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We extend a recent analysis of synchronization for exact finite-state sources to nonexact sources
for which synchronization occurs only asymptotically. Although the asymptotic case requires more
sophistication, the primary results remain the same. We find that an observer’s average uncer-
tainty in the source state vanishes exponentially fast and, as a consequence, an observer’s average
uncertainty in predicting future output converges exponentially fast to the source entropy rate.

PACS numbers:

I. INTRODUCTION

In Ref. [I] we analyzed the synchronization process for
exact e-machines, where the observer may come to know
the internal state of the machine with certainty after only
a finite number of measurements. Here, we examine the
case of nonexact e-machines, where the observer may only
synchronize to the machine’s state asymptotically. Al-
though the analysis differs, the behavior is qualitatively
similar to the exact case in the sense that an observer
(on average) synchronizes to a nonexact machine expo-
nentially fast. That is, there exist constants K > 0
and 0 < a < 1 such that, the average state entropy
U(L) < Kal, for all L € N.

Our development is organized as follows. Section [
briefly reviews the synchronization problem and pro-
vides the essential definitions for our results. Section
[[T] presents an intuitive picture of the synchronization
process, using it to derive a formula for ¢(w), the condi-
tional state distribution induced by a word w. Section[[V]
establishes a formula for the entropy rate of a finite-state
e-machine. Section [V] uses the entropy-rate formula to
prove the existence of averaged asymptotic synchroniza-
tion. Section [VI] builds on this result to prove our main
theorem—the Nonexact Machine Synchronization Theo-
rem. Section[VITapplies this to show that, for any nonex-
act e-machine, the state entropy U(L) vanishes exponen-
tially fast and the length-L entropy-rate approximation
hu(L) converges exponentially fast to the machine’s en-
tropy rate. Finally, Sec. [VIII]summarizes our results and
examines possible extensions.
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II. BACKGROUND

This section lays out the necessary definitions and
background for our results. For a more thorough intro-
duction the reader is referred to Ref. [I], where a similar
but more detailed presentation is given.

A. Machines

Definition 1. Hidden Markov machine: A finite-state
edge-labeled hidden Markov machine (HMM) consists of

1. a finite set of states 8 = {o1,...,0N},
2. a finite alphabet of symbols A, and

3. a set of N by N symbol-labeled transition matri-
ces TW, z € A, where Ti(f) is the probability of
transitioning from state o; to state o; on symbol x.
The corresponding internal state-to-state transition
matriz is denoted T =Y _ , T\,

A hidden Markov machine can be depicted as a di-
rected graph with labeled edges. The nodes are the states

{o1,...,on} and for all z,i,j with Ti(jx) > 0, there is an
edge from state o; to state o; labeled p|x for the symbol =
and transition probability p = Ti(f). We require that the

transition matrices T®) be such that this graph is strongly
connected.

A hidden Markov machine M generates a stationary
process P = (X1)r>0 as follows. Initially, M starts in
some state o;+ chosen according to the stationary distri-
bution 7 over machine states—that distribution satisfy-
ing 7T = m. It then picks an outgoing edge according

to their relative transition probabilities Ti(fﬁ-)7 emits the
symbol x* labeling this edge, and follows the edge to a
new state o;=. The next output symbol and state are
consequently chosen in a similar fashion, and the process
is repeated indefinitely.

We denote by Sp, S1, 8o, ..

of machine states visited and by Xg, X1, X, ..

. the RVs for the sequence
. the RVs
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for the associated sequence of output symbols generated.
The sequence (S1,)r>0 is a Markov chain with transition
kernel T. However, the stochastic process we consider
is not the sequence of states, but rather the associated
sequence of outputs (X)r>0, which is not Markov in
general. We assume that an observer of the process sees
the sequence of outputs, but does not have direct access
to the machine’s “hidden” internal states.

Ezample: Even Process Machine Figure [l| gives an
HMM for the Even Process, a machine that has been
studied extensively [2H4]. Its name derives from the fea-
ture that in its output there are always an even number of
1s between consecutive zeros 0s. The transition matrices

are:
o_(p0
0 =(55)

(1) _ Ol—p
T _(1 ; )

1—p|1

plo

FIG. 1: A hidden Markov machine (the e-machine) for the
Even Process. The transitions denote the probability p of
generating symbol z as p|z.

In what follows, the following notation will be used for
sequences of output RVs:

1LX = XX, ...,
9. XL = XoX;... X1y, and
3. XE =X, Xis1 .. Xeor1 -

Definition 2. A finite-state e-machine is a finite-state
edge-labeled hidden Markov machine with the following
properties:

1. Unifilarity: For each state o, € S and each symbol
x € A there is at most one outgoing edge from state
oy, labeled with symbol x.

2. Probabilistically distinct states: For each pair of
distinct states op,0; € S there exists some finite
word w = xgx1 ...2Xr—1 such that:

Pr(X L = w|Sy = o) # Pr(XL = w|Sy = 0;) .

Ezample (continued) The Even Process machine
given above is also an e-machine. It is clearly unifilar,
and oy can generate the symbol 0 whereas o5 cannot, so
the states are probabilistically distinct.

Remark. e-Machines were originally defined in Ref.
[3] as hidden Markov machines whose states, known as
causal states, were the equivalence classes of infinite pasts
& with the same probability distribution over futures .
This “history machine” definition is, in fact, equivalent
to the “gemerating machine” definition presented above
in the finite-state case. Although, this is not immediately
apparent. Formally, it follows from the synchronization

results established here and in Ref. [1].

We now provide the definitions for two extensions of
an e-machine M that are necessary for our proofs later
on: the edge machine M,q4. and the power machine M™.
First, in what follows:

1. Pr(z|og) = Pr(Xo = z|Sp = ok),
2. Pr(wloy) = Pr(X " = w|Sy = a3),

3. I(z,k, j) denotes the indicator function of the tran-
sition from state oy, to state o; on symbol x, and

4. I(w, k, j) denotes the indicator function of the tran-
sition from state o to state o; on the word w.

That is, I(z,k,j) = 1 if o, > oj and 0 otherwise;
I(w,k,j) =1if o = o; and 0 otherwise.

Definition 3. For an e-machine M, the corresponding
edge machine Mcqqe is the Markov chain whose states
are the outgoing edges of M. That is, the states are the
pairs (x,0r) such that Pr(z|o;) > 0, and the transition
probabilities are defined as

PI"((Z‘,O'].C) - (y,Uj)) = Pr(y|0-j)l(ka7j) :

A sequence of M.44. states visited by the Markov chain
corresponds to a sequence of edges visited by the original
machine M. The process Peqge generated by Meqqe can
be thought of as the bi-process (Xr,Sr)r>0 generated
by the original machine M as it moves from state to
state generating symbols. Note that since M’s graph is
strongly connected, Mcq4e’s graph is as well. Hence, the
edge-label Markov chain is irreducible and has a unique
stationary distribution megge. See Fig. top).

Definition 4. Let M be an e-machine, and let n be rel-
atiwely prime to the period p of M’s graph. The power
machine M™ is defined to be the e-machine with the states
of M, output symbols which are length-n words generated
by M, and transition probabilities given by:

Pr(oy = 0;) = Pr(wlog)I(w, k, j) .

The power machine M™ generates the same process as
the original machine M, but over length-n blocks.

Note that since M is by definition unifilar with proba-
bilistically distinct states, M™ is also necessarily unifilar
with probabilistically distinct states. Furthermore, it can
be shown that for n relatively prime to p = per(M) the
graph of M™ is strongly connected. Therefore, for n rel-
atively prime to p, M™ is indeed an e-machine for the
process P™. See Fig. bottom).
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FIG. 2: Examples of M.44 (top) and M? (bottom) for the
Even Process e-machine M.

Definition 5. For an e-machine M the minimum dis-
tinguishing length L* is the shortest length L such that
the probability distributions over futures XZL of length L
are distinct for each pair of distinct states o, and o;:

* = min{L : Pr(7L|SO =oy) # Pr(7L|So =0j),
forallk # 4} .

If a machine M has a minimum distinguishing length L*,
we also say that M has length-L* future distinguishable
states.

Note that L* must be finite for any e-machine, since
e-machines have probabilistically distinct states, and
that, for n > L* and relatively prime to p = per(M), M"
is an e-machine with a minimum distinguishing length
L*=1.

B. Synchronization

Although we assume that our observer is not able to
directly see the e-machine’s internal state (Sr), it is able
to see the output symbols generated by the machine (the
Xp’s). Thus, the observer may attempt to infer the in-
ternal machine state through observations of the output
data. We are interested in studying the procedure by
which the observer synchronizes to the machine’s inter-
nal state through these observations. Due to unifilarity,
we know that if an observer is able to completely synchro-
nize to the machine’s internal state at some time 7" > 0,
it remains synchronized for all future times 7" > T'. For
simplicity and to guarantee that the process generated
by the machine is stationary, we assume that its initial
state is chosen according to the stationary distribution m
and that the observer has knowledge of this fact.

For a word w of length L generated by the machine
let ¢(w) = Pr(S|w) be the observer’s belief distribution
as to the current state of the machine after observing w,
ie.

$(w)y, = Pr(Sp, = o3| XE = w)
=Pr(Sy = ak|}L =w,8 ~7) .

And, define the observer’s uncertainty in the machine
state after observing word w:

u(w) = Hlp(w)]
— H[SY X =) .

Let £(M) denote the set of all finite words that M
can generate, L1, (M) the set of all length-L words it can
generate, and Lo (M) the set of all infinite sequences

= xopx1... that it can generate.

Definition 6. A word w € L(M) is a synchronizing
word (or sync word) for M if u(w) = 0; that is, if the
observer knows the current state of the machine with cer-
tainty after observing w.

We recognize two kinds of sync word sets:

1. Sync M:
SYN(M) = {7 € Loo(M) : u(ZL) = 0 for some L};

2. Weak Sync M:
WSYN(M) = {7 € Loo(M) : u(Z') = 0as L — oo} .

Definition 7. A machine M is exactly synchronizable
(or simply exact) if Pr(SYN(M)) = 1; that is, if the
observer synchronizes to almost every (a.e.) sequence
generated by the machine in finite time.

Definition 8. A machine M is asymptotically synchro-
nizable if Pr(WSYN(M)) = 1; that is, if the observer’s
uncertainty in machine state vanishes asymptotically for
a.e. sequence generated by the machine.

Ezamples:

e The Even Process machine is an exact machine.
Any word containing a 0 is a sync word for this
machine, and almost every E generated by this
machine contains at least one 0.

e The ABC machine (Fig. |3) is not exactly synchro-
nizable, but it is asymptotically synchronizable.

p|17 1 _p|0

Q|17 1-— q|0

FIG. 3: The Alternating Biased Coin (ABC) machine: The
process it generates can be thought of as alternately flipping
two coins of different biases, p # q.

Remark. Any machine with a single state is necessarily
exact since the observer is synchronized before observing
any output. But the synchronization question in this case
is moot. Therefore, when discussing exact or monexact
machines, we assume that N > 2.



Remark. If w € L(M) is a sync word, then by unifilar-
ity so is wu, for all u with wu € L(M). Once an observer
synchronizes exactly, it remains synchronized exactly for
all future times. It follows that any exactly synchroniz-
able machine s also asymptotically synchronizable.

Remark. Ifw € L(M) is a sync word then so is uvw, for
all w with vw € L(M). Since any finite word w € L(M)
will be contained in almost every infinite sequence T the
machine generates, it follows that a machine is exactly
synchronizable if (and only if) it has some sync word w
of finite length.

Remark. Sec. [VII establishes that all e-machines are
asymptotically synchronizable. Hence, there are two dis-
joint classes to consider: exactly synchronizable ma-
chines and asymptotically synchronizable machines that
are nonexact. The exact case was analyzed in Ref. [1];
the nonezxact case is analyzed below.

One final important quantity to monitor during syn-
chronization is the observer’s average uncertainty in the
machine state after seeing a length-L block of output.

Definition 9. The observer’s average state uncertainty
at time L is:

U(L) = H[S|X ]
= 3 P@NHIS XY = 7).
(71}
C. Prediction

A process’s intrinsic randomness is measured by its
entropy rate and that, in turn, determines how well an
observer can predict its behavior.

Definition 10. The block entropy H (L) for a stationary
process P is:
H(L) = H[X"]

- Z Pr(7*)log, Pr(7y) .
(T4}

Definition 11. The entropy rate h, is the asymptotic
average entropy per symbol:

H(L)

hy, = lim

L—oo
:LILH;OH[XL‘}L] .
Definition 12. [ts length-L approximation is:
hu(L)=H(L)—-H(L-1)
— H[X; | XY

That is, h,(L) is the observer’s average uncertainty in
the next symbol to be generated after observing the first
L — 1 symbols.

For any stationary process, h,(L) monotonically de-
creases to the limit h, [6]. However, the form of con-
vergence depends on the process. The lower the value
of h, a process has, the better an observer’s predictions
of the process will be asymptotically. The faster h, (L)
converges to h,, the faster an observer’s predictions will
reach this optimal asymptotic level. Since we are often
interested in making predictions after observing only a
finite amount of data, the source’s true entropy rate h,,
as well as the rate of convergence of h,(L) to h,, are
both important properties.

Now, for an e-machine, an observer’s prediction of the
next output symbol is a direct function of the proba-
bility distribution over machine states induced by the
previously observed symbols. That is,

Pr(X; = 2| X" = @)
= ZPr(,ﬂak) Pr(Sy = 0k|YL =7h).
k

Hence, the better an observer knows the machine state at
the current time, the better it can predict the next sym-
bol the machine generates. And, on average, the closer
U(L) is to 0, the closer h, (L) is to h,,. Therefore, the rate
of convergence of h,(L) to h, for an e-machine is closely
related to the average rate of synchronization. This is
one of the primary motivations for studying the synchro-
nization problem.

IIT. AN INTUITIVE PICTURE

In this section we present an intuitive picture of the
synchronization process and use it to derive a formula for
the conditional state distribution ¢(w). The basic idea
is illustrated schematically in Fig. [4] for a hypothetical
5-state machine.

(@)
©)
(o)
(9

©© @ © ¢

5 4 4 3 1
Number of Possible States At Time L

FIG. 4: Synchronization illustrated for a 5-state machine.

Initially, the observer does not know the machine state
8o, so all five states {01, 02, 03, 04,05} are possible. After



seeing the first symbol g, there are only four possibil-
ities for S;—{ o1, 09, 03,05 }—since only four of the five
states may generate this symbol. After seeing the sec-
ond symbol x1, a different set of four states is possible—
{01,09,03,04}. After seeing the third symbol zo, there
are only three possibilities {01, 02,03} for Sa, since two
of the state paths merge on seeing the third symbol. Fi-
nally, after seeing the fourth symbol z3, two more state
paths merge and another dies, so there is only one pos-
sibility {o3} for S4. The observer has synchronized.

The transition function §(og,x) is defined by the re-
lation o = 6(ok, ) and the word transition function
§(og,w) by the relation op = d(op,w). In general,
for each possible initial state o, and each 7L there
is a state path p* following o) under 2’ .. That is,
p* = pg,pY,. .., pf, where pf = on, pf = 0(pf, z0),
pk = 6(p¥, 1), and so on. An observer synchronizes ex-
actly once all, but one, of these paths have either merged
or died.

If a machine is not exactly synchronizable, then it is
impossible for all paths to merge or die and, at any finite
time L, there are at least two possible nonmerged paths
remaining. However, it is still possible for an observer
to synchronize to such a machine asymptotically. To un-
derstand how this happens we need to know the relative
probabilities of being in each of the possible remaining
states at a given time. In general, the probability of
starting in state o and generating the word 7L s

Pr(p*) = Pr(Sy = oy, XL = zh)
= - Pr(Zt|oy) .

These probabilities will be exactly 0 if and only if the
path p* dies by the L, symbol. Typically, however, all
these probabilities decay—in fact, decay exponentially
fast—as L — oo. For nonexact synchronization, we are
concerned not with absolute path probabilities, but with
their relative or normalized probabilities. The probabil-
ity of ending up in state o; at time L is simply the sum
of the normalized probabilities of all paths ending up in
state 0. That is, for any word w = 7L we have:

d(w); =Pr(Sy, = Uﬂ?L = w)
_ Pr(Sp = (Tj,YL =w)
Pr(?L =w)
_ 2k Tk Pr(wloy) - I(w, k, j)
> i - Pr(w|oy)
P - T(w, k)
> Pr(p?)

(1)

For nonexact asymptotic synchronization, then, the
important quantities to consider are the relative proba-
bilities of all paths that never merge or die. For a nonex-
act machine to be asymptotically synchronizable we must

have the ratio of the probabilities of any two such paths:

Pr(pk(?L)) — 0 or oo
Pr(pi (7)) ’

as L — oo for a.e. @ € Loo(M). Since m;/m; is bounded
for all states o; and o, the initial state is unimportant
for asymptotic synchronization. The question is whether,
on average, the transition probabilities for one path are
greater than those of the other. If, on average, the tran-
sition probabilities for path p* are ¢ (> 1) times as likely
as the transition probabilities for path p’ then, for large
L, Pr(p*)/ Pr(p?) ~ cl. Intuitively, this is why synchro-
nization occurs exponentially fast. Establishing this, as
we will see, requires some care, however.

IV. THE ENTROPY RATE FORMULA

In this section we derive a formula for the entropy rate
of a finite-state e-machine. Although an analogous ex-
pression has been previously established in similar con-
texts (see, e.g., Ref. [7]), we provide a derivation as well
for completeness. The proof presented here is also some-
what simpler than the original in Ref. [7]. A proof quite
similar to ours for unifilar Moore hidden Markov models
(as opposed to the edge-labeled or Mealy models we use)
is given in Ref. [§].

Proposition 1. For any e-machine M,
hy = H[Xo|So]
= Zﬂ'khk , (2)
k

where hy, = H[Xo|So = o).

Proof. We establish the bounds from above and below
separately.
Upper bound: h,, < H[X(|So]. We calculate directly:

_ . H[XY
h, = lim 7

L—oo L

o H(So) + Y150 HIXi|S]]

L—o0 L

 H[So] + H[XolSo] - L
L—oco L

= H[Xo|So]

L HIS) + SR HIXSy K]

where step (a) follows from the chain rule, step (b) from
unifilarity, and step (c) from stationarity.



Lower bound: h, > H[X|Sy]. We have:
HX]

where again step (a) follows from the chain rule, step (b)
from unifilarity, and step (c) from stationarity. O

V. AVERAGED ASYMPTOTIC
SYNCHRONIZATION
The entropy rate formula says that (on average) an
observer predicts asymptotically just as well as if they
knew the machine state exactly:

h, = lim H[X.|XY]
L—oo
= HI[X|So] -
Intuitively, this suggests that an observer’s average un-

certainty U(L) in the machine state must vanish asymp-
totically. That is, we should have:

lim U(L) =

L—o0
These ideas are made rigorous below via a convexity ar-
gument.
The following notation will be used:
o Let pr, = Pr(Xo|Sp = o) and p, = Pr(Xo|So
o(w)).
e Let hy, = H]py] (as above), hy, = H[py), and hy,
> (W)l
o Let Acr = {w € LL(M) : u(w) < e} and Af |
Lr,(M)/Ae 1, the complement of A 1.

We note that for any word w:

Pw = Zpk¢(w)k ; (3)
K

Z

and, hence, by the concavity of the entropy function H|[-]:

hw = H[py)
=H [Zpkqb(w)k]
> Z¢
= ZI; (w)rh

= hy . (4)

) H [p]

Also, for any length L:

H[X.| X"
= > Pr(wh,, (5)

weLy (M)

hu(L+1)

and

(]

S Prw) Y dlw)ih

weLlr (M) k
= Z Pr(w)hy . (6)
weLy (M)

Proposition 2. For any finite-state e-machine M :

lim U(L) =0 . (7)

L—oo

Proof. We first prove this statement under the assump-
tion that M has a minimum distinguishing length L* = 1.
We then use this result to prove the general case.

Proof of Case (i): M has minimum distinguishing
length L* = 1.

The proof is by contradiction. If U( ) # 0 then there
must be some ¢ > 0 for which Pr(A¢;) 4 0. Hence,
there exists some § > 0 and a subsequence (L;)52, of the
Ls such that Pr(A¢ ;) > 4, for all 4.

Let A be the unit simplex in RV:

A:{QSERN:ZqSk:landsz, forallk} ,

k

and let:
Ac={peA:H[}] >¢€} .

Define f: A. — R by:

—H [Z askpk] — > oxHlpi] -

Thus, for any word w, f(¢(w)) = hy — huw.

Then, with respect to || - ||1, f(¢) is a continuous func-
tion on A, and A, is a compact set. Therefore, we know
f obtains its minimum f* at some point ¢* € A..

Since M has a minimum distinguishing length L* =1
and the entropy function H|[] is strictly concave, we know
f(#) > 0 for all ¢ € A.. In particular, f(¢*) = f* > 0.



Hence, for each ¢ we have:
hu@z‘ + 1) - hu

@ Z Pr(w)h, — Z

weLry, (M) weLlry, (M)

= Z Pr(w) - (hy — huw)

Pr(w)h,

weLlry, (M)
(®) -
> Z Pr(w) - (hw — huw)
weAngi
> PT(AE,Li) - fr
>af" . (8)

Step (a) follows from Egs. and @ and step
(b) follows from Eq. . Equation implies that
h, (L) # hy, which is a contradiction. Hence, we know
limy, oo U(L) = 0.

Proof of Case (ii): M with minimum distinguishing
length L* > 1.

Let n* be the minimum distinguishing length for M.
Take n > n* and relatively prime to the period p of
M’s graph, so that M™ is an e-machine with a minimum
distinguishing length of 1. Let Y}, be the RV for the Ly,
output symbol generated by the machine M", let Ry be
the RV for M™s Ly, state, and let V(L) = H[R,|Y Y].
Note that for any L:

V(L) =U(nL). 9)

Now, for a contradiction assume limy_, . U(L) # 0.
Then, since U(L) is monotonically decreasing, we know
that there exists some ¢ > 0 such that U(L) > e, for
all L. Thus, by Eq. (9), we know that V(L) > e for
all L as well, so V(L) /4 0. However, since M™ has a
minimum distinguishing length of 1 by case (i) above, we
know that limy,_, o, V(L) must vanish. This contradiction
implies that limyz,_, . U(L) = 0. O

VI. THE NONEXACT MACHINE
SYNCHRONIZATION THEOREM

In this section we prove our primary result, the Nonex-
act Machine Synchronization Theorem. This extends the
weak asymptotic synchronization result of Sec. [V]to show
that synchronization occurs exponentially fast for nonex-
act machines. The statement is quite analogous to the
Exact Machine Synchronization Theorem given in Ref.
[1]. Essentially, it says that, except on a set of words 7L
of exponentially small probability, an observer’s uncer-
tainty after observing §L is exponentially small.

The following notation will be used. ®; = qﬁ(?L)
is the random variable for the belief distribution over
states induced by the first length-L word the machine
generates, and Sy, is the most likely state in ®, (if a tie
the lowest numbered state is taken). Py, = Pr(Sy) is the
probability of the most likely state in the distribution @y,
and Qr, = Pr(NOT Sp) is the combined probability of all

other states in the distribution ®. For example, if &, =
(0.2,0.7,0.1), then Sy, = 09, PL = 0.7, and Qp = 0.3.
Realizations are denoted ¢y, Sg, pr, and gy, respectively.
We also define Uy, = H[®1] and ur = H[¢L].

Theorem 1. (Nonezact Machine Synchronization The-
orem) For any nonexact e-machine M,

1. There exist constants K1 >0 and 0 < a1 < 1 such
that:

Pr(Qp > of) < Kiaf | for all L € N.

2. There exist constants Ko >0 and 0 < ag < 1 such
that:

Pr(Up > o) < Kook | for all L € N.

The proof strategy is as follows. We first take a power
machine M™ of the machine M with U(n) = ¢ <« 1,
and prove the theorem for the power machine. We then
use the exponential convergence of the power machine to
establish the theorem in general with a subsequence-type
argument.

The following lemma on large deviations of Markov
chains will be critical.

Lemma 1. Let Zy,Zi,... be a finite-state, irreducible
Markov chain, with state set R = {ry,...,rn} and equi-
librium distribution p = (p1,...,pn). Let F : R — R,
YL = F(ZL), and ?L = %(YO + ...+ YL—I)- Deﬁne
pr =Ey (F) =Y, ppF (). Then, for any € > 0, there
exist constants K > 0 and 0 < a < 1 such that, for any
state ry:

Pr(\?L—,uF\ > €|Sy :rk) < Ko*, forall L eN .

Proof. A similar statement (with more explicit values of
the constants) is given in Ref. [J] for a general class of
Markov chains, which includes all finite-state, irreducible,
aperiodic chains. The result stated here follows directly
for finite-state, irreducible, aperiodic chains, and can be
extended to the periodic case by considering length p-
blocks, where p is the chain’s period. O

Remark. Note that since the deviation bound holds con-
ditionally on any initial state 7y, it also holds condition-
ally on any distribution over the initial state by linearity.
In particular, we apply this lemma assuming Zg ~ p.

Let us denote:

Pr(x,ak) = PI"(SQ = O'k,X() = .13) 5
Pr(x|ak) = PI‘(XQ = a:|80 = O‘k) N
Pr(ok|z) = Pr(So = ok|Xo =) , and

Omax,e = argmax Pr(og|z) ,

where again the lowest numbered state is chosen in the
case of a tie for omax,e. Also, for any x and o; with



Pr(z|oj) > 0, let us define:

Sy ={or € S : Pr(z|ox) >0,6(ox,x) # 6(0j,2)} ,

g(xz,0;) = max Pr(z|oy), and
oKESL . ;

f(z,0;) = max Pr(og|z) .
Ok x,j

Note that g(z,0;) and f(z,0;) are both always strictly
positive for nonexact e-machines. And, also, that for any
joint length-L realization (TL, ?L):

L1
PI Pr(so) Pr(z;|s;)
vL 1
. Pr(NOT s¢) g 9(@i,s) (o)

by Eq. (1). Here, Pr(sg) = my is the stationary proba-
bility of the state so = oy, and Pr(NOT sp) = 1 —Pr(sp).

Using Lemma [T we now prove our desired theorem un-
der the (relatively strong) assumption that:

o o (TS oy

This assumption will later be satisfied for some power
machine M™".

Lemma 2. Let M be a nonexact e-machine satisfying

Eq. . Then :

1. There exist constants K1 > 0 and 0 < a1 < 1 such
that:

Pr(Qr > oF) < Kial | forall L € N.

2. There exist constants Ko > 0 and 0 < ag < 1 such
that:

Pr(Uy > a¥) < Kyak | for all L € N.

Proof. We first prove Claim 1 and then use this to show
Claim 2.

Proof of Claim 1: Consider the edge-labeled Markov
machine M.44. that generates the process Pegge. Let
Z1, = (X1, S1) denote the RV for the Ly, Megge (symbol,
state) pair and let:

Yy, = F(Z1)

— 1o PI“(XL|SL)
= logs (g(XLv‘SL) ) '

We assume, of course, that (Xo,Sp) ~ Teqge OI, equiva-
lently, Sg ~ 7.

By hypothesis, pup = Er . (F) = C > 0. Take ¢ =
C/2. By Lemma [l there exist constants By > 0 and
0 < m; < 1 such that:

Pr(|Y, — pr| >€) < BinF | forall LeN .

Thus, for any L:

(Z log, (PrX)i 5))> < §L> =Pr(Y < C/2)

= PI‘(?L < pUp — 6)
<Pr([Yr - pr| > €)
< Binf .

Now, let ZF = (ZL, 3L

g, (2o O

e g(xi, ;)

) be any typical sequence, i.e.:

So, taking logarithms of Eq. we find:

log, (Zi) > logy <1w?é%> +jzllog2 <m>

> B+ QL )
2
where 3 = miny, log, (%) Or, equivalently:
PL > 98950 — Byt
qL

where By = 2° > 0 and 1, = 29/2 > 1. Thus:

qr
qr, < = < Bsn¥,
pL

where By = 1/Bs > 0 and 3 = 1/n2 < 1. Since this
holds for any typical sequence ( 7L gL ) we have, for
each L:

Pr(Qr > Bsni) < Binf.

And, therefore, for any 1 > a; > max{n1, ns} there exists
a K7 = Ki(«1) sufficiently large that:

Pr(Qr > af) < KiaF | forall LeN.

Proof of Claim 2: By Claim 1 we know there exist
constants K7 > 0 and 0 < ay < 1 such that:

Pr(Qr > af) < Kiaf | forall LEN.
Let us define:

Vii={Ztqp>al}and vV, = {71 qp <ok}

Take L; sufficiently large that 1 — ol > 1/2, for all
L > L,. Note that the first-order Taylor expansion
about z = 1 of log,(1 — af) ~ —log,(e)aF + O(a3l) ~
—1.58aF + O(a?F). Thus, there exists some Ly € N
such that |logy(1 — of)| < 2a¥ for all L > L,. Take
LO = max{Ll, LQ}



Then, for any L > Ly and any 7L e V., we have:

HIS| 7"

(a) aL aL
<H|[1-aF L. L
)

L
= — |(1 - aF)logy(1 — af) + ot 1 -
{( ay)logy (1 —ay) +oq 0g2<N—1

= —(1—af)logy(1 - ay)
— at'Llog,(a1) + af logy(N — 1)
(b)
< (1 —ab)2at —alLlog, (o) + aflog, (N — 1)
S LOlOzf
< Cha® | (12)

where C7 = 2 — logy(aq) + logy (N — 1) > 0, step (a)
follows from the fact that 1 — ol > 1/2 for L > L,
and step (b) follows from the Taylor expansion bound
on |logy(1 — af)| for L > Ly. In the last line, a may
be chosen as any real number in the interval (aq,1) and
Cy = Cy(«) is chosen sufficiently large to ensure the last
inequality holds for all L > Ly.
Equation implies that, for all L > Lyg:

Pr(Uy < Caal) > Pr(Vy)
Z 1-— Klaf .

So, we know:
Pr(Ug > Coal) < KjaF < Kia¥ | forall L > Ly .

Therefore, for any as € (a,1) and L sufficiently large:
Pr(Up > a%) < KlazL .

And, hence, there exists some Ko > K7 such that:
Pr(Uy > af) < Kyak | forall LEN .

O

To establish the theorem in general now, we show that

for any machine M there exists a power machine M"

satisfying Eq. . To do so requires several additional
lemmas.

Lemma 3. Let M be a nonexact e-machine. Then, for
all x and o; with Pr(z|o;) > 0:

Pr(z) )2

g(l‘,O'j) Sf(xvo—j)m )

where A = max; ; m;/m; and Pr(o;) and Pr(z) are the re-
spective stationary probabilities of the state o; and symbol
z: Pr(o;) = m; and Pr(z) = Pr(Xo = z|Syp ~ 7).

Proof. Fix « and o;. Take o, € S5, ; such that:
Pr(ok,|z)/ Pr(ok,) = max Pr(ok|z)/ Pr(ok) ,
Ok x,j

and take oy, € S, ; such that:

Pr(ok,|z) = Ugrelgx vPr(Uk\x) .
x,]

Then: Pr(og,|x) S Pr(oy, |r)
Pr(o,) Pr(og,)
_ Pr(oy,|z) Pr(ow,)
Pr(oy,) Pr(ow,)
Pr(og,|z)
> Prion) “1/A
and Pr(ok,|z) _ Pr(o,|r) ) Pr(oy,)
Pr(o;) Pr(oy,)  Pr(oy)
Pr(on,|x)
PI‘(O’k2) 1/)\ '

Combining these relations we see that:
Pr(oy, |x) <
PI"(O’/C1 )

And, therefore:
9(x,05) =

2 Pr(og,|)
Pr(o;)

max {Pr(x|ox)}

akesz,j

= max {Pr(aklx) ' Pljrr((axk))}

= Ugggij{Pf(Uklx)/Pf(Uk)} - Pr(z)

_ Pr(opx) Prlx

~ Pr(ow) Pr(z)
o Pr(oga|z)

=N TRy

= f(xv Uj) lfrr((;;)) 2

- Pr(x)

Define Ac = A1 = {x € A:u(z) < ¢} H
Lemma 4. Let M be a nonezact e-machine such that:

1. Pr(Ac) > 1—¢€, for somee<1/2, and

2. Pr(omax.e|)/ f(T, Omax ) A? > 22N2>‘2, for all x €

r S
Then, Er,,,. {10g2 (%)} > 0.

Proof. Applying Lemma [3] we see:

£, fion (208))

=3 Pr(z,0))log, (W)

z€A j (.’E, Uj)

Vg, [ Prloslz) Pr(z)/ Pr(o;)
> Z ZPr(x,oj)l 25 (f(l‘,Uj))\2 Pr(x)/PI‘(O'j))

z€A j
N P S Pr(o e Tog. [ PE@ilE)
Pr(o;|x)
- Pr(x) Pr(oj|z)logy | 15
B e (2253)
Pr(ojlx)
+ Y Pr(@) Y Pr(ojle)logy (25 ) - (13)
zgg ZJ: &2 (f(l"v"j)/\ )



Now, for any z € A¢ we have:
zjjpr(aj|x) log, <m>
> e [P, (1)
B
> Z}P (=
J

=-N)\,

where H(-) is the binary entropy function. So:
Pr(oj|z)
Z Pr(x) ZPr(aﬂm) log, <W>
j

TEAS
> Pr(A9).-
> —eN)? .

—N )2
(14)

Also, if we let 8 = 8 /{0max. }, then for any x € A.:

> Pr(o;|x)log, <m>

J
Pr(omax,z|®)
f(zv Omax,z ) AZ

Pr(oj|x)
+ U]EZS_ Pr(oj|z)log, (f(:c, orjj))\Q)
1 Pr(oj|x) Pr(oj|x)
AN 4 ”]%; 2 { 5 log, <f(x’;jw>}

1 2,2 5 [Pr(oj|z) Pr(o;|z)

0;ES™

Pr(omax,z|x) log, (

Y

Y

>N+ 3 N —H (Pf("ﬂf))

/\2
o;€ES™
> 2NA2 — N2
=N
And, hence:

Pr(

Z Pr(z ZPr (0j]z) log, ( UJLT )

T€EA, 7 (

> Pr(A. ) N2

> (1—€e)NX\ . (15)

Combining Egs. , , and , we see that:

E {1og2 <m> } >(1-2 NN =",

where C’ > 0 for € < 1/2. Since M is not exactly syn-
chronizable, we know g(z,0;) > 0 for all  and j, and so

10

this expectation must be finite. Hence, there exists some
real number C' > C’ > 0 such that:

o (s )] =€

Remark. In the above proof we implicitly assumed
Pr(z,0;) # 0 for all x and j. The sums for the ea-
pectation are, of course, computed only over those r and
Jj for which Pr(z,0;) # 0. Terms involving pairs (x,0;)
with Pr(z,0;) = 0 should be omitted.

O

Lemma 5. For any nonexact e-machine M, there ex-
ists some n € N such that the power machine M™ is an
e-machine with

Pr(YO|RO>) }

E<lo _— >0,

{ o ( 9(Yo, Ro)

where Yy, is the RV for the the Ly, output symbol gener-

ated by the machine M™ and Ry, is the RV for the Ly
M™-state.

We also denote the alphabet of M™ as B and the set
A, for the machine M™ as B; ie., B ~ A, for M.
We define (¢) to be the most likely state in a distri-
bution ¢ over the machine states, and Pr(a(¢)) to be
the probability of this state in the distribution ¢. For
example, if ¢ = (0.3,0.1,0.2,0.4), then 7(¢) = o4 and
Pr(a(¢)) = 0.4.

Proof. Given any nonexact e-machine M,

1. Take €1 = N)2.22N*2%

2. Take € small enough that Pr(c(¢)) > 1 — € for any
distribution ¢ with H[¢] < e. (Without loss of
generality, we may assume € < 1/2.)

3. For € as above, take n relatively prime to the pe-
riod p of M’s graph and large enough such that
Pr(A.,) > 1 —e. (Note that this is possible
since limy_,o0 Pr(Ac ) = 1, for all € > 0, since
limy, oo U(L) =0.)

Then, M™ is an e-machine for the process P"™ and
Pr(B.) = Pr(Ac,) > 1 —e. Moreover, for all y € B,
we have:

Hp(y)] < e 22 Pr(a(6(y) > 1 ¢

= f(y7 Umax,y) <€

(y7 Omax y) €
1O Pr(omax,y[y) S )\2. 92NN
Iy, Umax,y)

Pr(0max,y|y) > 92N?N?
f(yv Umax,y)AQ ’



where step (a) follows from item 2 above and step (b)
follows from our choice of € above. Hence, by Lemma [4}

PI‘(Y0|R0) ) }
E<lo —— ] =C>0.
{ 82 ( g(Y()vRO)
(Note that A for M is the same as A for M™, since M
and M™ have the same stationary distribution 7.) O

Finally, in order to convert between Uy, and (p con-
vergence in our theorem we need one last lemma.

Lemma 6. For any ®,:

1. IfQL § 1/2, then UL Z QL-

2. If Qr > 1/2, then Uy, > H (1/N), where H(-) is
the binary entropy function.

Proof. Note that:

Up = H[®y]
> H[(1-Qr,Qr,0,...,0)]
=H(Qr) .

Since H(QL) > QL10g2 (1/QL)7 we know H(QL) > QL
for @, < 1/2. Since H(Qy) is monotonically decreasing

on [$,1 — 1/N] and @ is at most 1 — 1/N, we know
H(Qp)>H(1—-1/N)=H(1/N) for Q > 1/2. O

Using these lemmas we can now prove the primary
result of this section.

Proof. (Nonexact Machine Synchronization Theorem)
We first prove claim 2 of the theorem and then use this
to show its claim 1.

Proof of Claim 2: Given any nonexact e-machine ma-
chine M, take a power machine M™ as in Lemma[5] such

that:
PI‘(Y0|RQ)>}
E<lo _— =C>0.
{ 82 (Q(YO,R())

Denote the random variable Uy, for the machine M™" as
V5, and the quantity U(L) for the machine M™ as V(L).
By Lemma [2] we know there exist constants By > 0 and
0 < m1 < 1 such that:

Pr(Vy >nF) < Binf |, forall L € N.

A proof identical to that of Prop. [3| below then shows
there exists some By > Bj such that:

V(L) < Bonk, forall L € N.
Or, equivalently:
U(nL) < Bynl | for all L € N.

/

Taking 7y = 77% " we have:

U(m) < Bany"
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for any length m that is an integer multiple of n. Since
U(m) < logy(N) for any m and is monotonically decreas-
ing, it follows that:

U(m) < Kny*, for all m € N,

where K = 1/n% - max{Bs,log,(N)}. Thus, by the
Markov inequality we have, for any m € N and ¢ > 0:
EU,,

Ky
PrU, >t) < —™ — < .
(Um > 1) < = t =t

/

Taking t = ny" 2 yields:

Pr(Upy, > a™) < Ka™

/2

1
where o = 1),

Proof of Claim 1: By Claim 2 we know there exist
constants K > 0 and 0 < a < 1 such that:

Pr(Up, > a*) < Ka*, for all L € N.

Take Lo large enough that a*° < H(1/N). Then, for all
L > Ly we have:

Pr(Qr > o) =Pr(a* < Qr <1/2) + Pr(Qr > 1/2)

()

< Pr(Up > a*, Qp <1/2) +Pr(Uy > H(1/N))
< PI‘(UL > OéL) + PI"(UL > CYL)

< 2K o

)

where step (*) follows from Lemma [6] Hence, for some
K > 2K we have:

Pr(Qr > a%) < Kol | forall LeN.

VII. CONSEQUENCES

As a direct consequence of Thm. [I| we establish expo-
nential convergence results for /(L) and h,, (L) analogous
to those in the exact case [I]. We also use Thm. [l to
prove the existence of pointwise almost everywhere (a.e.)
exponential synchronization for nonexact machines. This
establishes that any e-machine is indeed asymptotically
synchronizable in the pointwise sense of Def.

A. Exponential Convergence of U(L)

Proposition 3. For any nonexact e-machine M there
exist constants K > 0 and 0 < o < 1 such that

UL) < Ka" | forall LeN .



Proof. Let M be any nonexact e-machine. Then by Thm.
there exist constants C' > 0 and 0 < a < 1 such that
Pr(Ur > oF) < Cal, for all L € N. Define:

Ap ={we L (M) : u(w) < o} and
A} =L (M)/AL

Z Pr(w)u(w)

weLy (M)

= Z Pr(w)u(w) + Z Pr(w)u(w)

wEAL wWEAS
< Pr(Ag) - o + Pr(AS) - logy(N)
<1-af +Cal logy(N)

=Kol ,

where K =1+ C'logy(N). O

B. Exponential Convergence of h, (L)

Proposition 4. For any nonexact e-machine M, there
ezist constants K > 0 and 0 < o < 1 such that:

hu(L) —h, < Ka" | forall L €N .

Proof. This follows directly from Prop. [3] and Lemma [7]
below. O

Lemma 7. For any e-machine M and any L € N:
hy(L+1)—h, <U(L) . (16)

Proof. Note that:

H[XE, X1,8.] = HXY + H[S| X + H[X.| XL, S1]
H[X'] + H[SL|XE) + H[X.|S1)]
H[XE) + HISL X + hy (17)

and also that:
HIXE, Xp,80) = HIX") + H[X,|X "]
FHSIXE, XL, (18)
Equating the RHS of Egs. and gives:

HISL| XY + hy, = H[X1| X1 + H[SL| XL, Xy

> HIX|X]. (19)

Or, in other words:
UL)+hy > h,(L+1) . (20)
O
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Remark. If we define the synchronization and predica-
tion decay exponents, respectively, as:

o, = limsup U(L)Y*E

L—oo

ap = limsup (h, (L) = h) "

L—oo

then Lemma@ also implies that o, < 5. This is to say,
the observer’s predictions approach their optimal level at
least as fast as the observer synchronizes. Since Lemma
[7 applies to any e-machine, this statement also holds for
any e-machine (exact or nonexact).

C. Pointwise A.E. Asymptotic Synchronization

Proposition 5. For any nonexact e-machine M there
exists some 0 < a < 1 such that for a.e. @ € Loo(M),
there exists Lo € N such that for all L > Ly,

uw(Zh) <ol .

Proof. Apply the Borel-Cantelli Lemma to Thm. O

VIII. CONCLUSION

We analyzed the process of asymptotic synchronization
to nonexact e-machines. Although the treatment is more
involved mathematically, the primary results are essen-
tially the same as those for the exact case given in Ref.
[1]. An observer’s average state uncertainty (L) van-
ishes exponentially fast and, consequently, an observer’s
average uncertainty in predictions h, (L) converges to the
machine’s entropy rate h, exponentially fast, as well.

In the future, we hope to extend these synchronization
results to more general model classes such as countable
state e-machines or nonunifilar HMMs. We also would
like to develop better bounds on the exponent o given in
the convergence theorems.
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