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Abstract

Economists have long associated decision making with optimization. The
decision maker chooseé an action from a known choiece set C. The chosen action
maximizes a known real-valued objective function £(-): C -+ R. Optimization
assumes enough knowledge of C and £(-) to determine an optimal action. Suppose
the decision maker knows C but not £(-). He knows only that £(:) ¢ F, where F
is a specified set of functions mapping C into R. Then the decision maker may
not have enough information to determine an optimal action. This is a problem
of decision under ambiguity.

After introducing basic themes about decision under ambiguity, I examine
the problem of treatment choice., A soecial planner must choose a treatment rule
assigning a treatment to each member of a population. Each person has some
observed covariates and a response function mapping treatments into real-valued
outcomes. The planner wants to choose treatments that maximize the population
mean value of the outcome.

It has been conventional to assume that the planner knows (or at least can
estimate) the population distribution of response functions conditional on
covariates. With this knowledge, the planner faces a problem of decision under
uncertainty and can choose an optimal treatment rule. There are, however,
fundamental and practical limits to the knowledge of response functions that
pPlanners commonly possess. Thus planners choosing treatment rules ordinarily
face problems of decision under ambiguity. This paper gives the key theoretical

findings and considers the implications for treatment choice.



1. Introduction

Economists have long associated decision making with optimization. There
is a universe A of actions. A decizion maker chooses an action from a known
choice set C ¢ A. The chosen action maximizes on € a known real-valued objective
function £(-): A = R.

Optimization assumes knowledge of C and f£(-), or at least enough knowledge
to determine an optimal action. Suppose that the decision maker knows the choice
set but does not know the objective function. He knows only that £(:) ¢ F, where
F is a specified set of functions mapping A into R. Then the decision maker may
not have enough information to determine an optimal action. This is a problem
of decision under ambiguity.!

Economists have long recognized that decision makers may face ambiguity.
See, for example, Knight (1921), Arrow and Hurwicz (1972), Maskin (1979), and
Manski (198l). ©Nevertheless, study of the subject has remained a peripheral
concern of the profession. The prevailing view seems to be that ambiguity is
unusual or, perhaps, inconsequential.

In this paper I use a simple class of decision problems of considerable
practical importance to show that ambiguity is both common and consequential.
This is the problem of treatment choice studied by economists evaluating social
programs, public health researchers comparing alternative medical treatments, and

policy analysts more generally. The standard formalization of the problem

1 The term ambiguity appears to originate with Ellsberg (1961), who used it
to describe decision problems in which the objective function depends on an
unknown probability distribution. The term has since been adopted by Einhorn and
Hogarth (1986), Camerer and Weber (1992), and others. Much earlier, Knight
(1921) used the term uncertainty to describe these problems, but uncertainty has
since come to be used to describe optimization problems in which the objective
function depends on a known probability distribution. Other authors have used
vagueness and ignorance as synonyms for ambiguity.
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supposes that a planner must choose a treatment rule assigning a treatment to
each member of a population. Each person has some ohserved covariates and an
unohserved response function mapping treatments into real-valued outcomes. The
planner wants to choose treatments that maximize the population mean value of the
outcome.

It has been conventional to assume that the planner somehow knows (or at
least can estimate) the population distribution of response functions conditional
on covariates., With this knowledge, the plammer faces a problem of decision
under uncertainty and can choose an optimal treatment rule. My recent program
of research on the identification of treatment effects shows that there are
limits, fundamental and practical, to the knowledge of response functions that
planners commonly possess (Manski, 1990, 1994, 1995, 1996a, 1996b, 1996¢). Thus
planners choosing treatment rules ordinarily face problems of decision under
ambiguity.

Section 2 develops basic themes about decision under ambiguity. Section
3 reviews the standard formulation of the planner's problem as treatment under
uncertainty and then examines the problem of treatment under ambiguity. Section
4 shows that planners commonly face ambiguity of specific forms. Section 5
considers the desirability of the planner foregoing centralized selection of
treatments and instead allowing the members of the population to select their own
treatments. Section 6 gives conclusions.

Before proceeding, it is perhaps necessary to say that I use the term
"knowledge" in the sense of the standard deductive logic of scientific inference.
The decision maker draws logical conclusions by combining empirical evidence with

maintained assumptions. These conclusions constitute knowledge.



2. The Basics of Ambiguity

Knowing that £(-) € F, how should the decision maker choose among the
elements of the choice set C? Clearly he should not choose a dominated action.
Action d ¢ € is said to be dominated (also inadmissible) if there exists another
feasible action, say ¢, such that g(d) < g(c) for all g(-) € F and g(d) < g(c)
for some g(-') € F.

Let D denote the undominated subset of C. How should the decision maker
choose among the elements of D? Let ¢ and d be two undominated actions. Then
either [g(e) = g(d), all g(-) € F] or there exist g’(-) ¢ F and g"(-) ¢ F such
that [g'(c) > g'(d), g"(c) < g"(d)]. 1In the former case, c and d are equally
good choices and the decision maker is indifferent between them. In the latter
case, the decision maker cannot order the two actions. Action c¢ may yield a
better or worse outcome than action d; the decision maker cannot say which. Thus
the normative question "How should the decision maker choose?" has no

unambiguously correct answer,

2.1. Rules Transforming Decisions under Ambiguity into Optimization Problems

Although there is no optimal decision under ambiguity, decision theorists
have not wanted to abandon the idea of optimization. So they have proposed
various ways of transforming the unknown objective function £(-) into a known
function, say h(-): A + R, that can be maximized. Three leading proposals -- the
maximin rule, Bayes rules, and imputation rules -- are discussed below. Although
these proposals differ in their details, they share a key common feature. In

each case, the solvable optimization problem max ; , p h(') differs from the
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problem that the decision maker wants to solve, namely max ; , 5 £(*). The

attained welfare level is flargmax ; ., p h(:)], not max ; ., £().

The Maximin Rule
Wald (1950) proposed that the decision maker should choose an action that

maximizes the minimum welfare obtainable under the functions in F. Formally,

Maximin Rule: For each d ¢ D, let h{d) = inf g(d). Maximize h(-) on D.
g(=) ¢ F

The maximin rule has a clear normative foundation in competitive games.
In a competitive game, the decision maker chooses an action from C. Then a
function from F is chosen by an opponent whose objective is to minimize the
realized outcome. A decision maker who knows that he is a participant in a
competitive game does not face ambiguity. He faces the problem of maximizing the
known function h{:) specified in the maximin rule.

There is no compelling reason why the decision maker should or should not
use the maximin rule when f£(:) is a fixed but unknown objective function. In
this setting, the appeal of the maximin rule is a personal rather than normative
matter. Some decision makers may deem it essential to protect against worst-case
scenariog, while others may not. Wald himself did not contend that the maximin
rule is optimal, only that it is "reasonable." Considering the case in which the
objective is to minimize rather than maximize £(-), he wrote (Wald, 1950, p. 18):
"a minimax solution seems, in general, to be a reasonable solution of the

decision problem."



Bayes Rules
Bayesian decision theorists assert that a decision maker who knows only
that £(+) e F should choose an action that maximizes some average of the elements

of F. Formally,

Bayes Rule: Place a o-algebra £ and some probability measure « on the function

space F. Let h(-) = fg(-)dn. Maximize h(-) on D.

Bayesian decision theorists recommend that m should express the decision maker’s
personal beliefs sbout where f(-) lies within F.

Bayesians offer various procedural rationality arguments for use of a Bayes
rules. These arguments do not, however, answer the question most relevant to a
decision maker: how well does the rule perform? Consider, for example, the
famous axiomatic approach of Savage (1954). Savage shows that a decision maker
whose choices are consistent with a specified szet of axioms can be interpreted
as using a Bayes rule. Many decision theorists consider the Savage axioms, or
other sets of axioms, to be a priori appealing. Acting in a manmer that is
consistent with these axioms does not, however imply that chosen actions yield
good outcomes. Berger (1985) calls attention to this, stating (page 121): "A
Bayesian analysis may be 'rational’ in the weak axiomatic sense, yet be terrible
in a practical sense if an inappropriate prior distribution is used."

Even use of an "appropriate" prior distribution n does not imply that the
decision maker should choose an action that maximizes the #-average of the
functions in F. Suppose that 7 has actually been used to draw £(-) from F; that
is, let m describe an objective random process and not just the decision maker'’s

subjective beliefs. Even here, where use of 7 as the prior distribution clearly
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is appropriate, Bayesian decision theory does not show that maximizing the
n-average of F is superior to other decision rules in terms of the outcome it
yields. A decision maker wanting to obtain good outcomes might alternatively
choose an action that maximizes the w-median of F (see Manski, 1988). or some

other measure of the central tendency of the w-distribution of F.

Imputation Rules

Bayesian decision theory at least faces up to the fact that the decision
maker does mot know the objective function f£(-). A prevalent practice among
applied researchers is to act as if one does know f£(-). One admits to not
knowing f(') but argues that pragmatism requires making some "reasonable,"
"plausible," or "convenient" assumption. Thus one somehow imputes the objective
function and then chooses an action that is optimal under the imputed function.

Formally,

Imputation Rule: Select some h{(-) ¢ F. Maximize h(:) on D.

Imputation rules are essentially degenerate Bayes rules placing probability one

on a single element of F.

2.2, Ambiguity Untransformed

Decision theorists have long sought to transform decisions under ambiguity
into optimization problems. Yet the search for an optimal way to choose among
undominated actions must ultimately fail. Let us face up to this, What then?

Simply put, normative analysis changes its focus from optimal actions to
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undominated actions. In optimization problems, the optimal actions and the
undominated actions coincide, the decision maker being indifferent among all
undominated actions. In decisions under ambiguity, there are no optimal actions
and the decision maker is not indifferent among all undominated actions. There
are some undominated actions that the decision maker camnot order.

This change of focus, albeit simple, has at least one striking implication.
Let ¢ denote the action that the decision maker chooses from his choice get G.
Consider the effect on welfare of adding a new feasible action, say b ¢ A, to the
choice set. 1In an optimization problem, expansion of the choice set from C to
C U b cannot decrease welfare because the decision maker will not choose b if
£(b) < f£(c¢). Under ambiguity, expansion of the choice set may decrease welfare.
Suppose that b neither dominates nor is dominated by the elements of D, so the
new set of undominated actions is D U b. Then the decision maker may choose b
and it may turn out that £(b) < £(c).

The possibility that expansion of the choice set may decrease welfare is
familiar in the multiple-decision-maker settings considered in game theory, where
expansion of choice sets can generate new inferior equilibria. To the best of
my knowledge, this possibility has not previously been recognized in the single-

decision-maker settings considered in decision theory.

3. The Planner's Problem Under Uncertainty and Ambiguity

The study of decision under ambiguity can go only so far at the level of
abstraction of Section 2. To develop further the themes introduced there, I now

turn attention to the planner’s problem of treatment choice.
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3.1. The Choice Set and Objective Function

From here on I assume that each member j of a population J has some
observable covariates x; ¢ X and an individual-specific response function
¥3(-): T = Y mapping the mutually exclusive and exhaustive treatments t ¢ T into
real-valued outcomes y;(t) ¢ Y. 1 formalize the population as a probability
space (J, @, P). Then P[x, y(-)] gives the population distribution of covariates
and response functions,

A plammer must choose a treatment for each member of the population. A
treatment rule is a function 7('): J = T specifying which treatment each person
receives. Person j’s outcome under rule 7(-) is y;[7(j)]. The population mean

outcome under rule 7(-) is

1) Ely;[r(3IY = f yslr(3)]dE.

I assume that the plammer wants to select a treatment rule to maximize
E{y;[7(3)]). A planner could have other objectives, but maximization of mean
outcome has long been the dominant concern of the literature on treatment choice.

Not all treatment rules are feasible to implement. The planner canmot
distinguish among persons with the same observed covariates and so cannot
implement treatment rules that systematically differentiate among such persons.?

Thus the feasible treatment rules have the form

2 The planner can randomly assign different treatments to persons with the
same observed covariates. This possibility can be embraced by including in x a
component whose wvalue is randomly drawn by the planner from a specified
distribution. The planner can make the chosen treatment vary with this covariate
component. See Section 3.4 for further discussion.



(2) 7(3) = =z(xyp,

where z(+): X = T. Let Z denote the space of all functions mapping X into T.

Then the planner wants to solve this optimization problem:?

3) max E{y[z(x)]).

z(~) ¢ Z

Consider, for example, the problem of setting social policy directed at the
population of unemployed persons. Each member of this population might receive
one of three treatments: no public assistance (t = 1); publicly funded retraining
(t = 2); or public assistance in job search (t = 3). The relevant cutcome y;(t)
might be life-cycle earned income net of treatment cost. The planner might
observe each person j‘'s age x;. Then the feasible treatment rules are ones in
which treatment may vary with age but not with other personal characteristics.

The planner might want to choose a feasible rule to maximize mean net income.

3.2. Optimal Treatment Under Uncertainty

The planner is said to face a problem of decision under uncertainty if, in
addition to observing each person's covariates, he knows the population
distribution P[x, y(')] of covariates and response functions. Observing each

person’s covariates implies that the planner knows the cowvariate distribution

3 In practice, institutional or resource constraints may restrict the
feasible treatment rules to a proper subset of Z, I abstract from this
complication here. If problem (3) does not have a solution, the planner may have
to suffice with selection of some "near-optimal" treatment rule., I abstract from
this complication also.
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P(x). BSo the essential new assumption is that the planner somehow knows the
conditional response-function distributions P[y(-)|x], x ¢ X.
Knowledge of P[x, y(-)] makes problem (3) solvable. The optimal treatment
rule is easily found. -For each z(-) € Z, use the law of iterated expectations

to write

(4) E{ylz(x)]} = E{E(y[z(x)]1|x}) = E{ = E[y(t)|x]-1l[z(x) = t]}.

teT

For each x ¢ X, the bracketted expression on the right side is maximized by

choosing z(x) to be a treatment that maximizes E[y(t)lx] on t ¢ T, Hence the

optimal treatment rule is*

(5) z"(x) = argmax E[y(t)|x], x e X
teT

and the optimized population mean cutcome is

(6) V* = E{ max E[y(t)|x])}.
tel

3.3, Treatment Under Ambiguity

The planner may face a problem of decision under ambiguity if he has

incomplete knowledge of P[x, vy(-)]. Suppose the planner knows only that

“ If there are multiple maxima, z*(x) can be any selection from the

maximizing set.
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P[x, y(*)] ¢ &, where & is a specified set of (covariate, response function)
distributions. Now problem (3) may not be solvable. I say "may not" because
determination of an optimal treatment rule does not require complete knowledge
of P[x, y(*)]. It requires only that the planner know, for almost every x ¢ X,
a treatment that maximizes E[y(t)|x].

Under ambiguity, the planner can still partition the feasible treatment
rules into dominated and undominated subclasses. A feasible treatment rule z'(*)

is dominated if there exists another feasible rule, say z"(-), such that

(7) [ylz'(x®)]dé¢ < [y[z"(x)]dg, all ¢ ¢ &,

the inequality being strict for some ¢ € &. Henceforth 2" denotes the
undominated subset of Z,

Observe that the sets @& and Z* are inversely related. As & expands to
include more distributions, fewer treatment rules z'(-) satisfy (7). Thus the
worse the problem of ambiguity, the smaller the set of treatment rules that the

planner can eliminate as dominated.

3.4. Refining the Observed Covariates Under Uncertainty and Ambiguity

In Section 2.2 I called attention to the abstract possibility that
expansion of the choice set may decrease welfare in decisions under ambiguity.
I now show how this may happen in the treatment-choice setting.

The planner’s choice set is the set of all functions mapping covariates
into treatments. Thus the choice set expands if the planner observes some

additional covariates, say w; ¢ W, for each person j. Whereas previously the set
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of feasible treatment rules was the space of all functions mapping X into T, now
the set of feasible rules is the space of all functions mapping (X X W) into T.

Under uncertainty, observation of additional covariates cannot decrease the
optimized mean outcome. With X observed, the optimal treatment rule was (5) and
the optimized mean outcome was (6). With (x, w) observed, the optimal rule is
{argmax ¢ . E[y(t)|x, wl, (2, w) € X x W} and the optimized mean outcome is
E{max .7 E[y(t)|x, w]). The new optimized mean outcome is necessarily at least
as large as the previous one.

Under ambiguity, observation of additional covariates may decrease the mean
outcome realized by the planmer. This is particularly easy to see in some
extreme cases. Suppose that the planner knows nothing about the distribution of
response, Then all feasible rules are undominated. Also suppose that x is null.
Then the only feasible treatment rules when w is unobserved are ones that give
the same treatment to every person, which yield mean outcomes E[y(t}], t € T.

Now consider two polar possibilities for the additional covariates w, In
the case of conditionally homogeneous response, all persons with covariates w
have the same response function, say y,(:). In the case of independent response,

w is statistically independent of y(-).

Conditionally Homogeneous Response

Suppose that all persons with covariates w have the same response function
¥o(*). Observation of w allows the planner to choose a treatment specific to
each response function appearing in the population, but the planner does not know
what these response functions are. If the planner happens to choose the worst
treatment specific to each response function, the realized mean outcome is

Efmin , 7 y»(t)]. If the planner happens to choose the best treatment specific
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to each response function, the realized mean outcome is E[max . , r v,(t)]. By

Jensen’s inequality,

(8a) E[min ¢ .1 ¥w(t)] < min .1 E{y.(t)]

(Sb) E[max t el YW(t)] = max t el EIYw(t)}r

the inequalities being striet unless almost all members of the population have
the same response function. Hence observation of w lowers the worst mean outcome

and raises the best mean outcome realizable if w is not observed.

Independent Response

If w is independent of y('), using w to choose treatments effectively
randomizes treatment selection within the population. Let {(*): W= T be any
treatment rule using w to assign treatments. Statistical independence of w and

y{-) implies that the realized mean outcome is

(3) E{y[C(w)]) = E{( 2 E[y(e)|w]-1[{w) - t]} = = E[y(t)]-P[{(w) = t].
teT teT

Hence the mean outcome using w to assign treatments falls in between the worst

and best mean outcomes realizable if w is unobserved.



14

4. The Structure of Response Ambiguity

In Section 3, we found that the plammer's knowledge of the response-
function distributions P[y(-)lx], x € X determines the form of the decision
problem that he faces. Knowledge of response depends on the available empirical
evidence and on the assumptions that the plamnner maintains. In this section T
show that there are limits to the knowledge that planners may possess. These

limits determine the structure of the ambiguity that planners face.

4.1, The Observability of Response Functions

It is generally thought, by scientists and planners alike, that empirical
evidence is preferable to maintained assumptions as a basis for drawing
conclusions. Unfortunately, empirical analysis of treatment response faces a
fundamental difficulty. Consider any person j € J. By definition, treatments
are mutually exclusive. Hence it is logically impossible to observe the vector
[y;(£), t € T] of outcomes that person j would experience under all treatments.
It is at most possible to observe the outcome that j realizes under the treatment
this person actually receives.’

Even the realized outcome is observable only retrospectively, after a

3 The mutual exclusivity of treatments has been a central theme of empirical
research on the analysis of treatment effects. Mutual exclusivity of treatments
is the reason why the term experiment is generally taken to mean a randomized
experiment in which each person receives one randomly chosen treatment (Fisher,
1935), rather than a controlled experiment in which multiple treatments are
applied to one person. A different perspective is found in the economic theory
literature on revealed preference analysis of consumer and firm behavior, where
it is sometimes assumed that treatments are not mutually exelusive. Varian
(1982, 1984), for example, supposes that an analyst observes multiple realized
(treatment, outcome) pairs for a given individual j and uses these observations
to learn about j's response function y;(-).
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person’s treatment has been chosen. Nothing about response function y;(-) is
observable prospectively, before the treatment decision. Facing this furthex
diffieulty, empirical researchers commonly (albeit often only implicitly) assume
the existence of two populations having the same distribution of covariates and
response functions. One is the population of interest, which I have denoted J.
The other is a treated population, say K, in which treatments have previously
been chosen and outcomes realized. Let s(-): K = T denote the "status quo"
treatment rule applied in the treated population. Then the realized (covariate,
treatment, outcome) triples (x,, s(k), yis(k)]; k € K} are observable in
prineciple. Under the maintained assumption that populations J and K are
distributionally identical, observation of the treated population reveals the
distribution P[x, s, y(s)] of (covariate, treatment, outcome) triples that would
be realized in the population of interest if treatment rule s(-) were to be
applied there. Knowledge of this distribution now becomes the basis for
empitical analysis.

I have just said that the treated population is observable "in principle."
In practice, researchers often observe only a sample of the treated population,
perhaps a random sample, from which P[x, s, y(s)] may be estimated. To keep
attention focused on the fundamental problem of mutual exclusivity of treatments,
I shall abstract from the statistical issues that arise in finite-sample
inference. The reader should keep in mind that a planner who can only estimate

P[x, s, y(s)] faces ambiguity beyond what is examined here.
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4.2. Treatment Choice Using The Empirical Evidence Alone

What is the set of undominated treatment rules given empirical knowledge
of Plx, s, y(s)] but no maintained assumptions about the distribution of
response? I showed in Manski (1990) that this question has a simple but
unpleasant answer. That is, all feasible treatment rules are undominated.

Let Yy and Y, denote the lower and upper endpoints of the logical range of
the response functions. If outcomes are binary, for example, then ¥, = 0 and
Y; = 1. If outcomes can take any non-negative value, then Y, = 0 and ¥; = «,
For each t € T and x ¢ X, a sharp bound on the mean outcome E[y(t)[x] is obtained

by using the law of iterated expectations to write

(10) E[y(t)]x] - E[y(t)|x, s = t]-P(s = tlx) + E[y(t)|x, s # t]-P(s # t]x).

Empirical knowledge of P[x, s, y(s)] implies knowledge of E[y(t)|x, s = t],
P(s = t|x), and P(s # t]x) but reveals nothing about E[y(t)|x, g # t]. We know
only that the last quantity lies in the interval [Y,, Y¥;]. Hence E[y(t)|x] lies

within this sharp bound:

(11) E[y(t)|x, s = t]1-P(s = t|x) + Y4'P(s # t|x) < E[y(t)]x]

< E[y(t)[x, s = €]'P(s = £|x) + ¥1-P(s # t|x).

Now let us compare two treatment rules. Under one rule, all persons with
covariates X receive treatment t’, Under the other rule, all such persons
receive a different treatment, say t". In the absence of any empirical evidence

on treatment response, we would be able to say only that E{y(t")lx] - E[y(t')|x]
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lies in the interval [Y; - ¥y, Y; - Yy]. With the available empirical evidence,
(11) yields the sharp bound on E[y(t")lx] - E[y(t')lx]. The lower (upper) bound
is the lower (upper) bound on E[y(t")|x] minus the upper (lower) bound on

E[y(t')|x]. Thus

(12) E[y(e")|x, s = t"]P(s = t"|x) + Yp-P(s # t"|x)

- E[y(t')]x, s =t']-P(s = t’]x) - Y,-P(s # t'[x)

IA

E[y(t")[x] - Ely(t')]x]

< E[y(t")|x, s = t"]'P(s = t"|x) + Y1'P(s # t"[x)

- E[y(e)]|x, s = t']'P(s = t'[x) - Yy'P(s # t'|x).

This bound is a subset of the interval [Y, - Y;, ¥; - ¥;]. Its width is
(Y, - Y5) - [P(s # t“|x) + P(s # t'|x)], which can be no smaller than (Y, - Y;).
Hence the lower bound in (12) is necessarily non-positive and the upper bound is
necessarily non-negative. Thus the empirical evidence alone does not reveal
which treatment applied to persons with covariates x yields the larger mean
outcome. The same reasoning holds for all pairs of treatments and for all values
of x. Hence all feasible treatment rules are undominated,

It is important teo understand that this harshly negative finding does not
imply that the planner should be paralyzed, unwilling and unable to choose a
treatment rule, What it does imply is that, using empirical evidence alone, the
planner cannot claim optimality for whatever treatment rule he does choose. The
plamner might, for example, apply the maximin rule. This calls for each person

with covariates X to receive the treatment that maximizes the lower bound in
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(11). Thus

(13)  Zpagimin(X) = argmax E[y(t)|x, s = t]-P(s = tlx) + ¥3-P(s # t|x), x € X,
teT

The planner cannot claim that this rule is optimal, but he may find some solace

in the fact that it fully protects against worst-case scenarios.

4.3. Using Assumptions te Identify Mean Outcomes

Although there are fundamental limits to the observability of response
functions, there are no limits other than internal consistency to the assumptions
about treatment response that researchers can impose, The mean outcomes
E[y(t)lx], t € T, x ¢ X can be deduced, and ambiguity thus eliminated, if
empirical knowledge of P[x, s, y(s8)] is combined with sufficiently strong
maintained assumptions. Econometricians and other methodologists have developed
an extensive body of such results. Examination of three leading cases indicates

the range of approaches taken.

Exogenous Treatment Selection
Certainly the most common and longstanding practice is to assume that the
mean of y(t) among those persons who actually receive treatment t equals the mean

of y(t) among all persons with covariates x. That is,

(14) E[y(e)|x] = E[y(t)[x, s = t].

This empirically nontestable assumption is variously called exogenocus or random
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® Empirical knowledge of P[x, s, y(s)] implies

or ignorable treatment selection.
knowledge of the right side of (14). Hence E[y(t)lx] is identified.

The assumption of exogenous treatment selection is well-motivated in
classical randemized experiments (Fisher, 1935). Here the status quo treatment
rule s(-) involves a planner who randomly assigns treatments to the members of
the treated population, all of whom comply with the assigned treatment. In
practice, however, randomized experiments can only occasionally be performed on
human populations. The experiments that are executed usually have only partial
compliance and are carried out on populations that differ systematically from the
population of interest. For these and other reasons, the classical argument for
randomized experiments is rarely available to motivate the assumption of
exogenous treatment selection. See Hausman and Wise (1985), Heckman (1992),
Moffitt (1992), and Manski (1996a).

The assumption of exogenous treatment selection is usually difficult to
motivate in cases where the status quo treatments are self-selected by the

members of the treated population (see Gronau, 1973). In these cases, the

assumption is often no more than a convenient imputation rule (see Section 2.1).

Latent-Variable Models

When the status quo treatments are self-selected, it is easier to argue
that treatment selection is not exogenous than to find a credible alternative
assumption that identifies mean outcomes. Various researchers have proposed
latent-variable models that jointly explain treatment and response. These models

make assumptions about the form of the distribution P[s, y(-)|x] of status quo

 The assumption is not empirically testable because E[y(t)lx, s # t] is not
observable. Hence there is no empirical basis for refutation of the hypothesis
E[y(t)|x, s # €] = E[y(t)|x, s = t], which implies (14).
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treatments and response functions, conditional on the covariates. If the
assumptions are sufficiently strong, combining them with empirical knowledge of
P{x, s, y(s)] identifies the mean outcomes E[y(t)|x]. See Maddala (1983) and
Heckman and Honore (1990).

The use of latent-variable models to identify treatment effects has been
quite controversial. Some researchers regard these models as ill-motivated
imputation rules (e.g., Lalonde, 1986, and Wainer, 1989). Others view them as

serlous maintained assumptions (e.g., Heckman and Hotz, 1989).

Exclusion Restrictions and Constant Treatment Effects

In situations where outcomes are continuous rather than discrete, mean
outcomes can be identified by combining an exclusion restriction with the
assumption of constant treatment effects (see Heckman, 1978). An exclusion
restriction assumes that there is a known set of x-values, say ¥X;, such that the
mean outcomes E[y(t)]x], t € T do not vary on X;. The restriction is nontrivial
if the status-quo treatments s do vary on X,.

The constant-treatment-effect assumption is that the response functions
y3(*), j € J are parallel to one another. That is, there exists a function v(-):

T »+ R and a set of real constants oy, j € J, such that

(15) yy(t) = v(t) + aj.

For example, a longstanding concern of labor economics is to determine the effect
of union membership on wages. There are two treatments, with t = 1 denoting
union membership and t = 0 otherwise. Let y;(1) be the wage that person j would

earn if she were a union member and y;(0) be the wage that j would earn as a
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nonmember, Then constant treatment effects means that the union wage
differential y;(1) - y;(0) is the same for all j ¢ J.

The controversy surrounding latent-variable models reappears in
applications that assume constant treatment effects. Whereas applied researchers
sometimes feel that they can plausibly assert an exclusion restriction, the
assumption of constant treatment effects usually strains credibility (see
Bjdrkland and Moffitt, 1987, and Robinson, 1988). For example, is it plausible
to assume that union membership gives the same wage increment to all workers?
Union contracts are often thought to tie wages and job security more closely to
seniority than to merit. If so, then within a given job category, the less
productive workers should experience a larger union wage differential than do the

more productive ones.

4.4, Middle Ground

The discussion thus far suggests a stark tension. Observation of the
treatments and outcomes realized in the treated population reveals something
about mean outcomes under the feasible treatment rules but not enough to conclude
that any rule is dominated. Empirical knowledge combined with maintained
assumptions can identify mean outcomes and hence transform treatment under
ambiguity into an optimization problem, but the required assumptions are so
strong that they usually are not credible.

The use of ill-motivated assumptions to choose treatment rules can be
pernicious. Policy analysts evaluating social programs must be concerned about
the credibility of their conclusions to a diverse audience who may hold varied

beliefs about treatment response. The stronger are the assumptions imposed in
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an evaluation, the less widely credible are its conclusions, All too often,
peolicy analysis degenerates intoe the advocacy of "forensic" social science, where
analysts sharing the same empirical evidence but imposing different identifying
assumptions argue about what 1s the optimal treatment rule. Empirical resolution
of the question is impossible, so scientific inquiry is replaced by debate
(Manski, 1995, p. 1 - 9).

A more constructive approach is to combine the available empirical
knowledge with middle-ground assumptions that are weak enough to be credible but
strong enough to shrink the set of undominated treatment rules. Findings on the
identifying power of a variety of such assumptions are reported in Manski (1990,
1994, 1995, 1996a, 1996b, 199%6c). Consider, for example, the exclusion
restriction discussed earlier in conjunction with the assumption of constant
treatment effects. Although it is often difficult to justify the assumption of
constant treatment effects, researchers do sometimes think exclusion restrictions
to be well-motivated. Hence it is of interest to determine the identifying power
of an exclusion restriction alone, not combined with other assumptions. This is
easy to do (see Manski, 1990, 1994, and Robins, 1989).

Fix t and let x%; ¢ X;, where X; is the set of x-values on which E[y(t) |x]
is assumed not to vary. For each x ¢ ¥,;, let B,, denote the bound on E[y(t)fx}
given in (11). The exclusion restriction implies that E[y(t) |x0] must lie within

all of the bounds B,;, x € X;. That is,

(16) E[y(t)]xe] € By, all x e X,.

Equation (16) expresses the identifying power of an exclusion restriction.

Although exclusion restrictions typically do not identify mean outcomes, they can
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yield narrow enough bounds for one to conclude that some feasible treatment rules

are dominated.

5. Decentralized Treatment Selection

A longstanding concern of normative economics is to determine the
circumstances in which a plamming objective can be achieved through a
decentralized decision process. A plamner choosing treatments under ambiguity
should ask what mean outcome will be attained if individuals select their own
treatments. Decentralization is clearly appealing if it yields a treatment rule
that dominates those that the plammer can implement. Decentralization has some
appeal if it just yields an undominated treatment rule. After all, the planner
cannot claim to know a better rule.

There are several reasons why the treatments self-selected by the members
of the population may differ from those chosen by the planner. The population
and the planner may have divergent objectives, observe different covariates, have
different knowledge of treatment response, or use different criteria to select
treatments given the information they possess. I want to focus on informational
considerations, leaving aside the possibility of divergent objectives. To this
end, let us assume that each person j wants to maximize her own outcome y;(t)
over t € T. Then the population and planner have congruent objectives. If each
person were to know her own response function, decentralization would maximize
the mean outcome E{y;[7(j)]) over all treatment rules 7(:): J = T,

The question of interest is what happens if individuals do not know their

own response functions. It has become standard for economists to assume that
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individuals observe at least the same covariates as do planners, that they know
the distribution of response conditional on the observed covariates (i.e., they
have rational expectations), and that they maximize expected utility as called
for in Bayesian decision theory. Formally, let person j observe her covariates
(%5, w;), know the conditional response distribution P[y(-)lxj, W3], and choose
a treatment that maximizes E[y(t)|xj, w;] on t € T. Then the mean outcome
achieved by decentralization is E{max, . E[y(t)|x, w]). This value is at least
as large as the maximum mean outcome attainable by a planner observing covariates
%, namely E{max . .,y E[y(t)]x]}.

Unfortunately, the standard informational and behavioral assumptions are
rarely well-motivated. Economists almost reflexively assume, despite the absence
of empirical evidence, that individuals observe at least the same covariates as
do planmers. This assumption seems highly suspect in common treatment gettings.
Consider, for example, the situation of medical patients or economics Ph.D.
students. Do patients know more about their own health status than do examining
physicians? Do students know more about their own research ability than do
faculty advisors? 1In these and other common treatment settings, it seems more
reasonable to think that individuals and planners observe overlapping but non-
nested covariates.

The assumption of rational expectations is equally reflexive and devoid of
empirical basis. Indeed, the mutual execlusivity of treatments poses as
fundamental an inferential problem to individuals as to planners, Thus,
individuals seeking to learn about their own response functions face the same
forms of ambiguity as do planners analyzing population treatment response.
Consider, for example, the situation of a student seeking to learn her own

returns to schooling. The student's inferential problem is akin to that faced
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by labor economists who have struggled for many years to learn about the
population distribution of the returns to schooling, conditional on covariates
(see Manski, 1993).

Finally, there is neither a normative nor empirical basis for thinking that
individuals maximize expected utility. There have been numerous empirical
critiques of the expected utility hypothesis, so I shall focus on the neglected
normative question. Consider the idealized situation in which person j wants to
maximize y;(t) on t ¢ T, observes (x5, w3), and somehow knows P[y(-)|xj, w;l.
Should j choose t to maximize E[y(t)|xj, wyl?

From the perspective of performance in yielding good outcomes, Bayesian
decision theory offers no compelling reason for person j to use the expected
utility criterion (see Section 2.1). Person j is not a planner whose social
welfare objective calls for maximization of the mean outcome of persons sharing
her covariates. Her interest is simply to maximize her own outcome. Knowledge
of P[y(-)[xa-, wy;] does mnot generally suffice for j to determine her best
treatment.’” Given this knowledge, j still faces a problem of decision under
ambiguity, not an optimization problem. Maximization of expected utility may be
a reasonable way for j to choose a treatment, but it is not demonstrably optimal.

Taken together, the various elements of this discussion suggest enormous
difficulty in reaching conclusions about the merits of decentralization relative
to centralized treatment choice. To evaluate centrally chosen treatment rules,
the planner needs to know the distribution of response functions within the
population. To evaluate decentralization, he also needs to know what objectives

individuals have, what covariates they observe, what they know about treatment

7 An exception is the special case in which there exists some treatment, say
t’, such that Pl{y(t') = y(t"), t" ¢ T]xd, wy;] = 1. Then person j knows that
treatment t’' is almost surely optimal.
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response, and how they behave given the information they possess. With these
informational requirements, it seems inevitable that adding decentralization to

the planmer’s choice set means adding to the ambiguity that the planner faces,

6. Conclusion

I see ambiguity as a pervasive problem in treatment choice and in decision
making more generally. ZPlanners seeking to learn the population distribution of
response functions and individuals seeking to learn their own response functions
face much the same forms of ambiguity. The mutual exclusivity of treatments
implies that planners and individuals confront a shared fundamental problem when
they seek to infer response functione from empirical evidence alone (Section
4.1y, All feasible treatment rules are undominated (Section 4.2) and the
assumptions required to identify mean outcomes are so strong that they usually
are not credible (Section 4.3). A constructive way to lessen this tension is to
combine the available empirical knowledge with middle-ground assumptions that are
weak enough to be credible but strong enough to shrink the set of undominated
treatment rules (Section 4.4).

A striking feature of decisions under ambiguity is that expansion of the
choice set may decrease welfare (Section 2.2). In the treatment-choice setting,
the choice set is the space of functions mapping covariates into treatments, so
observation of additional covariates implies expansion of the choice set (Section
3.4). Observation of additional covariates enables the planner to choose a
treatment rule that more finely differentiates among the members of the

population. The problem is that the planner, not knowing the distribution of
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response conditional on covariates, may unwittingly use the additional covariates
to choose a worse treatment rule.

Decision theorists have proposed various ways to transform decisions under
ambiguity into optimization problems (Section 2.1). The solvable optimization
problem, however, necessarily differs from the problem that the decision maker
wants to solve, The maximin rule, Bayes rules, and imputation rules may offer
reasonable ways to choose among undominated actions but there is no optimal
choice among undominated actions.

To conclude, I would repeat the important point made at the end of Section
4.1. Facing up to ambiguity does not imply that planners and other decision
makers should be paralyzed, unwilling and unable to act. Decision makers should
first partition the feasible actions into dominated and undominated subsets.
They should then use some criterion to choose among the undominated actions.
They should not, however, claim optimality for the particular undominated actions

they do choose,
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