, energy) between any two places gives rise to a second 
optimization (8, 29, 30) problem, Figs. S7-8.  Travel costs can be reduced by proposing 
additional paths that typically bisect the block along adjoining cul-de-sacs, Fig 2F. The 
gradual transformation of path systems with many cul-de-sacs to new blocks agrees 
qualitatively with historical sequences of neighborhood development (1, 8, 9) (Figs. S4, 
S9). 
 
This geometric optimization has a continuous cost-benefit structure so that more or less 
road surface will be introduced depending on the desirable ratio of construction to travel 
costs.  Thus, once re-blocked, universally accessible neighborhoods can change shape 
continuously in response to evolving preferences, new technologies or socioeconomic 
conditions. 
 
These morphological transformations are typical not only of cities but of other complex 
systems where transport is mediated by networks. While topology is associated with 
necessary function, such as the ability of a locus of precipitation to flow to the ocean (11) 
or of blood to reach every cell in an organism (12, 13), such networks and the places that 
they serve can be arranged in a continuous spectrum of shapes associated with different 
physical dimensions (length, volume) and energy budgets. 
 
For cities, once each neighborhood becomes universally accessible, all cities become 
topologically equivalent (up to number of blocks). This means that buildings and 
infrastructure networks can be re-shaped continuously as a city evolves without loss of 
function. It also means that any section of one city, with the same number of blocks, can 
be deformed onto another. In this way parts of Baghdad can be reshaped into Beijing and 
quartiers of Paris can be deformed into New York City blocks, just like different river 
basins or individual vasculatures vary in their detailed geometry but display the same 
essential universal topology.  
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Figure 1:  The Topology of City Blocks. A: A schematic city-block layout with a single 
interior parcel (red).  The space of places is divided into unitary parcels. This 
demonstrates the construction of successive dual graphs, S0 to S3 (S1 in purple, S2 in blue, 
S3, a single point, in red). The lower panel shows the four graphs spatially superposed, in 
the layout of the empirical examples in B-D.  B: A single block in New York City, 
showing the city’s regular geometry and topology. Each parcel has direct street access so 
that its S2 graph is a tree and its S3 graph is trivial (lower panel). C:  building layout for a 
single block in Prague (Czech Republic) in 1842.  Nested dual graphs (lower panel) 
demonstrate that the S2 graph is a tree and the S3 graph is trivial, despite the block’s 
complex geometry.  D:  A single block in the Epworth informal settlement in Harare, 
Zimbabwe. The lower panel shows the block’s complex parcel topology:  its S2 graph is 
not a tree, and its S3 (red) is not trivial.  Data sources are described in Section A in 
Supplementary Material. 
 
 

New York City
B.A. C. D.

HararePragueLattice, S0

S1

S2

S3
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Figure 2: Access System Optimization and Neighborhood Re-blocking.  A: The odd 
dual graphs for a single block in the Khayelitsha township of Cape Town (South Africa), 
shown overlying a satellite image (from 2011). B: The S0 graph displays the block’s 
complex parcel geometry. C: Superposed weak dual graphs, from S1 through S11 (blue to 
yellow) emphasizing the high degree nestedness of many of the block’s parcels. D: A 
minimal re-blocking solution that provides access to each parcel.  E: The block of Fig 1D 
with a minimal solution to the re-blocking problem (new accesses shown as blue lines.)  
F: More typical neighborhood layout resulting from a process of gradual geometric 
optimization, showing one additional road bisecting the block. Such solutions increase 
construction expenditures beyond rendering the block universally accessible but lower 
travel costs, see Sections SB-C, and Figs S7-8.   In these ways, any neighborhood can 
evolve its spatial form gradually, once its topology becomes universally accessible. Data 
sources and methods are described in Section A in Supplementary Material. 
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Materials and Methods 

A. Data Sources, Map Digitization and Geo-referencing 
 
We assembled a large and diverse set of detailed urban maps in order to demonstrate that 
the topological characteristics of cities, described in the main text and detailed below, 
hold in general, historically and for contemporary cities, across very different levels of 
socioeconomic development, distinct cultures and geographies.  
 
To do this we assembled a large corpus of detailed urban maps based on historical 
cadastral records, modern tax assessor maps, community generated structural-level maps 
and digitized and geo-referenced satellite imagery.  Because of space constraints only a 
few of these are shown in the main paper. Here we provide additional details concerning 
sources and the creation of geo-referenced digital maps.  
 
The data used to create Fig. 1B is based on the New York City Digital Tax Map (31).  
Data for the parcels, blocks and roads for the entire city are available in digital geo-
referenced form. The map of Las Vegas, NV, in Fig. S2 is based on the Clark County Tax 
Assessor’s records, available for academic use through a public records request. This type 
of map is increasingly common in developed nations, even though many such records are 
not in the public domain and must be obtained from local authorities on a case-by-case 
basis.   
 
New kinds of open source mapping data, such as OpenStreetMap, are becoming 
increasingly common data sources for large scale comparative studies of urban form (7, 
9).  At this time, the OpenStreetMap community has not reached a consensus on whether 
parcel level data should be included on the platform.  This is because of the many 
heterogeneous data sources and concerns about parcel data validity and quality.  For 
example, parcel layouts change very quickly in rapidly growing cities, and so the maps 
may quickly become outdated or inaccurate. There is also no consensus around what 
information should be attached to a parcel (32).  
 
The data shown in Fig. 1C and S4 were obtained from one of the earliest extensive 
parcel-level maps of Prague (Czech Republic) completed in 1842 (33).  It was scanned 
into digital form and geo-referenced by the City Development Authority of Prague (Útvar 
rozvoje hl. m. Prahy) in 2012. A small part of this map is shown in Fig. S4, overlaid with 
our identification of the parcels for a single block, as shown in Fig. 1C. Courtyards that 
are not accessible by road are included in the space of each individual parcel, while open 
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spaces that are accessible by road are included in the access systems. Parcel delineations 
for major buildings and roads that were constructed before 1842 and are still extant today 
were used to verify the scale and geo-reference of the original map.   
 
The data for Figs. 1D, 2E, 2F, S5- S7 refer to an informal settlement in Epworth, a suburb 
of Harare, Zimbabwe (34). Maps and data were collected and created by neighborhood 
resident community members in collaboration with the Zimbabwe Homeless People's 
Federation (35) and Dialogue on Shelter (36), which are federations of Slum/Shack 
Dwellers International (37), who also geo-referenced and digitized the map. These 
organizations have developed and adopted a now widespread process in developing cities 
of collecting various types of detailed neighborhood data in order to facilitate a 
community-driven household enumeration and re-blocking process, see Section SI, 
below. A larger portion of the neighborhood map is shown in Fig. S6.  We verified these 
maps in terms of geo-referencing of parcels, blocks and roads against satellite images.  
 
The parcels in Khayelitsha, a neighborhood of Cape Town, South Africa (38) shown in 
Figs. 2A-2D, S8 were identified based on manual digitization of structures visible from 
satellite imagery (39) following a site visit by our team (including two of the authors, JH 
and LB) in June 2014 in collaboration with a data collection exercise by Community 
Organisation Resource Centre (CORC) (40).  During this visit we acquired detailed 
knowledge (and data) of neighborhood boundaries, services and access conditions.  
 
In addition, we have obtained, created or digitized and geo-referenced many other maps 
of formal and informal neighborhoods across the world, including in large dense cities 
such as Rio de Janeiro and São Paulo (where city authorities have mapped most favela 
boundaries), Mexico City (from research surveys), and Kampala, Lusaka, Nairobi and 
Mumbai from a variety of local sources.  
 
At present, many different methods are becoming available for generating parcel level 
maps of a city and neighborhood, from those created by resident communities and non-
governmental organizations (NGOs) to official cadastral maps, e.g. linked to property 
records and taxation.  Maps created by manual inspection of remote sensing imagery at 
adequate resolutions or via machine learning techniques (41) are also increasingly 
common because of new data and new analysis tools.  
 
The convergence and cross-verification of all these methods, much facilitated by geo-
referencing of data, are making possible new advances in our detailed understanding of 
the changes of physical space in cities in relation to people’s socioeconomic condition 
and its transformation. Our emphasis here is to demonstrate how some of these practical 
possibilities require a systematic formal (theoretical and mathematical) understanding of 
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these transformations. The methods introduced in this paper are capable of responding in 
general and flexible ways to parcel level maps from almost any source and make sense of 
their topology and geometry through comparative quantitative analysis.  
 

B. Topological Optimization: Minimal Neighborhood Re-blocking 
Fig. 1C shows a single block from Epworth (Harare, Zimbabwe) with four interior (not 
accessible by road) parcels highlighted in red.  Existing roads encircle the block.  Fig. 2 
shows a similar problem for a much larger block in Khayelitsha (Cape Town, South 
Africa), with 547 parcels, of which only 151 have direct road access.  We define a 
problem of topological optimization by asking how to provide each parcel with access 
using the smallest amount of infrastructure (path length).  
 
We define this topological optimization problem in two different ways. The first (strict 
optimization) is easier to understand and formulate but is too rigid for practical use. The 
second (statistical optimization) is more flexible and can be the basis for practical 
neighborhood upgrading tools discussed in Section SJ, below. 
 
The strict optimization approach seeks to find the absolute smallest amount of new paths 
that need to be built to provide each interior parcel with access. In practice, there is 
always a unique solution to this problem.  
 
Given a geo-referenced parcel map, the strict optimization problem is solved 
algorithmically by identifying the shortest path from each interior parcel (along parcel 
boundaries) to the existing road and measuring its geometric length.  While optimal 
piecewise – parcel-by-parcel this identifies the smallest path length – this strategy may 
not be globally optimal when there are many internal parcels that are adjacent. This is 
because there may be solutions with shorter paths when two or more parcels are 
considered together rather than individually.  
 
This problem of strict optimization can be pursued further, but typically leads to a search 
space that increases combinatorially (exponentially or faster) as pairs, trios, etc, of 
parcels are considered together. Though feasible for small blocks, this becomes slow or 
intractable for larger ones. Above all, building the strictly shortest set of accesses is likely 
not to be viable because of other local considerations, which the algorithm cannot 
incorporate. These have come up in our discussions with resident associations and city 
agencies, especially in Mumbai, India. As such, we next emphasize the generation of an 
ensemble of possible access networks that can be discussed and edited by policy makers 
and residents, thus defining a statistical optimization problem.  
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The statistical optimization problem seeks to identify a set of path configurations that 
includes the solution of the strict optimization problem but also optimizes for other 
statistically small amounts of infrastructure introduced into the block.  Because there may 
be many configurations of paths that are not strictly the shortest but that may have other 
advantages, this leads to a more flexible and realistic set of possible solutions.  
 
In this way, we create a sample of solutions from a statistical ensemble of spatial 
configurations that render the block universally accessible. This optimization problem 
makes use of methods of statistical physics by defining a statistical distribution of 
neighborhood path configurations and sampling it using well-known Monte Carlo 
techniques of importance sampling (42). 
 
To solve this second problem, a statistical ensemble of possible solutions is built in the 
following way: i) we define a probability distribution over paths, p(l) where l is a path, 
which makes each path that solves the topological optimization problem more or less 
likely as a function of its characteristics (cost); ii) we choose a number of paths that 
connect each interior parcel with the outside and, thus, render the block universally 
accessible.   
 
In practice, we make path cost a function of path length. Thus, shorter paths that require 
less infrastructure are more likely. Other properties that contribute to relative path cost 
can also be included in defining this probability, if desirable.  
 
We have generated a simple algorithm that implements this strategy: For each parcel we 
identify (strict optimization) the shortest path that makes it accessible. We then further 
construct nl additional short paths with the same property. This set of nl +1 short paths is 
identified for all interior parcels. In all practical examples developed here we chose nl +1 
=10. The choice of ten paths per interior parcel is arbitrary: a greater number can be 
chosen at larger computational cost and vice-versa. 
 
Out of the set of sets of short paths for all interior parcels, a single path is selected with a 
probability, p. We experimented with different functional forms of p(l), which penalize to 
a greater extent longer paths. In Figs. 2, S5, S7 and S8, we show results for p(l) inversely 

proportional to path length squared, 𝑝   =    !/!!
!

∑!!
! . This is equivalent to p(l) ~ e- 2 ln l , which 

thus penalizes long paths only gently, as a polynominal (square) function of the logarithm 
of path length. In this context, the power of the logarithm (two, in this example) plays the 
role of an (dimensionless) inverse temperature in statistical mechanics (28, 42).   
 
Once selected, the path is converted from an interior edge to an access and the set of 
interior parcels is updated to reflect the new access layout.  This path selection process is 
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repeated until no interior parcels remain, and the S2 graph for the block becomes a tree 
(see Section SG, below).  
 
Fig. S5 shows an instance of the iterative road construction process for the block shown 
in Fig. 1C.  Fig. S6 shows the actual neighborhood geometry before and after a 
community driven re-blocking process.  
  

C. Geometric Optimization: Travel Costs vs. Road Construction  
We have explained in Section B how different access configurations can be generated 
statistically to solve the topological optimization problem of granting access to each 
parcel in a city block. 
 
Here, we formalize an additional geometric optimization problem that among possible 
solutions to the topological optimization problem can choose path configurations that 
reduce travel distance.  Note that this second optimization problem deals with improving 
performance along a gradation of travel costs, whereas topological optimization is 
necessary and discrete: a city block is either universally accessible or it is not. 
 
To consider the issue of travel distance we introduce the following definitions. Consider 
P the set of all accesses within a block, including all roads and paths. For each block 
there is a minimum path length lmin, necessary to solve the strict topological problem. 
There is also a maximum path length lmax that would connect parcels all-to-all. In 
practice, there will be an actual length of paths between these two extremes, l.  
 
We also introduce a (construction) cost per unit length of path, c. Thus, the total cost of 
all paths in P, C, is C=c l. In this Section, we show how a set of paths can be found for 
each block through the solution of a geometric optimization problem. 
 
To do so, we define a travel cost matrix, Tij, whose entries are simply the distances 
between each two parcels i and j along the shortest path on the access system. This matrix 
is traceless and symmetric and all its entries are positive. Note that Tij(P), is a non-trivial 
function of the block parcel configuration and its set of paths, P.  Thus, the travel cost 
matrix is a complex object that in general needs to be evaluated computationally for each 
block configuration. Note also that the average travel distance between parcels in the 

block, T
_

, can always be reduced via the introduction on new roads and paths in P. As a 
consequence the variation, Δ𝑇/Δ𝑃 ≤ 0. 
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We now formulate the problem of finding the optimal block access network, P*, that 

minimizes average travel costs, T
_

 under certain constraints. The simplest realization of 
the problem is to perform a cost-benefit analysis of introducing new paths. We write the 
target function, 𝛤,  

Γ 𝑃 = 𝑇 𝑃 + 𝜆𝐶 𝑃 , 
 
where the first term measures (decreasing) average travel cost and the second (increasing) 
construction costs. The constant 𝜆 is a dimensionless parameter whose significance will 
be discussed below. Upon introduction of new paths we write the variation in cost-benefit 
as 

ΔΓ
ΔP =

ΔT
ΔP + 𝜆

ΔC
ΔP. 

 
We can now develop a criterion for stopping building new paths. The simplest is to build 
paths so long as the variation remains negative; that is 
 

!"
!!
< 0 →    !!

!!
> 𝜆. 

 
We see that as long as the marginal benefit of building paths exceeds the chosen 
parameter 𝜆 one should continue to introduce more paths. If we assume that the costs of 
building paths are proportional to length then Δ𝐶 = 𝑐  Δ𝑙.  We can write this condition as 
 

ΔT > 𝜆𝑐  Δl. 
 
Elaborations of this problem are simple to formulate. For example, under a fixed budget, 
Cmax, Δ𝐶 = 𝐶!"# = 𝑐  Δ𝑙max, so that only a certain length of paths will be built.  If we 
prefer to specify a target in terms of minimal acceptable travel cost, then we obtain a 
constrained optimization problem where 𝜆 is not extrinsically specified, but determined 
instead by the current and target average travel costs and the length paths to be 
introduced. 
 
In practice, the travel distance between each pair of parcels in a block is measured as the 
geometrically shortest path between the two parcels along network edges that are paths in 
the access system, not parcel boundaries.  This assumes that travel can only occur over 
roads and paths, a situation typical of dense urban neighborhoods.  The measured 
minimum travel distance between any two parcels in a block is shown as a matrix where 
parcels are ordered according to a hierarchical clustering procedure (43, 44). This groups 
together parcels that are connected by short travel distances, and appear in the matrices of 
Figs. S7-8 as darker blue matrix blocks. Parcels that are distant appear as orange and red 
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entries in the same matrix. The latter are the primary target distances to be reduced by the 
geometric optimization described here.  
 
Fig. S7 shows the neighborhood layout and the matrix of parcel-to-parcel travel distance, 
in meters, for several possible path configurations for Epworth. 
After the minimum conditions for solving the topological optimization problem are met, 
additional path segments could be proposed that would reduce travel costs within the 
block, quantifying the tradeoff between travel cost and re-blocking effort vs. some 
desirable target, 𝜆.  
 
The solutions to our topological optimization problem have many more cul-de-sacs than 
typical urban street patterns. This is the result of theorem three in Section G, below. 
Thus, connecting different cul-de-sacs created by the topological optimization problem is 
a natural way to identify good choices for additional paths that while short substantially 
reduce travel distances.   
 
For the example of Figs. 1D, S5-7 (Epworth), it is notable that the addition of a short 
segment of road connecting two cul-de-sacs effectively splits the city block in two 
(bisection). This operation meaningfully decreases travel cost, especially by reducing the 
travel distance between the most distant parcels. This is a general property of connecting 
cul-de-sacs that provide access to parcels that are close in space but not over the network. 
 
Fig. S7, panel A shows the solution to the topological optimization problem; panels B – 
D show the additional consideration of geometric optimization where several additional 
paths have been introduced that bisect the block along existing cul-de-sacs.  The 
centroids of the two most distant parcels in this neighborhood are 205m apart, 
significantly smaller than the maximum on-road travel distance of 401m in the minimally 
connected case, and still smaller than the maximum travel distance of 295m in the case 
with the addition of a bisecting path.  The mean travel distance decreases from 151m in 
the minimally connected case to 116m after the bisecting path is introduced.   
 
Fig. S8 shows the travel cost matrix for the Khayelitsha (Cape Town) neighborhood. In 
both cases, there are blocks of parcels that are physically distant and the travel distance 
cannot be minimized beyond a certain amount. Nearly all of the travel distance gains 
from adding a bisecting path accrue to the parcels that were previously on a cul-de-sac, 
and now are on the bisecting path. 
 
Supplementary Text 
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D. The Topology of Access Systems 
As introduced in the main text, we can systematically account for all urban built space by 
dividing it into two categories: 1) the Access System, including all roads, and paths; and 
2) Places, which include buildings and private and public spaces.  In this section, we 
discuss the topology of the access system. The relationship between these two spaces and 
a proof of their topological equivalence is given in Section SF, while the general 
topology of places within city blocks is characterized in Section SE, with proofs of 
theorems given in Section SG. 
 
The urban access system is the total physical volume of paths and roads in any given city. 
A schematic example is shown in Fig. S1, panel A, and a small part of Las Vegas’ urban 
access system is shown in Fig. S2.   
 
The access system of every city is always a compact, connected, orientable, 2D surface. 
Connected means that any point on this surface can be reached from any other point by 
traveling on the surface.  Orientable means that there is a global unambiguous definition 
of up from down. This means that all real access systems in cities are never like familiar 
non-orientable surfaces, such as a Möbius strip. Compact is a somewhat more abstract 
concept that refers to the topological finiteness of a surface (45). In practice, a surface is 
compact if and only if any triangulation uses a finite number of triangles. This means in 
practice that we can imagine dividing the total access surface of any city into a number of 
adjacent triangles. We can do this using a smaller or larger number of triangles, but in 
any case it is clear that one would need only a finite (if possibly very large) number. 
Finally the 2-dimensional (2D) character of the access system is obvious in that we can 
only move on road and path surfaces: we cannot use the underside of these pathways. 
 
Moreover, the urban access system is a 2D surface with boundaries. Unlike familiar 
compact closed surfaces, such as the surface of a sphere or of a torus, the urban access 
system has both internal and external boundaries: On the outside, there is a boundary that 
traces city limits. On the inside, there is the boundary between accesses and each city 
block, which consists of places.  A schematic representation is shown in Fig. S1. 
 
Given these five characteristics of the urban access system (compact, connected, 
orientable, 2D, boundaries) we can now characterize its topology using well-known 
mathematical results. 
 
The only less familiar aspect of the access surface relative to classical examples in 
topology is the existence of boundaries.  The topology of surfaces with boundaries  
is analyzed with reference to a corresponding surface without boundaries, effectively by 
plugging each hole with a disk. Then, the resulting surface without boundaries can be 
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analyzed using classical results: the two surfaces are related by keeping track of the 
number of boundary components. For a city with b blocks it is easy to count boundary 
components: there are b internal boundaries and one external boundary so that the total 
number of boundary components, B, is B=b+1. 
 
Analogously to the entire city we define a city subsection as a set of contiguous city 
blocks and surrounding access system, including an external boundary that defines the 
physical limits of the subsection. When a subsection includes all blocks it is equivalent to 
the city, and shares its entire access system. 
 
We now formalize our procedure, step by step. Our ultimate goal in this Section is the 
derivation of a topological invariant that characterizes any given city and establishes the 
topological equivalence between the access systems of different cities and/or city 
subsections. 
 
First, we state the following theorem: 
 
Theorem: Topological Classes of Urban Access Systems 
The access system of any city with b blocks is topologically equivalent to a sphere with 
B=b+1 disks removed. 
 
Proof: Follows from theorem 4.17 in Kinsey (46) in the particular case of the surface 
being orientable and 2-dimensional since then the access system surface cannot have any 
“handles” (genus=0). 
 
Corollary:  
For any value of b, two cities with b blocks have access systems that are topologically 
equivalent. 
 
Proof: Follows from the theorem above, since both cities’ access systems are 
topologically equivalent to a sphere with b+1 disks removed. 
 
Corollary: 
Any subsection of one city with b blocks has an access system that is topologically 
equivalent to that of another subsection of another city with b’ blocks if and only if b=b’. 
 
Proof: Define a city subsection as a set of b blocks and an external boundary that defines 
that subsection in such a way that it is isomorphic to a circle. Then, the theorem above 
guarantees that the subsection is topologically equivalent to a sphere with b+1 disks 
removed. The two subsections will only be equivalent to each other if and only if they are 
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both equivalent to a sphere with the same number of disks removed. Hence, they will be 
topologically equivalent if and only if b=b’. See also below. 
 
Corollary: 
The access system of an entire city with b blocks is topologically equivalent to a 
subsection of any other city with the same number of blocks. 
 
Proof: Since the access system of a subsection is the same type of surface as an entire 
city, they are topologically equivalent spaces if they have the same number of blocks. 
 
Finally, we wish to stress the universal character of the topology of any city access 
system by characterizing it in terms of a topological invariant.  Recall that a topological 
invariant is defined as a quantity 𝛼 if, whenever two objects X and Y are topologically 
equivalent, then 𝛼(X) = 𝛼(Y). 
 
We can characterize urban access system surfaces in terms of the familiar Euler 
characteristic, 𝜒. The Euler characteristic, 𝜒, can be applied to objects (complexes) of any 
dimension(45).   
 
For a graph (or 1-complex, consisting only of vertices and edges, where we do not take 
closed cycles as 2D surfaces), 𝜒 is defined as 𝜒 = 𝑣 − 𝑒,  where v is the number of 
vertices, and e the number of edges. For any graph that is a tree, T, a well known result is 
that 𝜒(𝑇) = 1.  
 
For surfaces (2-complexes), including planar graphs with faces, 𝜒 is defined as 
𝜒 = 𝑣 − 𝑒 + 𝑓. It can be show that for any planar graph, Y, 𝜒 𝑌 = 2, another well-
known result that we will return to later(19). 
 
Finally, we would like to compute the Euler characteristic for any urban access system. 
The final ingredient we need to consider is how to compute 𝜒 for a surface with 
boundaries. 
 
To do this, consider a general surface S with B boundaries. Then define an associated 
surface S*, where S* is S with all B boundaries patched by disks, each sewn up along the 
each of the boundaries of S. 
 
We then conclude that the Euler characteristic for the two surfaces are related by  
 

𝜒 𝑆∗ = 𝜒(𝑆)+B. 
 



 21 

This is because, whatever the Euler characteristic for S is, it must be that of S* minus that 
of B disjoint disks (𝜒 Disk = 1). Thus, we can compute the Euler characteristic of any 
surface with boundaries from that of the corresponding S* surface without boundaries 
and then subtract the number of boundaries. 
 
This allows us to conclude that the Euler characteristic of an urban access system with b 
blocks (entire city or subsection) is  
 

𝜒 Access  System  with  𝑏  blocks =   1− 𝑏, 
 
where we used the fact that S* is a sphere and thus 𝜒 𝑆∗ = 2. 
 
To conclude our results we invoke one more theorem [5.17 in Kinsey (46)]: 
 
Theorem: Let S1 and S2 be compact connected surfaces with boundaries. Then S1 is 
topologically equivalent to S2 if and only if they have the same number of boundary 
components, both are orientable (or non-orientable), and they have the same Euler 
characteristic. 
 
Corollary:  
Urban Access Systems are topologically equivalent if and only if they have the same 
number of blocks.  
 
Proof: This follows directly from the fact that two urban access systems with the same 
number of blocks have the same Euler characteristic. (This result is redundant with those 
above, but demonstrates the use of the Euler characteristic more directly.) 
 
These results allow us to conclude very generally that the access system of any 
subsection of any city is equivalent to another as long as they have the same number of 
blocks. Each one can be deformed into the other continuously, so that commensurate sets 
of blocks in Paris, New York City, Las Vegas or Harare, etc, are actually topologically 
equivalent even though they can have radically different geometries.  
 
Finally, we show how the most obvious graph representation of the access system retains 
the topological signature of its surface, which can be read off from its “graph topology”. 
 
Corollary:  
A 1-complex graph representation of an urban access system with b blocks, where edges 
correspond to road and path centerlines and nodes correspond to their intersections, 
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called the urban access network, Y, has the same Euler characteristic as the urban access 
system, 𝜒(𝑌) =   1− 𝑏.   
 
Proof:  We showed above that 𝜒 =   1− 𝑏 for an urban access system with b blocks.  
Now we show that 𝜒 =   1− 𝑏 for the corresponding urban access network, Y.   
 
A 2-complex planar graph always has 𝜒 = 𝑣 − 𝑒 + 𝑓 = 2, while the corresponding 1-
complex graph has 𝜒 = 𝑣 − 𝑒.  A 2-complex graph representation, Y2, of the urban access 
system that is constructed in the same manner as Y, will have the same number of faces as 
the urban access system has boundaries.  There is one face for each block boundary, and 
an exterior face that corresponds to the access systems exterior boundary:  f = b+1.  
 
Then 

𝜒 𝑌! = 𝑣 − 𝑒 + 𝑓 =   2 
→ 𝑣 − 𝑒 = 2− 𝑓 = 2− 𝑏 + 1 = 1− 𝑏 =   𝜒 𝑌 . 

 
Thus, for any city, the Euler characteristic of the network graph, Y, coincides with that of 
the access system surface. For this reason, in other parts of this manuscript, we 
sometimes refer to the topology of the access system surface and the access network 
interchangeably.  

E. The Topology of City Blocks 
We now consider a different, and in some ways more challenging, topological problem: 
the internal organization of city blocks. We will use the general term parcel to denote the 
decomposition of the city block land area into separate units: these are buildings, or more 
generally, separate land holdings. 
 
The problem of analyzing the topology of city blocks is decomposed into two steps. The 
first step deals with the relationship of parcels to the access network and is treated in 
Section F. If a parcel is adjacent to any section of the extant access network then we 
simply call it accessible.  A parcel that is not adjacent to the access network is internal to 
the block: its access in practice is mediated through other parcels. 
 
If all parcels in a block are accessible we call the block universally accessible. As we 
show in Section F the topology of these blocks is equivalent to that of the access network. 
All blocks are universally accessible in developed cities.  For this reason we propose that 
all cities, as they develop, are eventually made up of universally accessible blocks and 
thus that the topology of cities is set by that of their access networks. This has 
consequences for the universal scaling of built space with city size, as discussed in 
Section H. 
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The second step deals with non-universally accessible blocks.  These blocks are 
characteristic of dense informal neighborhoods where there was no overall formal 
planning procedure during construction. This situation is characteristic of many modern 
day slums; sections of ancient cities also often fall in this category, see Figs. S5-9. Many 
developed cities once had neighborhoods with many non-universally accessible blocks, 
see e.g. Fig. S9 for an old section of Toledo, Spain.  
 
We prove in Section SG a set of theorems that characterize the topology of blocks in 
terms of their accessible/non-accessible character. The gist of these theorems is the 
identification of non-universal blocks, via the graph theoretical analysis of the spatial 
relationships between parcels. The first theorem gives a necessary and sufficient 
condition to identify non-universally accessible blocks, even in enormously complicated 
neighborhoods with many layers of internal parcels, see Figs. 2, S8. It also provides the 
underlying mathematics for the algorithmic topological optimization problem described 
in the main text and in Section SB. 
 
The next two theorems establish the minimal number of parcels that need to be crossed to 
render a neighborhood universally accessible. The second theorem again makes use of 
graph theoretic concepts by mapping the number of crossings in practice to the stage of a 
weak dual graph characterizing the neighborhood and thus the number of internal graph 
loops that need to be opened to make the weak dual graph a tree.  
 
Finally, the third theorem establishes the topology (and geometry) of the minimal length 
access networks that render the neighborhood universally accessible. In the same spirit of 
results in efficient transportation networks (see Section I), we prove – in different ways 
from Rodríguez-Iturbe and Rinaldo (11), West et al. (12)  or Banavar et al (47)– that such 
sections of access networks are tree graphs. Thus, minimal-length new path and road 
segments additions lead to cul-de-sacs. These can be seen in our model solutions, Figs. 
S5, S7, S8, and in many examples from real neighborhoods, see e.g. Figs. S4, S9. 
 
These results, together with the topology of access networks, establish not only the 
universal topology of cities but also the mathematics of the spatial transformations 
necessary for poor and unplanned neighborhoods to develop gradually (1, 4, 48) (see 
main text and Sections SB, SC and SJ).  
 
Because of the mathematical nature of these results, algorithms for optimal re-blocking 
and efficient access can then be readily created and applied to real-world situations. 

F. The Topology of Places is Equivalent to the Topology of the Access System  
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We now discuss the topological relationships between places and the access system 
(roads and buildings).  We describe in detail a method for building a continuous 
invertible map from parcels onto their surrounding paths and roads.  We do this by 
building a graph representation of a city’s accesses, a graph representation of the 
relationship between parcels and roads, and a mapping between the two that proves the 
they are homotopically equivalent. Homotopy equivalence is a special case of topological 
equivalence (45).   
 
In Section SD, we analyzed the properties of the 2D access system surface and described 
its topology.  At the end of that Section, we collapsed the 2D access system down to the 
centerlines for the roads and paths that make up the access system, creating a graph 
representation that we call the access network.  The access network, Y, is a graph where 
edges represent roads, paths, or other public rights of way, and nodes represent 
intersections between them. This is a common way to represent transportation “complex 
networks” in cities (49).  In Section SD we showed that the 1-complex access network, Y, 
corresponding to a given city’s access system, has the same Euler characteristic as the 
access surface and is thus topologically equivalent to it.    
 
In this section we show that the space of places and their spatial relationships is 
topologically equivalent to the city’s access system. This is accomplished by showing 
that the space of parcels can be continuously retracted (i.e. “shrunk”) into the access 
space.  We start with a graph definition of the parcel space.  
 
Definition (bridge graph): We define a 1-complex bridge graph, X, representing the 
relationship of parcels to the access network, Y.  Like Y, the bridge graph includes edges 
to represent roads, pathways and other public rights of way, and nodes to represent 
intersections between them.  We define x as any element (edge or node) in X.   In addition 
to containing all elements of Y, X also contains nodes to represent the centroid of each 
parcel in the city.  This creates a set of initially disconnected nodes N, where each node ni 
in N represents a specific parcel in the city.  We then add a single edge, ei, that connects 
node ni to the edge or node of 𝑥   ∈   𝑌 that the parcel most naturally accesses. If ei 

connects ni  to an existing node 𝑛!!  in 𝑥   ∈   𝑌 no further changes are needed.  If ei connects 
ni to an edge eY in 𝑥   ∈   𝑌, then eY is broken into eY1 and eY2 through a process called edge 
refinement and a node 𝑛!! is added to represent the intersection through which this parcel 
enters the access network.  Then eY1 is an edge that connects nodes 𝑛!! and nY.  
 
In this way, X covers the space of Y with edges and nodes representing pathways and 
intersections between those pathways. X also includes nodes that represent intersections 
between public pathways and accesses to individual parcels.  In this way, the nodes ni 
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representing each parcel should be thought of as representing the intersections of public 
and private spaces – for example one’s front door. 
 
With this definition it should be clear that Y is a subspace of X, although some nodes in X 
are contained in the edges of Y and some edges of X overlap only parts of edges of Y, see 
Fig. S3.  
 
To show that X is topologically equivalent to Y, we make use of a specific type of 
equivalence called homotopy equivalence (45).  We note that X and Y are homotopy 
equivalent if there exists a continuous deformation of the topological space X into Y 
(follows Proposition 7.30 in Lee (45)).   
 
We need a definition for the continuous deformation that maps X into Y. This is achieved 
through the elementary concept of strong deformation retraction in algebraic topology, 
defined as follows: 
 
Definition:  A continuous map H(x,t) is a strong deformation retraction of a space X onto 
a subspace Y if, for 𝑥  𝜖  𝑋,𝑦  𝜖  𝑌, and  𝑡 = [0,1], three conditions hold:  

1) 𝐻(𝑥, 0)   =   𝑥,  
2) 𝐻 𝑥, 1   𝜖  𝑌,   and   
3) 𝐻(𝑦, 𝑡)   =   𝑦.  

 
This then, takes us from X at “time” t=0 to Y at “time” t=1; If we start off in Y we stay in 
Y for all time. 
 
With these definitions we can state the central result for this section: 
 
Theorem: The space of Places and the Access Network of any city are homotopy 
equivalent for universally accessible blocks.  
 
Proof:  If there exists a strong deformation retraction from the bridge graph X to the 
access network Y, the two spaces are homotopy equivalent(45).  
 
We now construct a strong deformation retraction from X to Y.  First, we define the map 
𝑟 𝑥 :𝑋   → 𝑋 by: 
 

𝑟 𝑥 =   
𝑥  ;   𝑥 ∈ 𝑌
𝑛!!  ;   𝑥 ∉ 𝑌.
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Noting that {r(x)} is composed of nodes n and edges e and Y is composed of nodes Yn 
and edges Ye, we can define a second map f(x): 𝑋   → 𝑌 
 

𝑓 𝑥 =   
𝑛 ∈ 𝑌!      ;   𝑟 𝑥 ∈ 𝑌!
𝑒 ∈ 𝑌!   ; 𝑟 𝑥 ∈ 𝑌!
𝑛!  ;   𝑟 𝑥 = 𝑛 ∉ 𝑌!  

 

 
Then, the map f is a retraction from the bridge graph X to the access network, Y. The map 
r retracts all nodes representing parcels down to their intersection with the access 
network, and the map f retracts those private/public intersections along to the fully public 
intersections of roads and pathways in the access network, see Fig. S3 for an illustration.  
Fig. S3B clearly shows that r(x) retracts X to Y, but there is not complete node to node 
and edge to edge correspondence.  The additional map f(x) shows that r(x) can be further 
refined to create perfect edge to edge and node to node equivalence between Y and a 
retraction of X.  
 
We now define the map, H(x,t),  
 

𝐻 𝑥, 𝑡 = 1− 𝑡 𝑥 + 𝑡  𝑓 𝑥 , 
 
and show that H(x,t) satisfies all three conditions for a strong deformation retraction:  
 
Condition 1: 
 

𝐻(𝑥, 0)   =    (1− 0) ∗ 𝑥  +   0 ∗ 𝑓(𝑥)   =   𝑥 
 
Condition 2,  𝐻 𝑥, 1   𝜖  𝑌: 
 
Based on the definition of r(x) and f(x), all 𝑥 ∉ 𝑌 are retracted to 𝑛!!. If 𝑛!! ∉ 𝑌!, it is 
retracted to nY in the second step f(r(x)), where 𝑛!  𝜖  𝑌.  Thus 𝑓 𝑥   𝜖  𝑌  ∀  𝑥  𝜖  𝑋,  and so  

𝐻 𝑥, 1 =   𝑓 𝑥   𝜖    𝑌  
 
Condition 3, 𝐻 𝑦, 𝑡 =   𝑦  for  𝑦  𝜖  𝑌: 
 
It is then clear from their definitions that r(y) = y and f(y) = y, and so 𝐻 𝑦, 𝑡 =   𝑦 for 
any t. 
 
Note also that we could have played the transformation in H “backwards in time” as t 
goes from 1 to 0, thus reconstituting X from Y.  In this way, we have built a continuous 
map from the bridge graph X to the access network Y, defining a 1:1 correspondence 
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between any parcel connected to the city’s access network and some part of the access 
network. This shows that the topology of connected parcels in each universally accessible 
city block is homotopically equivalent to its access network.  
 
This then allows us to conclude that the space of places and their interactions and the 
access systems in a city are topologically equivalent to each other and define the overall 
topology of any city.   
 
The access network, Y, is likely to have trees entering blocks (cul-de-sacs) and also trees 
that represent infrastructure connections to more distant cities (interstate highways, 
intercity railroads, etc).  As we have seen in the previous section, these trees do not 
influence the topology of Y, X, or the relationship between X and Y.  The key factor that 
r(x) and f(x) rely upon to distinguish what is retracted or not is whether x or n are element 
of Y, so any trees in Y do not influence our ability to map X onto Y.  
 
Note also that we could have shown even more explicitly that the graphs X and Y are 
themselves strong deformation retracts of the full urban space and the access system 
surface, respectively. The fact that these various surfaces eventually retract to Y shows 
their topological equivalence. 
 
Together with the results of the previous sections we can now say that any two cities, as 
sets of places and access systems, are topologically equivalent if they have the same 
number of blocks.  
 
A caveat applies to blocks where not every parcel is connected to the access system.  If 
there exists a parcel represented by ni that is not directly connected to the access system, 
no edge ei will be created.  It is then clear that r(x) cannot retract ni along ei into the space 
of Y. Thus H(x,t) is not a deformation retraction from X to Y if X contains parcels that are 
not connected to the access system.   
 
We address the case of parcels that are not connected to the access system in the next 
Section.  
 

G. City Block Topological Theorems 
Finally, we complete the analysis of the topology of cities by dealing with city blocks that 
are not universally accessible. We use graph theory to prove a set of theorems that show 
how even blocks with extremely complicated parcel structures can be quantitatively 
analyzed and rendered connected with minimal disturbance. 
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Definition: A block S is called universally accessible if every parcel within S borders a 
road.  Otherwise, S is not universally accessible. 
 
Definition (minimal set of accesses): Interior parcels can be connected to the urban 
access system by converting edges in the S0 graph (see Fig. 1) from parcel boundaries to 
roads.  The minimal set of additional roads necessary to connect a given parcel to the 
road system is the set of edges with the shortest total length such that at least one node 
contained in the set of edges to be converted is part of an existing road, and at least one 
node is part of the face in S0 that surrounds the parcel.  The minimal set of accesses is the 
unique solution of the strict topological optimization problem discussed in Section B. 
 
Theorem One:  
A block S is universally accessible if and only if its stage-two graph, S2, is a tree. 
 
Theorem Two:  
If a parcel is represented with a node in the Sk graph, at least !!!

!
 parcel boundaries must 

be crossed in order to reach it from the nearest section of the access system. 
 
Theorem Three: 
There will be no loops in the minimal set of additional roads necessary to connect all 
interior parcels to a road.  Thus, newly constructed roads in the minimal set of accesses 
form a tree or set of trees (cul-de-sacs). 
 

Proofs: 

We start by laying down some additional definitions and the procedure of (weak dual) 
graph construction. Consider a neighborhood, divided into parcels of land separated into 
connected components of land (blocks) by roads.  Here, we will assume that no single 
parcel of land completely encloses another, no parcel of land touches a road at only 
points, and no two parcels share multiple non-contiguous borders, as shown below:   

 
 

Then, given a block S, we assign a stage zero graph S0 where nodes and edges are created 
to represent the parcel’s geometric boundaries (see also Fig. 1).  This graph is a planar 
graph, meaning that edges only intersect at nodes. We think of the graph S0 as sitting on 
the surface S. For example for a given block,  
S =  
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and  S0 =  

 
 

Definition:  In a graph G, a cycle is a collection of m vertices and m edges arranged so 
that each vertex has exactly two edges incident to it, where m ≥ 3.   
 

For example:  

, etc.  

 

As usual, the degree of a vertex is the number of edges incident to it.   

 

Definition:  A face of a planar graph is a maximal region in the plane that contains no 
edge or vertex of the graph.  
  

Note that every planar graph has one unbounded, exterior face. Here, we will disregard 

the exterior face so that each face in S0 corresponds to a parcel in S.  

 

Now, given a block S and a stage zero graph S0 for S, we can define a stage one graph S1 
in the following way:  
 
Definition (weak dual graphs): For each bounded face of S0, we assign a vertex in S1.  
Two vertices of S1 have an edge between them if and only if the faces of S0 they represent 
share a common border of at least one edge in S0.  Then, S1 is the weak dual graph of S0. 
For a block S, we may then assign a stage k graph Sk defined recursively by repeating the 
process used to construct S1 from S0 on the stage k-1 graph Sk-1.  
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For example, this leads to the sequence of graphs (in black, below): 
 

S =   

S0 =  

S1 =   

S2 =  

etc.  See also Fig. 1 and 2 in the main text. 

 
Definition:  A vertex v of a graph G is called an interior vertex if there exists a cycle 
surrounding v so that deleting this cycle from G results in either: 
 
1) Two connected components, one of which contains vertex v and all of its incident 
edges, 
 
or  
 
2) Just the vertex v and its incident edges, as in: 

 

. 
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Observation: A parcel n in block S does not border a road if and only if n is surrounded 
on all sides by other parcels in S.  This is true if and only if the vertex v of S1 that 
corresponds to parcel n is an interior vertex of S1.    
 

Definition:  A graph G is called a tree if G contains no cycles.  

 

Proof of Theorem:  A block S is universally accessible if and only if its stage two graph 
S2 is a tree or set of trees. 
 
First, we show that if S is universally accessible then S2 is a tree.  We do this by showing 
that if S2 is not a tree then S is not universally accessible.  
 

Suppose that for a given block S, S2 is not a tree.  This means that there exists an interior 
face of S2 whose boundary is a cycle σ consisting of m vertices, x1, x2, ….xm of S2 and m 
edges.  Each vertex xi in σ represents a face fi of S1, where face fi shares a common edge 
with face fi-1 (mod m) and face fi+1 (mod m). Furthermore, each of these shared edges is 
incident to a vertex v of S1 that represents the interior face of S2.   
 
Thus, the cycle σ in S2 corresponds to a subgraph of S1 consisting of the m faces, f1, f2, 
…, fm, arranged in a circle around the vertex v.  
 

Example: 

σ in S2 =   

corresponds to  in S1. 
 

Therefore, vertex v is an interior vertex of S1, so it corresponds to a parcel of the block S 
that does not border a road.  This shows that block S is not universally accessible.  
 

Now, we will prove that if a block S is not universally accessible, its stage two graph, S2, 
is not a tree.  We assume that there exists a parcel n of a block S that does not border a 
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road.  Thus, there is a vertex vn of S1 corresponding to parcel n that is an interior vertex of 
S1.   
 

Consider the subgraph V1 of S1 consisting of a minimal cycle surrounding vertex vn, 
vertex vn itself and all edges incident to vertex vn.    
 

Now, we consider the subgraph V2 of S2 that represents V1. V2 will contain one vertex for 
each face of V1 connected by one edge representing each edge incident to vertex vn.     
 

For example:   

V1 =  

V2 =  

 

We conclude that the subgraph V2 of S2 is a cycle with m vertices, where m is the degree 
of vertex vn in S1.  
 

This says that the stage two graph of S contains a cycle, and is therefore not a tree.  This 
concludes the proof of Theorem 1.  
 
 
 
Note that if a stage k graph Sk is a tree, then the stage (k+1) graph Sk+1 vanishes, as there 
are no interior faces in Sk, so there are no vertices in Sk+1. 
 

Definition (block complexity): From this, we may generalize a complexity on the block S 
as the smallest positive integer k such that Sk is a tree.  Every block will be characterized 
by a positive, discrete value of this complexity.  The complexity of universally accessible 
blocks is 𝑘 ≤ 2. Non-universally accessible blocks will have 𝑘 > 2.  
 

The complexity of a block S or a parcel represented in graph Sk is also useful for 
determining how many parcel boundaries must be crossed to reach an access from an 
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interior parcel. This gives a topological measure of the difficulty of accessing the urban 
spaces from a given parcel and of achieving universal connectivity for a given block. 
 

Theorem Two: If a parcel is represented with a node in the Sk graph, at least !!!
!

 other 
parcel boundaries must be crossed in order to reach an access (road).  
 
Proof of Theorem Two: 

For any parcel n of block S, the minimum number of parcel boundaries that must be 
crossed in order to reach a road is represented by the minimum number of edges 
necessary to form a path from vn, the vertex representing n in the S1 graph, to an exterior 
vertex of S1.    
 

Observe that, in the algorithm for creating the Sk graph of a block S, parcels of S are 
represented by faces of Sk when k is even and nodes of Sk when k is odd. Furthermore, for 
even k, if a face of Sk touches an exterior vertex, that face is represented by an exterior 
vertex in Sk+1. Finally, observe that, for odd k, parcels represented by an exterior vertex of 
Sk are not represented at all in Sk+1.  
 

Therefore, suppose a parcel n requires a path of length l to connect vertex vn to an 
exterior vertex in S1. It is clear that in S3, the path from vn to an exterior vertex will have 
length 𝑙 − 1,  and so on. The vertex vn will thus be an exterior vertex of the graph S1+2l. 
Therefore, we see that, if vertex vn appears in graph Sk, then 𝑘   ≤ 1+ 2𝑙, which says that 
!!!
!
  ≤ 𝑙. This concludes the proof. 

 

Theorem Three: 

There will be no loops in the minimal set of additional roads necessary to connect all 
interior parcels to a road.  Thus, newly constructed roads in the minimal set of accesses 
form a tree or set of trees (cul-de-sacs). 
 
Proof of Theorem Three: 
We may consider the access network of a given block as a subgraph of the stage zero 
graph S0. In order to connect all parcels to a road, we consider parcel boundaries, which 
are represented by interior edges in S0. We may then choose a set of such edges of S0 to 
represent additional segments of road needed to ensure that the block is universally 
accessible. There will be several choices for this set of additional roads; we choose the 
one that has the fewest total geometric length of edges (minimal set of accesses).  
 



 34 

Suppose that there exists a block for which the minimal set of additional roads is not a 
tree or set of trees. Let M denote the subgraph of S0 consisting of edges belonging to the 
minimal set of roads along with the nodes incident to these edges. We are assuming that 
there is at least one cycle in M. Every face of S0 representing an interior parcel must share 
at least one node with M in order for every parcel to be accessible via existing or new 
paths. However, all connected planar graphs have a spanning tree, which is a subgraph 
containing all nodes of the graph but no cycles(19). Then, we let M’ be the subgraph of M 
consisting of spanning trees for each component of M. Thus, every face of S0 representing 
an interior parcel will share a node with M’, making every parcel accessible via existing 
or new roads, but M’ has strictly fewer edges than M, as it is a subgraph containing no 
cycles. This contradicts the choice of M as minimal. Therefore, the set of newly 
constructed roads must form a tree or set of trees.  This concludes the proof. 
 
 
The result of Theorem 3 explains the proliferation of cul-de-sacs under strict topological 
optimization, a curious fact widely observed in the development of street patterns in 
dense old cities (Fig. S9) and in modern informal settlements. However, this pattern – the 
“cul-de-sac effect” - is often actually desirable as it may promote safety and community 
cohesion (50) and is often observed in designed planned suburban communities, e.g. in 
Las Vegas NV (Fig. S2).     
  

H. Consequences of City Topology for Urban Statistical Properties 
Recently, growing availability of data, especially from digital geo-referenced urban maps 
and analysis tools, especially from complex network theory, have lead to a growing 
number of studies to characterize the spatial layout of cities.  Here, we relate our results 
to the main findings in this literature and clarify how the systematic topological analysis 
of urban built spaces developed here is necessary to make sense of both street layout 
statistics and the scaling of urban built spaces with city size.  
 
Street Patterns as Complex Networks 
 
One area of intense activity has been the statistical analysis of street patterns, once these 
are represented as complex networks (graphs).  Much like our construction of the 
network graph, Y, city streets are often abstracted from the actual access surface to form a 
primal graph where nodes represent intersections and edges represent centerlines (8, 51–
53). Alternatively, the access system has also been represented as a dual graph, where 
nodes represent streets and edges represent street intersections (21, 54–56).  This process 
of dual graph construction is analogous to the first stage weak duals we used to prove the 
city block theorems of Section G, but clearly used in a different way and at a different 
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scale (block vs. city).  The authors of reference (53) argue for certain advantages of the 
primal approach, as in Y. 
 
Once these graphs have are constructed based on urban and regional data, many standard 
complex network properties have been measured, including statistical distributions of 
street lengths (55, 57), several measures of centrality (49, 51, 58–60), and the distribution 
of block areas (9, 49, 59), among others.  
 
In most cases, except in intensively planned layouts (7, 9, 58), these statistical 
distributions are very broad (power-laws or lognormals) pointing to the large variability 
of street patterns and block areas and in some cases even to their apparent scale 
independence.  
 
Although combinations of these measures have been used to attempt to classify urban 
shape classes (7, 58, 61),  the large variability makes the geometric classification of cities  
somewhat arbitrary, depending on quantities chosen and cutoffs between categories. This 
has been known more qualitatively through many attempts to distinguish city geometries 
(3, 62, 63) based on street patterns. 
 
Hence, we believe that accepting that urban geometry is variable while the topology of 
cities, as derived here, is universal provides us with the most fertile starting point to 
analyze the geography of built space in cities. In particular, this allows us to emphasize 
the primary character of cities as built spaces that co-evolve with their socioeconomic 
life.  
 
Geometric Optimization: Construction vs. Connectivity costs 
 
Another branch of the literature considers the fundamental tradeoff between connectivity 
and construction costs to create generative algorithms for street networks. We discussed 
this issue in detail in the main text and in Sections B and C, in terms of providing access 
to places.  We have described this tradeoff as the second of two optimization problems, 
occurring after universal connectivity at minimal cost has been achieved.  The literature 
of attempting to use algorithms based on these ideas to generate urban and regional 
layouts goes back at least several decades(64–66) but recently these algorithms have 
become from sophisticated in terms of the optimization strategies invoked. 
 
As we have discussed above, real city street networks lie on a continuum of 
morphologies between the two extremes of tree-like graph structures and fully connected 
(spatial, planar) networks. These two network extremes constitute the minimum and 
maximum number of links between a given number of nodes in a connected graph, 
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respectively.  Along this continuum one can define measures of network efficiency (67), 
“meshed-ness” coefficients (8, 52) and the balance between the information required to 
navigate the space and the distance of travel (49, 68) as possible targets of optimization 
for any street network design. 
 
These measures have been used to consider how streets may be organized in the absence 
of a central planner, to consider possible principles about how city street networks arise 
(69) or how roads should be laid out to facilitate optimal traffic flow (29), often by 
adapting algorithms from efficient transport networks in other complex systems.   
 
The fundamental ingredient missing from current approaches is the fuller consideration 
of places as the end-points of these networks and, consequently, of emphasis on the 
function (rather than form) of urban road and street systems in providing access between 
any two places.  Thus, as they stand, these ideas do not yet generalize to a full theory of 
(built space) in cities. This is because the topological properties of street networks do not 
yet include full consideration of the relationship of streets to the places they are used to 
access or to consistent ways to topologically characterize each city and compare cities or 
parts of cities to each other. All these points have been well know to urbanists (63, 70) 
and we hope that a future convergence of more realistic optimization algorithms with 
topological and functional considerations will improve our current ability to tackle these 
issues in ways that emphasize the fundamental socioeconomic character of cities (70–72). 
 
Scaling relations for urban space and infrastructure 
 
We conclude this section by demonstrating two additional ways in which the topology of 
cities allows for the prediction and interpretation of certain quantitative scaling properties 
of cities. Scaling refers simply to how certain properties of cities co-vary with city size 
(73–76). Here, we concentrate on two spatial properties of built space: the scaling of 
street intersections with street segments and the scaling of urban built area (accesses + 
places) with city size. 
 
It has been observed that the number of street intersections scales linearly with the 
number of street segments in primal graphs such as Y. Curiously, this seems to be a 
property not only of city street networks (8, 77) but also of regional street patterns (9). 
This property derives necessarily from the topology of access systems and of the 
resulting properties of Y2 as a planar graph (see Section D) with cycles for each block: 
 
Because Y2 is a planar graph, 𝜒 𝑌! = 𝑣 − 𝑒 + 𝑓 = 2, where v are vertices 
(intersections), e are edges and f are faces (land blocks).  This means that we can express 
intersections as 
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𝑣 𝑒 = 2+ 𝑒 − 𝑓. 
 
Finally, in a planar graph we can express f as a function of e.  We write f=a.e, necessarily 
with a<2/3 and conclude that  
 

𝑣 𝑒 = 2+ (1− 𝑎)𝑒 
 
with 1-a>0. 
 
The number of vertices per face in street layouts has been observed to vary considerably 
(51, 59)  However, because of the topological properties of the access system, we can say 
that this is always a linear relation with the constant a resulting from different statistical 
mixtures of block configurations. For regular lattices of all kinds a is a constant taking 
well known values (78).  
 
Finally we comment on the scaling relationship between urban infrastructure systems, 
built space and the population size of cities.   
 
Present and past cities around the world are observed to exhibit quantitatively predictive 
scaling properties (74–76, 79, 80). Specifically, urban scaling theory (76) predicts that 
city spatial configurations are the (quantitative) result of balancing out net benefits from 
socioeconomic network interactions and costs of movement of people, goods and 
information. In this view, cities are functionally a kind of social reactor that enables a 
larger scope of human social processes associated with efficiencies, innovation and 
information encoding with their population size (3, 70, 81, 82).  
 
The formalization of these ideas implies that the area of the access system in cities 
(defined functionally as metropolitan areas, not just as city cores) scales as 𝐴! 𝑁 =
𝐴!𝑁!, where 𝛾~5/6 in the simplest cases (76, 79). This also implies that average 
population densities increase with city size with an exponent ~1/6.  
 
But, curiously, this prediction applies empirically to the total built space of all large 
(population > 100,000) cities in the world measured via satellite imagery (83), not just 
their road area.  The topological properties of cities derived here help us see why: all 
cities result from the co-evolution of places and accesses, as stated in the main text and 
proven formally in Section F. Because of the topological equivalence between these two 
spaces they must scale in the same way as cities grow (a sort of “holographic principle” 
for cities) thus explaining the coincidence between the scaling of the infrastructure 
volume of a city, its total built space, and consequently also the volume of its space of 
places. 
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The convergence of all these facts about cities and the generative ability of their formal 
topological characteristics is, in our opinion, an exciting prospect to understand their 
shape while simultaneously emphasizing the open-ended character of their built spaces 
and their functional socioeconomic roles. This is needed to transform simple and static 
optimization processes into dynamic development dynamics for cities, thus hopefully 
breathing new (mathematical) life into the processes of spatial evolution in cities and 
urban systems (3, 63, 70, 81, 82, 84). 
 

I. Efficient Transportation Networks 
 
A large literature has developed over the last few decades on the network morphology 
and functional consequences of efficient transport and communication (10, 12, 29, 47, 64, 
85–87, 87–94). Here we provide some additional context and discussion of the 
relationship of our present results to this body of work.  
 
Historically, geographers have attempted to understand patterns of transportation 
networks in terms of the tradeoff between construction and movement costs (64, 95).   
 
In complex systems optimization principles associated with energetically efficient 
transport (especially of fluids) have provided a framework to model and understand river 
networks (in 2D) (10, 85, 86, 90, 96) and the large-scale structure of the vascular system 
of biological organisms (in 3D), and its connection to organism metabolism (47, 88, 89, 
93) and associated physiological time-scales (97).   
 
These model networks exist at an extreme of the space of possible connected transport 
systems as the consequence of the strict need to minimize energy dissipation in transport. 
Our results provide a different point of view showing that this type of optimization 
effectively requires the reduction of the number of transport sections (edges) for a given 
number of junctions (nodes), see Theorems Two and Three in Section G. As such, 
optimization problems encoding these principles generally result in tree structures as 
these network configurations contain the minimal number of links, given a number of 
nodes.  
 
In other complex systems the situation is the opposite, at least locally. Many real 
networks seem to reflect the essential need for all-to-all (potential) interactions, or the 
requirement of low point-to-point transportation costs (e.g. in terms of distance) vs. 
construction costs, see also Section C. Such networks include urban access systems (76), 
the local structure of brain cortex (91, 92) and certain capillary structures of plants and 
animals (98–100). In these cases the simplest measures of efficiency, in terms of 
construction costs or energy dissipation per unit length of the network must be balanced 
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by the functional needs for widespread and flexible links between any two places. While 
high construction costs vs. connectivity leads to hierarchical networks (trees), emphasis 
on connectivity over construction costs, leads to all-to-all graphs.  Most real networks in 
complex systems must, in fact, strike a balance between these two simple extremes. 
 
In practice, many large systems characterized by all-to-all local connectivity also display 
long-range connections, which promote system-wide integration.  The large-scale 
structure of connectivity is typically sparser, and these links tend to aggregate processes 
(highways, nerves) into “bundles” that minimize both occupied volume and length 
(construction costs) and travel time (transport) (76, 101, 102).  Efficient networks that 
combine these two types of constraints will show only partial hierarchies, and will not be 
tree structures(3). They are likely also to be more plastic and capable of adaptation and 
learning as we know qualitatively in cities and nervous systems. 
 
In cities, such complex network structures still preserve a certain fractal structure that 
reflects the topological block structure discussed presently and are an ingredient to the 
theory of urban scaling (76) that set the spatial properties of all cities (74, 76, 103), 
including in history (79, 80). 
 
The brain and nervous systems are even more complex and less understood, but  
the essential balance between (potential) local all-to-all connectivity and large scale 
connections connectivity seems to be also essential. It has been argued persuasively that 
long-range processes organize themselves as nerve bundles, creating a pattern of large-
scale architecture with some hierarchical features, that nevertheless is decentralized and 
not tree like (3). 
 
The present paper shows how necessary topological properties of access set the basis for 
more flexible and possibly open-ended issues of morphological adaptation. The great 
strength of a topological perspective into the architecture of complex systems is that it 
provides us with large equivalent classes of system form that preserve the same essential 
function. This, we believe, is a fundamental insight that provides freedom for 
evolutionary processes to act in flexible and open ended-ways, despite some fundamental 
physical constrains on the system (104). The fuller study of these issues is an exciting 
prospect but will require substantial future effort across a number of different complex 
systems. 
 

J. Re-blocking as the Major Strategy for Neighborhood Development 
Finally, we want to emphasize the practical importance of the re-blocking processes, 
discussed above and in the main text, for neighborhood development.  
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Urbanization trends throughout the world are transforming the nature of issues of human 
development into primarily urban problems.  In most developing cities, informal 
settlements or slums comprise substantial parts of the population, in many cases its 
majority, especially in South Asia and Sub-Saharan Africa (25, 105). In total, UN-Habitat 
estimates that about a billion people live currently in slums (105).  Slums can be very 
diverse in their physical appearance, layout, type of location, etc, but they do share 
common characteristics of lack of accesses, lack of urban services, and unplanned land 
uses (106), see Figs. 1, 2, S5-S7 for several examples. 
 
The magnitude of the problem worldwide is enormous, but there is also increasing 
awareness of this issue and attempts to create the conditions for neighborhood and 
general urban development (25, 26, 107, 108). The past Millenium Development Goals 
(109) targeted significant improvements to the lives of 100 million slum-dwellers 
worldwide (goal 7, target 11, also known as “Cities without Slums”), and the upcoming 
post-2015 Sustainable Development Goals are expected to contain much more ambitious 
targets (110). In addition, substantial programs for informal settlement upgrading and re-
settlement are in development at the national level (27, 111). 
 
The principal issue to do with neighborhood development is how to affect the greatest 
positive change most effectively. Increasingly, slum upgrading in situ has become a main 
viable strategy, often preferable to evictions and relocations that too often fail to provide 
sustainable solutions (26, 27, 111).  
 
Re-blocking, by providing access to each parcel and building in a neighborhood, is the 
main physical enabler of any slum-upgrading strategy (26, 112). This is mainly because it 
facilitates the introduction of urban services and infrastructure, and a gradual process of 
morphological neighborhood change that eventually may lead to the fusion of small 
parcels and building upgrades or reconstruction.  UN-Habitat currently recommends 
street focused infrastructure upgrading as a major strategy for neighborhood development 
that can significantly improve socio-economic outcomes (26). The costs of providing 
services before and after re-blocking vary tremendously, often by a factor of ten or more, 
making the critical difference between providing a service of not (113). This is because 
urban services (water, sanitation, gas, etc) access places preferably following (and buried 
under) streets and paths.  
 
Re-blocking and concomitant street access to all places in the city block also has a 
number of important spillover effects (26): It allows an incremental approach to 
neighborhood change, encourages participatory planning via enumeration and community 
mapping, it improves the physical integration of slum in the city, it assist in land 
regularization and security of tenure, and leads to higher revenues for the city. Thus (26), 
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“streets become tools for social, economic, juridical and spatial integration of slums with 
the city.” 
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Supplementary Figures 

 
Figure S1. Topological Constructs for the Systematic Analysis of Urban Topology 
 From left to right in the top row these panels show how the built space of an entire city 
can be systematically analyzed in terms of the topology of its access system (orange), its 
access network Y (black), and the relationship from places (parcels) within blocks to their 
accesses represented as a bridge graph X (green). On the bottom row, the very local 
relationships between each parcel and its neighbors, represented by a hierarchy of Sk 
weak dual graphs for each city block (purple and blue).  
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Figure S2. Las Vegas Access System and Access Network 
A shows the access system for a neighborhood in Las Vegas, Nevada. B shows the access 
network, Y, for the same neighborhood. Data is provided by the Clark County Tax 
Assessor’s Office (114). Note the prevalence of designed cul-de-sacs, typical of many 
planned suburban communities (50). 
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Figure S3. Bridge Graph Retraction 
 The two-step retraction from the bridge graph X (green), to the access network Y (black), 
is shown. A shows a subset of the original X and Y graphs that is a single block. Dashed 
lines denote the continuation of X and Y as in Fig. 1, though they are not shown. It is clear 
from B that r(x) is sufficient to map all nodes and edges of X  into the space of Y, 
although there is not a node to node and edge to edge equivalence.  C shows an additional 
map f(x), which relies on the map r(x) to achieve full edge to edge and node to node 
equivalence between f(x) and Y, demonstrating a deformation retraction from X to Y.   
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Figure S4. Prague Cadastral Map and block Parcel Layout. The first Stable Cadastral 
Map of Prague (33), surveyed between 1817 and 1840, and completed in 1842. Open 
spaces and courtyards are included with the parcel they most likely border.  
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Figure S5: Epworth (Harare)(37) Minimal Re-blocking 
AThe example block shown in Figure 1C, surrounded by the original access system (bold 
black) with four interior parcels (red). B One new path (blue) connects a single interior 
parcel to the access system.  C An additional path (blue) connects two of the remaining 
interior parcels to the access system.  D A third path (blue) connects the final interior 
parcel to the access system, making the block universally accessible.  
 

 

A. B.

C. D.

100 m
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Figure S6: Epworth (Harare)(37) Before and After Re-blocking 
A Many blocks in Epworth in their original layout before re-blocking.  B The planned 
outcome of the re-blocking procedure proposed by the resident community. Parcels 
highlighted (red) do not have direct road access. This community-driven re-blocking 
process has created access to the vast majority of internal parcels. 
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Figure S7: Epworth: Geometric Optimization and Travel Cost Matrices 
A The minimal re-blocking strategy for the Epworth block of Figs. 1D, S4-5.  The right 
panel matrices show travel distance (in meters) between any two parcels in the block after 
the introduction of the three cul-de-sacs (blue lines) that render the block universally 
accessible. Though all parcels are now accessible by roads, some remain distant to many 
others (red in the travel cost matrix). Such distances can be reduced through the 
introduction of more roads (see geometric optimization algorithm, Section C), leading to 
a non-minimal re-blocking strategy. B shows the effect of connecting two of the cul-de-
sacs through block bisection. This leads to a substantial reduction of the average distance 
between parcels (35 m) and of the maximal distance between parcels, from 401 m to 205 
m. Unlike the change in block topology that results from providing access to all parcels, 
which is discrete, the process of geometric optimization of travel distances is gradual. 
Thus, this second process of introducing more roads and reducing inter-parcel distances 
has no clear stopping point and could be continued until all boundaries become roads. C 
and D show how inter-parcel distances can be further reduced by additional road 
construction, especially due to extending cul-de-sacs to further bisect the resulting 
blocks. 
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Figure S8. Khayelitsha: Re-blocking and Travel Cost Matrices 
Mathematical methods become essential to upgrade large and dense slums, as in this 
example in Khayelitsha, a neighborhood of Cape Town, South Africa(38). There are 547 
structures identified in this map, of which 396 do not have direct road access, for a 
population estimate of about 2,000 people. As in Fig. S7, A shows the road geometry and 
layout for the minimally re-blocked case and the associated parcel to parcel travel cost 
matrix. B The parcel-to-parcel travel cost matrix when a new road segment is added 
(circled in red). This leads to a significant reduction in average travel cost (27 m) in 
response to the addition of only a few meters of new road construction.  C and D show 
how inter-parcel travel distances can be further reduced by further road construction.   
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Figure S9. Neighborhood Evolution. The historic evolution aof the dense old 
neighborhood (115) of San Antolin y San Marcos, Toledo, Spain. For a discussion in the 
broader context of Mediterranean urbanism, see Hakim (50). Similar spatial features are 
presented in many other studies e.g. in Fig. 33 in Hillier (63) and Fig. 1 in Buhl et. Al 
(52). See also Kostof and Tobias (116) for a general visual history of neighborhood 
spatial forms and urban transformations. 
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