Asymptotic Synchronization for Finite-State Sources

Nicholas F. Travers
James P. Crutchfield

SFI WORKING PAPER: 2010-11-029

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant.
©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder.
www.santafe.edu

Asymptotic Synchronization for Finite-State Sources

Nicholas F. Travers ${ }^{1,2, *}$ and James P. Crutchfield ${ }^{1,2,3,4, ~}{ }^{\text {, }}$
${ }^{1}$ Complexity Sciences Center
${ }^{2}$ Mathematics Department
${ }^{3}$ Physics Department
University of California at Davis,
One Shields Avenue, Davis, CA 95616
${ }^{4}$ Santa Fe Institute
1399 Hyde Park Road, Santa Fe, NM 87501

(Dated: November 6, 2010)

Abstract

We extend a recent analysis of synchronization for exact finite-state sources to nonexact sources for which synchronization occurs only asymptotically. Although the asymptotic case requires more sophistication, the primary results remain the same. We find that an observer's average uncertainty in the source state vanishes exponentially fast and, as a consequence, an observer's average uncertainty in predicting future output converges exponentially fast to the source entropy rate.

PACS numbers: 02.50.-r 89.70.+c 05.45.Tp 02.50.Ey

I. INTRODUCTION

In Ref. [1] we analyzed the synchronization process for exact ϵ-machines, where the observer may come to know the internal state of the machine with certainty after only a finite number of measurements. Here, we examine the case of nonexact ϵ-machines, where the observer may only synchronize to the machine's state asymptotically. Although the analysis differs, the behavior is qualitatively similar to the exact case in the sense that an observer (on average) synchronizes to a nonexact machine exponentially fast. That is, there exist constants $K>0$ and $0<\alpha<1$ such that, the average state entropy $\mathcal{U}(L) \leq K \alpha^{L}$, for all $L \in \mathbb{N}$.

Our development is organized as follows. Section II briefly reviews the synchronization problem and provides the essential definitions for our results. Section III presents an intuitive picture of the synchronization process, using it to derive a formula for $\phi(w)$, the conditional state distribution induced by a word w. Section IV establishes a formula for the entropy rate of a finite-state ϵ-machine. Section \square uses the entropy-rate formula to prove the existence of averaged asymptotic synchronization. Section VI builds on this result to prove our main theorem - the Nonexact Machine Synchronization Theorem. Section VII applies this to show that, for any nonexact ϵ-machine, the state entropy $\mathcal{U}(L)$ vanishes exponentially fast and the length- L entropy-rate approximation $h_{\mu}(L)$ converges exponentially fast to the machine's entropy rate. Finally, Sec. VIII summarizes our results and examines possible extensions.

[^0]
II. BACKGROUND

This section lays out the necessary definitions and background for our results. For a more thorough introduction the reader is referred to Ref. [1], where a similar but more detailed presentation is given.

A. Machines

Definition 1. Hidden Markov machine: A finite-state edge-labeled hidden Markov machine (HMM) consists of

1. a finite set of states $\mathcal{S}=\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$,
2. a finite alphabet of symbols \mathcal{A}, and
3. a set of N by N symbol-labeled transition matrices $T^{(x)}, x \in \mathcal{A}$, where $T_{i j}^{(x)}$ is the probability of transitioning from state σ_{i} to state σ_{j} on symbol x. The corresponding internal state-to-state transition matrix is denoted $T=\sum_{x \in \mathcal{A}} T^{(x)}$.
A hidden Markov machine can be depicted as a directed graph with labeled edges. The nodes are the states $\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}$ and for all x, i, j with $T_{i j}^{(x)}>0$, there is an edge from state σ_{i} to state σ_{j} labeled $p \mid x$ for the symbol x and transition probability $p=T_{i j}^{(x)}$. We require that the transition matrices $T^{(x)}$ be such that this graph is strongly connected.

A hidden Markov machine M generates a stationary process $\mathcal{P}=\left(X_{L}\right)_{L \geq 0}$ as follows. Initially, M starts in some state $\sigma_{i^{*}}$ chosen according to the stationary distribution π over machine states-that distribution satisfying $\pi T=\pi$. It then picks an outgoing edge according to their relative transition probabilities $T_{i^{*} j}^{(x)}$, emits the symbol x^{*} labeling this edge, and follows the edge to a new state $\sigma_{j^{*}}$. The next output symbol and state are consequently chosen in a similar fashion, and the process is repeated indefinitely.

We denote by $\mathcal{S}_{0}, \mathcal{S}_{1}, \mathcal{S}_{2}, \ldots$ the RVs for the sequence of machine states visited and by $X_{0}, X_{1}, X_{2}, \ldots$ the RVs
for the associated sequence of output symbols generated. The sequence $\left(\mathcal{S}_{L}\right)_{L \geq 0}$ is a Markov chain with transition kernel T. However, the stochastic process we consider is not the sequence of states, but rather the associated sequence of outputs $\left(X_{L}\right)_{L \geq 0}$, which is not Markov in general. We assume that an observer of the process sees the sequence of outputs, but does not have direct access to the machine's "hidden" internal states.

Example: Even Process Machine Figure 1 gives an HMM for the Even Process, a machine that has been studied extensively [2-4]. Its name derives from the feature that in its output there are always an even number of 1 s between consecutive zeros 0 s . The transition matrices are:

FIG. 1: A hidden Markov machine (the ϵ-machine) for the Even Process. The transitions denote the probability p of generating symbol x as $p \mid x$.

In what follows, the following notation will be used for sequences of output RVs:

1. $\vec{X}=X_{0} X_{1} \ldots$,
2. $\vec{X}^{L}=X_{0} X_{1} \ldots X_{L-1}$, and
3. $\vec{X}_{t}^{L}=X_{t} X_{t+1} \ldots X_{t+L-1}$.

Definition 2. A finite-state ϵ-machine is a finite-state edge-labeled hidden Markov machine with the following properties:

1. Unifilarity: For each state $\sigma_{k} \in \mathcal{S}$ and each symbol $x \in \mathcal{A}$ there is at most one outgoing edge from state σ_{k} labeled with symbol x.
2. Probabilistically distinct states: For each pair of distinct states $\sigma_{k}, \sigma_{j} \in \mathcal{S}$ there exists some finite word $w=x_{0} x_{1} \ldots x_{L-1}$ such that:

$$
\operatorname{Pr}\left(\vec{X}^{L}=w \mid \mathcal{S}_{0}=\sigma_{k}\right) \neq \operatorname{Pr}\left(\vec{X}^{L}=w \mid \mathcal{S}_{0}=\sigma_{j}\right)
$$

Example (continued) The Even Process machine given above is also an ϵ-machine. It is clearly unifilar, and σ_{1} can generate the symbol 0 whereas σ_{2} cannot, so the states are probabilistically distinct.

Remark. ϵ-Machines were originally defined in Ref. [5] as hidden Markov machines whose states, known as causal states, were the equivalence classes of infinite pasts \overleftarrow{x} with the same probability distribution over futures \vec{x}. This "history machine" definition is, in fact, equivalent to the "generating machine" definition presented above in the finite-state case. Although, this is not immediately apparent. Formally, it follows from the synchronization results established here and in Ref. [1].

We now provide the definitions for two extensions of an ϵ-machine M that are necessary for our proofs later on: the edge machine $M_{\text {edge }}$ and the power machine M^{n}. First, in what follows:

1. $\operatorname{Pr}\left(x \mid \sigma_{k}\right) \equiv \operatorname{Pr}\left(X_{0}=x \mid \mathcal{S}_{0}=\sigma_{k}\right)$,
2. $\operatorname{Pr}\left(w \mid \sigma_{k}\right) \equiv \operatorname{Pr}\left(\vec{X}^{|w|}=w \mid \mathcal{S}_{0}=\sigma_{k}\right)$,
3. $I(x, k, j)$ denotes the indicator function of the transition from state σ_{k} to state σ_{j} on symbol x, and
4. $I(w, k, j)$ denotes the indicator function of the transition from state σ_{k} to state σ_{j} on the word w.
That is, $I(x, k, j)=1$ if $\sigma_{k} \xrightarrow{x} \sigma_{j}$ and 0 otherwise; $I(w, k, j)=1$ if $\sigma_{k} \xrightarrow{w} \sigma_{j}$ and 0 otherwise.
Definition 3. For an ϵ-machine M, the corresponding edge machine $M_{\text {edge }}$ is the Markov chain whose states are the outgoing edges of M. That is, the states are the pairs $\left(x, \sigma_{k}\right)$ such that $\operatorname{Pr}\left(x \mid \sigma_{k}\right)>0$, and the transition probabilities are defined as

$$
\operatorname{Pr}\left(\left(x, \sigma_{k}\right) \rightarrow\left(y, \sigma_{j}\right)\right)=\operatorname{Pr}\left(y \mid \sigma_{j}\right) I(x, k, j)
$$

A sequence of $M_{\text {edge }}$ states visited by the Markov chain corresponds to a sequence of edges visited by the original machine M. The process $\mathcal{P}_{\text {edge }}$ generated by $M_{\text {edge }}$ can be thought of as the bi-process $\left(X_{L}, \mathcal{S}_{L}\right)_{L \geq 0}$ generated by the original machine M as it moves from state to state generating symbols. Note that since M 's graph is strongly connected, $M_{\text {edge }}$'s graph is as well. Hence, the edge-label Markov chain is irreducible and has a unique stationary distribution $\pi_{\text {edge }}$. See Fig. 2 (top).

Definition 4. Let M be an ϵ-machine, and let n be relatively prime to the period p of M 's graph. The power machine M^{n} is defined to be the ϵ-machine with the states of M, output symbols which are length-n words generated by M, and transition probabilities given by:

$$
\operatorname{Pr}\left(\sigma_{k} \xrightarrow{w} \sigma_{j}\right)=\operatorname{Pr}\left(w \mid \sigma_{k}\right) I(w, k, j)
$$

The power machine M^{n} generates the same process as the original machine M, but over length-n blocks.

Note that since M is by definition unifilar with probabilistically distinct states, M^{n} is also necessarily unifilar with probabilistically distinct states. Furthermore, it can be shown that for n relatively prime to $p=\operatorname{per}(M)$ the graph of M^{n} is strongly connected. Therefore, for n relatively prime to p, M^{n} is indeed an ϵ-machine for the process \mathcal{P}^{n}. See Fig. 2 (bottom).

FIG. 2: Examples of $M_{\text {edge }}$ (top) and M^{2} (bottom) for the Even Process ϵ-machine M.

Definition 5. For an ϵ-machine M the minimum distinguishing length L^{*} is the shortest length L such that the probability distributions over futures \vec{X}^{L} of length L are distinct for each pair of distinct states σ_{k} and σ_{j} :

$$
\begin{aligned}
& L^{*} \equiv \min \left\{L: \operatorname{Pr}\left(\vec{X}^{L} \mid \mathcal{S}_{0}=\sigma_{k}\right) \neq \operatorname{Pr}\left(\vec{X}^{L} \mid \mathcal{S}_{0}=\sigma_{j}\right)\right. \\
& \quad \text { for all } k \neq j\}
\end{aligned}
$$

If a machine M has a minimum distinguishing length L^{*}, we also say that M has length- L^{*} future distinguishable states.

Note that L^{*} must be finite for any ϵ-machine, since ϵ-machines have probabilistically distinct states, and that, for $n \geq L^{*}$ and relatively prime to $p=\operatorname{per}(M), M^{n}$ is an ϵ-machine with a minimum distinguishing length $L^{*}=1$.

B. Synchronization

Although we assume that our observer is not able to directly see the ϵ-machine's internal state $\left(\mathcal{S}_{L}\right)$, it is able to see the output symbols generated by the machine (the X_{L} 's). Thus, the observer may attempt to infer the internal machine state through observations of the output data. We are interested in studying the procedure by which the observer synchronizes to the machine's internal state through these observations. Due to unifilarity, we know that if an observer is able to completely synchronize to the machine's internal state at some time $T>0$, it remains synchronized for all future times $T^{\prime} \geq T$. For simplicity and to guarantee that the process generated by the machine is stationary, we assume that its initial state is chosen according to the stationary distribution π and that the observer has knowledge of this fact.

For a word w of length L generated by the machine let $\phi(w) \equiv \operatorname{Pr}(\mathcal{S} \mid w)$ be the observer's belief distribution as to the current state of the machine after observing w, i.e.:

$$
\begin{aligned}
\phi(w)_{k} & =\operatorname{Pr}\left(\mathcal{S}_{L}=\sigma_{k} \mid \vec{X}^{L}=w\right) \\
& \equiv \operatorname{Pr}\left(\mathcal{S}_{L}=\sigma_{k} \mid \vec{X}^{L}=w, \mathcal{S}_{0} \sim \pi\right)
\end{aligned}
$$

And, define the observer's uncertainty in the machine state after observing word w :

$$
\begin{aligned}
u(w) & =H[\phi(w)] \\
& =H\left[S^{L} \mid \vec{X}^{L}=w\right]
\end{aligned}
$$

Let $\mathcal{L}(M)$ denote the set of all finite words that M can generate, $\mathcal{L}_{L}(M)$ the set of all length- L words it can generate, and $\mathcal{L}_{\infty}(M)$ the set of all infinite sequences $\vec{x}=x_{0} x_{1} \ldots$ that it can generate.

Definition 6. A word $w \in \mathcal{L}(M)$ is a synchronizing word (or sync word) for M if $u(w)=0$; that is, if the observer knows the current state of the machine with certainty after observing w.
We recognize two kinds of sync word sets:

1. Sync M :

$$
\operatorname{SYN}(M)=\left\{\vec{x} \in \mathcal{L}_{\infty}(M): u\left(\vec{x}^{L}\right)=0 \text { for some } L\right\}
$$

2. Weak Sync M:
$\operatorname{WSYN}(M)=\left\{\vec{x} \in \mathcal{L}_{\infty}(M): u\left(\vec{x}^{L}\right) \rightarrow 0\right.$ as $\left.L \rightarrow \infty\right\}$.
Definition 7. A machine M is exactly synchronizable (or simply exact) if $\operatorname{Pr}(\operatorname{SYN}(M))=1$; that is, if the observer synchronizes to almost every (a.e.) sequence generated by the machine in finite time.
Definition 8. A machine M is asymptotically synchronizable if $\operatorname{Pr}(\operatorname{WSYN}(M))=1$; that is, if the observer's uncertainty in machine state vanishes asymptotically for a.e. sequence generated by the machine.

Examples:

- The Even Process machine is an exact machine. Any word containing a 0 is a sync word for this machine, and almost every \vec{x} generated by this machine contains at least one 0 .
- The ABC machine (Fig. 3) is not exactly synchronizable, but it is asymptotically synchronizable.

FIG. 3: The Alternating Biased Coin (ABC) machine: The process it generates can be thought of as alternately flipping two coins of different biases, $p \neq q$.

Remark. Any machine with a single state is necessarily exact since the observer is synchronized before observing any output. But the synchronization question in this case is moot. Therefore, when discussing exact or nonexact machines, we assume that $N \geq 2$.

Remark. If $w \in \mathcal{L}(M)$ is a sync word, then by unifilarity so is wu, for all u with $w u \in \mathcal{L}(M)$. Once an observer synchronizes exactly, it remains synchronized exactly for all future times. It follows that any exactly synchronizable machine is also asymptotically synchronizable.

Remark. If $w \in \mathcal{L}(M)$ is a sync word then so is uw, for all u with $u w \in \mathcal{L}(M)$. Since any finite word $w \in \mathcal{L}(M)$ will be contained in almost every infinite sequence \vec{x} the machine generates, it follows that a machine is exactly synchronizable if (and only if) it has some sync word w of finite length.

Remark. Sec. VII establishes that all ϵ-machines are asymptotically synchronizable. Hence, there are two disjoint classes to consider: exactly synchronizable machines and asymptotically synchronizable machines that are nonexact. The exact case was analyzed in Ref. [1]; the nonexact case is analyzed below.

One final important quantity to monitor during synchronization is the observer's average uncertainty in the machine state after seeing a length- L block of output.

Definition 9. The observer's average state uncertainty at time L is:

$$
\begin{aligned}
\mathcal{U}(L) & \equiv H\left[\mathcal{S}_{L} \mid \vec{X}^{L}\right] \\
& =\sum_{\left\{\vec{x}^{L}\right\}} \operatorname{Pr}\left(\vec{x}^{L}\right) H\left[\mathcal{S}_{L} \mid \vec{X}^{L}=\vec{x}^{L}\right] .
\end{aligned}
$$

C. Prediction

A process's intrinsic randomness is measured by its entropy rate and that, in turn, determines how well an observer can predict its behavior.

Definition 10. The block entropy $H(L)$ for a stationary process \mathcal{P} is:

$$
\begin{aligned}
H(L) & \equiv H\left[\vec{X}^{L}\right] \\
& =-\sum_{\left\{\vec{x}^{L}\right\}} \operatorname{Pr}\left(\vec{x}^{L}\right) \log _{2} \operatorname{Pr}\left(\vec{x}_{L}\right) .
\end{aligned}
$$

Definition 11. The entropy rate h_{μ} is the asymptotic average entropy per symbol:

$$
\begin{aligned}
h_{\mu} & \equiv \lim _{L \rightarrow \infty} \frac{H(L)}{L} \\
& =\lim _{L \rightarrow \infty} H\left[X_{L} \mid \vec{X}^{L}\right]
\end{aligned}
$$

Definition 12. Its length- L approximation is:

$$
\begin{aligned}
h_{\mu}(L) & \equiv H(L)-H(L-1) \\
& =H\left[X_{L-1} \mid \vec{X}^{L-1}\right]
\end{aligned}
$$

That is, $h_{\mu}(L)$ is the observer's average uncertainty in the next symbol to be generated after observing the first $L-1$ symbols.

For any stationary process, $h_{\mu}(L)$ monotonically decreases to the limit h_{μ} [6]. However, the form of convergence depends on the process. The lower the value of h_{μ} a process has, the better an observer's predictions of the process will be asymptotically. The faster $h_{\mu}(L)$ converges to h_{μ}, the faster an observer's predictions will reach this optimal asymptotic level. Since we are often interested in making predictions after observing only a finite amount of data, the source's true entropy rate h_{μ}, as well as the rate of convergence of $h_{\mu}(L)$ to h_{μ}, are both important properties.

Now, for an ϵ-machine, an observer's prediction of the next output symbol is a direct function of the probability distribution over machine states induced by the previously observed symbols. That is,

$$
\begin{aligned}
\operatorname{Pr}\left(X_{L}=x \mid\right. & \left.\vec{X}^{L}=\vec{x}^{L}\right) \\
& =\sum_{k} \operatorname{Pr}\left(x \mid \sigma_{k}\right) \operatorname{Pr}\left(\mathcal{S}_{L}=\sigma_{k} \mid \vec{X}^{L}=\vec{x}^{L}\right)
\end{aligned}
$$

Hence, the better an observer knows the machine state at the current time, the better it can predict the next symbol the machine generates. And, on average, the closer $\mathcal{U}(L)$ is to 0 , the closer $h_{\mu}(L)$ is to h_{μ}. Therefore, the rate of convergence of $h_{\mu}(L)$ to h_{μ} for an ϵ-machine is closely related to the average rate of synchronization. This is one of the primary motivations for studying the synchronization problem.

III. AN INTUITIVE PICTURE

In this section we present an intuitive picture of the synchronization process and use it to derive a formula for the conditional state distribution $\phi(w)$. The basic idea is illustrated schematically in Fig. 4 for a hypothetical 5 -state machine.

FIG. 4: Synchronization illustrated for a 5-state machine.
Initially, the observer does not know the machine state \mathcal{S}_{0}, so all five states $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right\}$ are possible. After
seeing the first symbol x_{0}, there are only four possibilities for $\mathcal{S}_{1}-\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{5}\right\}$-since only four of the five states may generate this symbol. After seeing the second symbol x_{1}, a different set of four states is possible $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}\right\}$. After seeing the third symbol x_{2}, there are only three possibilities $\left\{\sigma_{1}, \sigma_{2}, \sigma_{3}\right\}$ for \mathcal{S}_{2}, since two of the state paths merge on seeing the third symbol. Finally, after seeing the fourth symbol x_{3}, two more state paths merge and another dies, so there is only one possibility $\left\{\sigma_{3}\right\}$ for \mathcal{S}_{4}. The observer has synchronized.

The transition function $\delta\left(\sigma_{k}, x\right)$ is defined by the relation $\sigma_{k} \xrightarrow{x} \delta\left(\sigma_{k}, x\right)$ and the word transition function $\delta\left(\sigma_{k}, w\right)$ by the relation $\sigma_{k} \xrightarrow{w} \delta\left(\sigma_{k}, w\right)$. In general, for each possible initial state σ_{k} and each \vec{x}^{L} there is a state path p^{k} following σ_{k} under \vec{x}_{L}. That is, $p^{k}=p_{0}^{k}, p_{1}^{k}, \ldots, p_{L}^{k}$, where $p_{0}^{k}=\sigma_{k}, p_{1}^{k}=\delta\left(p_{0}^{k}, x_{0}\right)$, $p_{2}^{k}=\delta\left(p_{1}^{k}, x_{1}\right)$, and so on. An observer synchronizes exactly once all, but one, of these paths have either merged or died.

If a machine is not exactly synchronizable, then it is impossible for all paths to merge or die and, at any finite time L, there are at least two possible nonmerged paths remaining. However, it is still possible for an observer to synchronize to such a machine asymptotically. To understand how this happens we need to know the relative probabilities of being in each of the possible remaining states at a given time. In general, the probability of starting in state σ_{k} and generating the word \vec{x}^{L} is:

$$
\begin{aligned}
\operatorname{Pr}\left(p^{k}\right) & \equiv \operatorname{Pr}\left(\mathcal{S}_{0}=\sigma_{k}, \vec{X}^{L}=\vec{x}^{L}\right) \\
& =\pi_{k} \cdot \operatorname{Pr}\left(\vec{x}^{L} \mid \sigma_{k}\right)
\end{aligned}
$$

These probabilities will be exactly 0 if and only if the path p^{k} dies by the $L_{t h}$ symbol. Typically, however, all these probabilities decay-in fact, decay exponentially fast - as $L \rightarrow \infty$. For nonexact synchronization, we are concerned not with absolute path probabilities, but with their relative or normalized probabilities. The probability of ending up in state σ_{j} at time L is simply the sum of the normalized probabilities of all paths ending up in state σ_{j}. That is, for any word $w=\vec{x}^{L}$ we have:

$$
\begin{align*}
\phi(w)_{j} & \equiv \operatorname{Pr}\left(\mathcal{S}_{L}=\sigma_{j} \mid \vec{X}^{L}=w\right) \\
& =\frac{\operatorname{Pr}\left(\mathcal{S}_{L}=\sigma_{j}, \vec{X}^{L}=w\right)}{\operatorname{Pr}\left(\vec{X}^{L}=w\right)} \\
& =\frac{\sum_{k} \pi_{k} \cdot \operatorname{Pr}\left(w \mid \sigma_{k}\right) \cdot I(w, k, j)}{\sum_{i} \pi_{i} \cdot \operatorname{Pr}\left(w \mid \sigma_{i}\right)} \\
& =\frac{\sum_{k} \operatorname{Pr}\left(p^{k}\right) \cdot I(w, k, j)}{\sum_{i} \operatorname{Pr}\left(p^{i}\right)} \tag{1}
\end{align*}
$$

For nonexact asymptotic synchronization, then, the important quantities to consider are the relative probabilities of all paths that never merge or die. For a nonexact machine to be asymptotically synchronizable we must
have the ratio of the probabilities of any two such paths:

$$
\frac{\operatorname{Pr}\left(p^{k}\left(\vec{x}^{L}\right)\right)}{\operatorname{Pr}\left(p^{j}\left(\vec{x}^{L}\right)\right)} \rightarrow 0 \text { or } \infty
$$

as $L \rightarrow \infty$ for a.e. $\vec{x} \in \mathcal{L}_{\infty}(M)$. Since π_{i} / π_{j} is bounded for all states σ_{i} and σ_{j}, the initial state is unimportant for asymptotic synchronization. The question is whether, on average, the transition probabilities for one path are greater than those of the other. If, on average, the transition probabilities for path p^{k} are $c(>1)$ times as likely as the transition probabilities for path p^{j} then, for large $L, \operatorname{Pr}\left(p^{k}\right) / \operatorname{Pr}\left(p^{j}\right) \sim c^{L}$. Intuitively, this is why synchronization occurs exponentially fast. Establishing this, as we will see, requires some care, however.

IV. THE ENTROPY RATE FORMULA

In this section we derive a formula for the entropy rate of a finite-state ϵ-machine. Although an analogous expression has been previously established in similar contexts (see, e.g., Ref. [7]), we provide a derivation as well for completeness. The proof presented here is also somewhat simpler than the original in Ref. [7. A proof quite similar to ours for unifilar Moore hidden Markov models (as opposed to the edge-labeled or Mealy models we use) is given in Ref. 8].

Proposition 1. For any ϵ-machine M,

$$
\begin{align*}
h_{\mu} & =H\left[X_{0} \mid \mathcal{S}_{0}\right] \\
& \equiv \sum_{k} \pi_{k} h_{k} \tag{2}
\end{align*}
$$

where $h_{k}=H\left[X_{0} \mid \mathcal{S}_{0}=\sigma_{k}\right]$.
Proof. We establish the bounds from above and below separately.

Upper bound: $h_{\mu} \leq H\left[X_{0} \mid \mathcal{S}_{0}\right]$. We calculate directly:

$$
\begin{aligned}
h_{\mu} & \equiv \lim _{L \rightarrow \infty} \frac{H\left[\vec{X}^{L}\right]}{L} \\
& \leq \lim _{L \rightarrow \infty} \frac{H\left[\mathcal{S}_{0}, \vec{X}^{L}\right]}{L} \\
& \stackrel{(a)}{=} \lim _{L \rightarrow \infty} \frac{H\left[\mathcal{S}_{0}\right]+\sum_{i=0}^{L-1} H\left[X_{i} \mid \mathcal{S}_{0}, \vec{X}^{i}\right]}{L} \\
& \stackrel{(b)}{=} \lim _{L \rightarrow \infty} \frac{H\left[\mathcal{S}_{0}\right]+\sum_{i=0}^{L-1} H\left[X_{i} \mid \mathcal{S}_{i}\right]}{L} \\
& \stackrel{(c)}{=} \lim _{L \rightarrow \infty} \frac{H\left[\mathcal{S}_{0}\right]+H\left[X_{0} \mid \mathcal{S}_{0}\right] \cdot L}{L} \\
& =H\left[X_{0} \mid \mathcal{S}_{0}\right],
\end{aligned}
$$

where step (a) follows from the chain rule, step (b) from unifilarity, and step (c) from stationarity.

Lower bound: $h_{\mu} \geq H\left[X_{0} \mid \mathcal{S}_{0}\right]$. We have:

$$
\begin{aligned}
h_{\mu} & \equiv \lim _{L \rightarrow \infty} \frac{H\left[\vec{X}^{L}\right]}{L} \\
& \geq \lim _{L \rightarrow \infty} \frac{H\left[\vec{X}^{L} \mid \mathcal{S}_{0}\right]}{L} \\
& \stackrel{(a)}{=} \lim _{L \rightarrow \infty} \frac{\sum_{i=0}^{L-1} H\left[X_{i} \mid \mathcal{S}_{0}, \vec{X}^{i}\right]}{L} \\
& \stackrel{(b)}{=} \lim _{L \rightarrow \infty} \frac{\sum_{i=0}^{L-1} H\left[X_{i} \mid \mathcal{S}_{i}\right]}{L} \\
& \stackrel{(c)}{=} \lim _{L \rightarrow \infty} \frac{H\left[X_{0} \mid \mathcal{S}_{0}\right] \cdot L}{L} \\
& =H\left[X_{0} \mid \mathcal{S}_{0}\right]
\end{aligned}
$$

where again step (a) follows from the chain rule, step (b) from unifilarity, and step (c) from stationarity.

V. AVERAGED ASYMPTOTIC SYNCHRONIZATION

The entropy rate formula says that (on average) an observer predicts asymptotically just as well as if they knew the machine state exactly:

$$
\begin{aligned}
h_{\mu} & =\lim _{L \rightarrow \infty} H\left[X_{L} \mid \vec{X}^{L}\right] \\
& =H\left[X_{0} \mid \mathcal{S}_{0}\right]
\end{aligned}
$$

Intuitively, this suggests that an observer's average uncertainty $\mathcal{U}(L)$ in the machine state must vanish asymptotically. That is, we should have:

$$
\lim _{L \rightarrow \infty} \mathcal{U}(L)=0
$$

These ideas are made rigorous below via a convexity argument.

The following notation will be used:

- Let $p_{k} \equiv \operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0}=\sigma_{k}\right)$ and $p_{w} \equiv \operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0} \sim\right.$ $\phi(w))$.
- Let $h_{k} \equiv H\left[p_{k}\right]$ (as above), $h_{w} \equiv H\left[p_{w}\right]$, and $\tilde{h}_{w} \equiv$ $\sum_{k} \phi(w)_{k} h_{k}$.
- Let $A_{\epsilon, L} \equiv\left\{w \in \mathcal{L}_{L}(M): u(w)<\epsilon\right\}$ and $A_{\epsilon, L}^{c} \equiv$ $\mathcal{L}_{L}(M) / A_{\epsilon, L}$, the complement of $A_{\epsilon, L}$.
We note that for any word w :

$$
\begin{equation*}
p_{w}=\sum_{k} p_{k} \phi(w)_{k} \tag{3}
\end{equation*}
$$

and, hence, by the concavity of the entropy function $H[\cdot]$:

$$
\begin{align*}
h_{w} & =H\left[p_{w}\right] \\
& =H\left[\sum_{k} p_{k} \phi(w)_{k}\right] \\
& \geq \sum_{k} \phi(w)_{k} H\left[p_{k}\right] \\
& =\sum_{k} \phi(w)_{k} h_{k} \\
& =\tilde{h}_{w} . \tag{4}
\end{align*}
$$

Also, for any length L :

$$
\begin{align*}
h_{\mu}(L+1) & =H\left[X_{L} \mid \vec{X}^{L}\right] \\
& =\sum_{w \in \mathcal{L}_{L}(M)} \operatorname{Pr}(w) h_{w} \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
h_{\mu} & =\sum_{k} \pi_{k} h_{k} \\
& =\sum_{k}\left(\sum_{w \in \mathcal{\mathcal { L } _ { L } (M)}} \operatorname{Pr}(w) \phi(w)_{k}\right) h_{k} \\
& =\sum_{w \in \mathcal{\mathcal { L } _ { L }}(M)} \operatorname{Pr}(w) \sum_{k} \phi(w)_{k} h_{k} \\
& =\sum_{w \in \mathcal{\mathcal { L } _ { L }}(M)} \operatorname{Pr}(w) \tilde{h}_{w} \tag{6}
\end{align*}
$$

Proposition 2. For any finite-state ϵ-machine M :

$$
\begin{equation*}
\lim _{L \rightarrow \infty} \mathcal{U}(L)=0 \tag{7}
\end{equation*}
$$

Proof. We first prove this statement under the assumption that M has a minimum distinguishing length $L^{*}=1$. We then use this result to prove the general case.

Proof of Case (i): M has minimum distinguishing length $L^{*}=1$.

The proof is by contradiction. If $\mathcal{U}(L) \nrightarrow 0$ then there must be some $\epsilon>0$ for which $\operatorname{Pr}\left(A_{\epsilon, L}^{c}\right) \nrightarrow 0$. Hence, there exists some $\delta>0$ and a subsequence $\left(L_{i}\right)_{i=1}^{\infty}$ of the L s such that $\operatorname{Pr}\left(A_{\epsilon, L_{i}}^{c}\right) \geq \delta$, for all i.

Let Δ be the unit simplex in \mathbb{R}^{N} :

$$
\Delta=\left\{\phi \in \mathbb{R}^{N}: \sum_{k} \phi_{k}=1 \text { and } \phi_{k} \geq 0, \text { for all } k\right\}
$$

and let:

$$
\Delta_{\epsilon}=\{\phi \in \Delta: H[\phi] \geq \epsilon\}
$$

Define $f: \Delta_{\epsilon} \rightarrow \mathbb{R}$ by:

$$
f(\phi)=H\left[\sum_{k} \phi_{k} p_{k}\right]-\sum_{k} \phi_{k} H\left[p_{k}\right]
$$

Thus, for any word $w, f(\phi(w))=h_{w}-\tilde{h}_{w}$.
Then, with respect to $\|\cdot\|_{1}, f(\phi)$ is a continuous function on Δ_{ϵ} and Δ_{ϵ} is a compact set. Therefore, we know f obtains its minimum f^{*} at some point $\phi^{*} \in \Delta_{\epsilon}$.

Since M has a minimum distinguishing length $L^{*}=1$ and the entropy function $H[\cdot]$ is strictly concave, we know $f(\phi)>0$ for all $\phi \in \Delta_{\epsilon}$. In particular, $f\left(\phi^{*}\right) \equiv f^{*}>0$.

Hence, for each i we have:

$$
\begin{align*}
& h_{\mu}\left(L_{i}+1\right)-h_{\mu} \\
& \stackrel{(a)}{=} \sum_{w \in \mathcal{\mathcal { L } _ { L _ { i } }}(M)} \operatorname{Pr}(w) h_{w}-\sum_{w \in \mathcal{L}_{L_{i}}(M)} \operatorname{Pr}(w) \tilde{h}_{w} \\
& =\sum_{w \in \mathcal{L}_{L_{i}}(M)} \operatorname{Pr}(w) \cdot\left(h_{w}-\tilde{h}_{w}\right) \\
& \stackrel{(b)}{\geq} \sum_{w \in A_{\epsilon, L_{i}}^{c}} \operatorname{Pr}(w) \cdot\left(h_{w}-\tilde{h}_{w}\right) \\
& \geq \operatorname{Pr}\left(A_{\epsilon, L_{i}}^{c}\right) \cdot f^{*} \\
& \geq \delta f^{*} \tag{8}
\end{align*}
$$

Step (a) follows from Eqs. (5) and (6) and step (b) follows from Eq. (4). Equation (8) implies that $h_{\mu}(L) \nrightarrow h_{\mu}$, which is a contradiction. Hence, we know $\lim _{L \rightarrow \infty} \mathcal{U}(L)=0$.

Proof of Case (ii): M with minimum distinguishing length $L^{*}>1$.

Let n^{*} be the minimum distinguishing length for M. Take $n \geq n^{*}$ and relatively prime to the period p of M 's graph, so that M^{n} is an ϵ-machine with a minimum distinguishing length of 1 . Let Y_{L} be the RV for the $L_{t h}$ output symbol generated by the machine M^{n}, let R_{L} be the RV for $M^{n}{ }^{\prime}{ }_{\mathrm{s}} L_{t h}$ state, and let $\mathcal{V}(L)=H\left[R_{L} \mid \vec{Y}^{L}\right]$. Note that for any L :

$$
\begin{equation*}
\mathcal{V}(L)=\mathcal{U}(n L) \tag{9}
\end{equation*}
$$

Now, for a contradiction assume $\lim _{L \rightarrow \infty} \mathcal{U}(L) \neq 0$. Then, since $\mathcal{U}(L)$ is monotonically decreasing, we know that there exists some $\epsilon>0$ such that $\mathcal{U}(L) \geq \epsilon$, for all L. Thus, by Eq. (99), we know that $\mathcal{V}(L) \geq \epsilon$ for all L as well, so $\mathcal{V}(L) \nrightarrow 0$. However, since M^{n} has a minimum distinguishing length of 1 by case (i) above, we know that $\lim _{L \rightarrow \infty} \mathcal{V}(L)$ must vanish. This contradiction implies that $\lim _{L \rightarrow \infty} \mathcal{U}(L)=0$.

VI. THE NONEXACT MACHINE SYNCHRONIZATION THEOREM

In this section we prove our primary result, the Nonexact Machine Synchronization Theorem. This extends the weak asymptotic synchronization result of Sec. V to show that synchronization occurs exponentially fast for nonexact machines. The statement is quite analogous to the Exact Machine Synchronization Theorem given in Ref. [1]. Essentially, it says that, except on a set of words \vec{x}^{L} of exponentially small probability, an observer's uncertainty after observing \vec{x}^{L} is exponentially small.

The following notation will be used. $\Phi_{L} \equiv \phi\left(\vec{X}^{L}\right)$ is the random variable for the belief distribution over states induced by the first length- L word the machine generates, and \bar{S}_{L} is the most likely state in Φ_{L} (if a tie the lowest numbered state is taken). $P_{L} \equiv \operatorname{Pr}\left(\bar{S}_{L}\right)$ is the probability of the most likely state in the distribution Φ_{L}, and $Q_{L} \equiv \operatorname{Pr}\left(\operatorname{NOT} \bar{S}_{L}\right)$ is the combined probability of all
other states in the distribution Φ_{L}. For example, if $\Phi_{L}=$ $(0.2,0.7,0.1)$, then $\bar{S}_{L}=\sigma_{2}, P_{L}=0.7$, and $Q_{L}=0.3$. Realizations are denoted $\phi_{L}, \bar{s}_{L}, p_{L}$, and q_{L}, respectively. We also define $U_{L}=H\left[\Phi_{L}\right]$ and $u_{L}=H\left[\phi_{L}\right]$.

Theorem 1. (Nonexact Machine Synchronization Theorem) For any nonexact ϵ-machine M,

1. There exist constants $K_{1}>0$ and $0<\alpha_{1}<1$ such that:

$$
\operatorname{Pr}\left(Q_{L}>\alpha_{1}^{L}\right) \leq K_{1} \alpha_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

2. There exist constants $K_{2}>0$ and $0<\alpha_{2}<1$ such that:

$$
\operatorname{Pr}\left(U_{L}>\alpha_{2}^{L}\right) \leq K_{2} \alpha_{2}^{L}, \text { for all } L \in \mathbb{N}
$$

The proof strategy is as follows. We first take a power machine M^{n} of the machine M with $\mathcal{U}(n)=\epsilon \ll 1$, and prove the theorem for the power machine. We then use the exponential convergence of the power machine to establish the theorem in general with a subsequence-type argument.

The following lemma on large deviations of Markov chains will be critical.

Lemma 1. Let Z_{0}, Z_{1}, \ldots be a finite-state, irreducible Markov chain, with state set $R=\left\{r_{1}, \ldots, r_{n}\right\}$ and equilibrium distribution $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right)$. Let $F: R \rightarrow \mathbb{R}$, $Y_{L}=F\left(Z_{L}\right)$, and $\bar{Y}_{L}=\frac{1}{L}\left(Y_{0}+\ldots+Y_{L-1}\right)$. Define $\mu_{F}=\mathbb{E}_{\rho}(F)=\sum_{k} \rho_{k} F\left(r_{k}\right)$. Then, for any $\epsilon>0$, there exist constants $K>0$ and $0<\alpha<1$ such that, for any state r_{k} :

$$
\operatorname{Pr}\left(\left|\bar{Y}_{L}-\mu_{F}\right|>\epsilon \mid \mathcal{S}_{0}=r_{k}\right) \leq K \alpha^{L}, \text { for all } L \in \mathbb{N}
$$

Proof. A similar statement (with more explicit values of the constants) is given in Ref. [9] for a general class of Markov chains, which includes all finite-state, irreducible, aperiodic chains. The result stated here follows directly for finite-state, irreducible, aperiodic chains, and can be extended to the periodic case by considering length p blocks, where p is the chain's period.

Remark. Note that since the deviation bound holds conditionally on any initial state r_{k}, it also holds conditionally on any distribution over the initial state by linearity. In particular, we apply this lemma assuming $Z_{0} \sim \rho$.

Let us denote:

$$
\begin{aligned}
\operatorname{Pr}\left(x, \sigma_{k}\right) & =\operatorname{Pr}\left(\mathcal{S}_{0}=\sigma_{k}, X_{0}=x\right), \\
\operatorname{Pr}\left(x \mid \sigma_{k}\right) & =\operatorname{Pr}\left(X_{0}=x \mid \mathcal{S}_{0}=\sigma_{k}\right), \\
\operatorname{Pr}\left(\sigma_{k} \mid x\right) & =\operatorname{Pr}\left(\mathcal{S}_{0}=\sigma_{k} \mid X_{0}=x\right), \text { and } \\
\sigma_{\text {max }, x} & =\operatorname{argmax} \operatorname{Pr}\left(\sigma_{k} \mid x\right),
\end{aligned}
$$

where again the lowest numbered state is chosen in the case of a tie for $\sigma_{\max , x}$. Also, for any x and σ_{j} with
$\operatorname{Pr}\left(x \mid \sigma_{j}\right)>0$, let us define:

$$
\begin{aligned}
\mathcal{S}_{x, j} & =\left\{\sigma_{k} \in \mathcal{S}: \operatorname{Pr}\left(x \mid \sigma_{k}\right)>0, \delta\left(\sigma_{k}, x\right) \neq \delta\left(\sigma_{j}, x\right)\right\}, \\
g\left(x, \sigma_{j}\right) & =\max _{\sigma_{k} \in \mathcal{S}_{x, j}} \operatorname{Pr}\left(x \mid \sigma_{k}\right), \text { and } \\
f\left(x, \sigma_{j}\right) & =\max _{\sigma_{k} \in \mathcal{S}_{x, j}} \operatorname{Pr}\left(\sigma_{k} \mid x\right) .
\end{aligned}
$$

Note that $g\left(x, \sigma_{j}\right)$ and $f\left(x, \sigma_{j}\right)$ are both always strictly positive for nonexact ϵ-machines. And, also, that for any joint length- L realization $\left(\vec{x}^{L}, \vec{s}^{L}\right)$:

$$
\begin{equation*}
\frac{p_{L}}{q_{L}} \geq \frac{\operatorname{Pr}\left(s_{0}\right)}{\operatorname{Pr}\left(\mathrm{NOT} s_{0}\right)} \prod_{i=0}^{L-1} \frac{\operatorname{Pr}\left(x_{i} \mid s_{i}\right)}{g\left(x_{i}, s_{i}\right)} \tag{10}
\end{equation*}
$$

by Eq. (1). Here, $\operatorname{Pr}\left(s_{0}\right)=\pi_{k}$ is the stationary probability of the state $s_{0}=\sigma_{k}$ and $\operatorname{Pr}\left(\mathrm{NOT} s_{0}\right)=1-\operatorname{Pr}\left(s_{0}\right)$.

Using Lemma 1 we now prove our desired theorem under the (relatively strong) assumption that:

$$
\begin{equation*}
\mathbb{E}_{\pi_{e d g e}}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0}\right)}{g\left(X_{0}, \mathcal{S}_{0}\right)}\right)\right\}>0 \tag{11}
\end{equation*}
$$

This assumption will later be satisfied for some power machine M^{n}.

Lemma 2. Let M be a nonexact ϵ-machine satisfying Eq. (11). Then :

1. There exist constants $K_{1}>0$ and $0<\alpha_{1}<1$ such that:

$$
\operatorname{Pr}\left(Q_{L}>\alpha_{1}^{L}\right) \leq K_{1} \alpha_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

2. There exist constants $K_{2}>0$ and $0<\alpha_{2}<1$ such that:

$$
\operatorname{Pr}\left(U_{L}>\alpha_{2}^{L}\right) \leq K_{2} \alpha_{2}^{L}, \text { for all } L \in \mathbb{N}
$$

Proof. We first prove Claim 1 and then use this to show Claim 2.

Proof of Claim 1: Consider the edge-labeled Markov machine $M_{\text {edge }}$ that generates the process $\mathcal{P}_{\text {edge }}$. Let $Z_{L}=\left(X_{L}, \mathcal{S}_{L}\right)$ denote the RV for the $L_{t h} M_{\text {edge }}$ (symbol, state) pair and let:

$$
\begin{aligned}
Y_{L} & =F\left(Z_{L}\right) \\
& =\log _{2}\left(\frac{\operatorname{Pr}\left(X_{L} \mid \mathcal{S}_{L}\right)}{g\left(X_{L}, \mathcal{S}_{L}\right)}\right)
\end{aligned}
$$

We assume, of course, that $\left(X_{0}, \mathcal{S}_{0}\right) \sim \pi_{\text {edge }}$ or, equivalently, $\mathcal{S}_{0} \sim \pi$.

By hypothesis, $\mu_{F}=\mathbb{E}_{\pi_{\text {edge }}}(F)=C>0$. Take $\epsilon=$ $C / 2$. By Lemma 1. there exist constants $B_{1}>0$ and $0<\eta_{1}<1$ such that:

$$
\operatorname{Pr}\left(\left|\bar{Y}_{L}-\mu_{F}\right|>\epsilon\right) \leq B_{1} \eta_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

Thus, for any L :

$$
\begin{aligned}
\operatorname{Pr}\left(\sum_{i=0}^{L-1} \log _{2}\left(\frac{\operatorname{Pr}\left(X_{i} \mid \mathcal{S}_{i}\right)}{g\left(X_{i}, \mathcal{S}_{i}\right)}\right)<\frac{C}{2} L\right) & =\operatorname{Pr}\left(\bar{Y}_{L}<C / 2\right) \\
& =\operatorname{Pr}\left(\bar{Y}_{L}<\mu_{F}-\epsilon\right) \\
& \leq \operatorname{Pr}\left(\left|\bar{Y}_{L}-\mu_{F}\right|>\epsilon\right) \\
& \leq B_{1} \eta_{1}^{L}
\end{aligned}
$$

Now, let $\vec{z}^{L}=\left(\vec{x}^{L}, \vec{s}^{L}\right)$ be any typical sequence, i.e.:

$$
\sum_{i=0}^{L-1} \log _{2}\left(\frac{\operatorname{Pr}\left(x_{i} \mid x_{i}\right)}{g\left(x_{i}, x_{i}\right)}\right) \geq \frac{C}{2} L
$$

So, taking logarithms of Eq. 10 we find:

$$
\begin{aligned}
\log _{2}\left(\frac{p_{L}}{q_{L}}\right) & \geq \log _{2}\left(\frac{\operatorname{Pr}\left(s_{0}\right)}{\operatorname{Pr}\left(\mathrm{NOT} s_{0}\right)}\right)+\sum_{i=0}^{L-1} \log _{2}\left(\frac{\operatorname{Pr}\left(x_{i} \mid s_{i}\right)}{g\left(x_{i}, s_{i}\right)}\right) \\
& \geq \beta+\frac{C}{2} L
\end{aligned}
$$

where $\beta \equiv \min _{k} \log _{2}\left(\frac{\operatorname{Pr}\left(\mathcal{S}_{0}=\sigma_{k}\right)}{\operatorname{Pr}\left(\mathcal{S}_{0} \neq \sigma_{k}\right)}\right)$. Or, equivalently:

$$
\frac{p_{L}}{q_{L}} \geq 2^{\beta} \cdot 2^{\frac{C}{2} L}=B_{2} \eta_{2}^{L}
$$

where $B_{2} \equiv 2^{\beta}>0$ and $\eta_{2} \equiv 2^{C / 2}>1$. Thus:

$$
q_{L} \leq \frac{q_{L}}{p_{L}} \leq B_{3} \eta_{3}^{L}
$$

where $B_{3} \equiv 1 / B_{2}>0$ and $\eta_{3} \equiv 1 / \eta_{2}<1$. Since this holds for any typical sequence $\left(\vec{x}^{L}, \vec{s}^{L}\right)$ we have, for each L :

$$
\operatorname{Pr}\left(Q_{L}>B_{3} \eta_{3}^{L}\right) \leq B_{1} \eta_{1}^{L}
$$

And, therefore, for any $1>\alpha_{1}>\max \left\{\eta_{1}, \eta_{3}\right\}$ there exists a $K_{1}=K_{1}\left(\alpha_{1}\right)$ sufficiently large that:

$$
\operatorname{Pr}\left(Q_{L}>\alpha_{1}^{L}\right) \leq K_{1} \alpha_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

Proof of Claim 2: By Claim 1 we know there exist constants $K_{1}>0$ and $0<\alpha_{1}<1$ such that:

$$
\operatorname{Pr}\left(Q_{L}>\alpha_{1}^{L}\right) \leq K_{1} \alpha_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

Let us define:

$$
V_{L}^{+}=\left\{\vec{x}^{L}: q_{L}>\alpha_{1}^{L}\right\} \text { and } V_{L}^{-}=\left\{\vec{x}^{L}: q_{L} \leq \alpha_{1}^{L}\right\}
$$

Take L_{1} sufficiently large that $1-\alpha_{1}^{L} \geq 1 / 2$, for all $L \geq L_{1}$. Note that the first-order Taylor expansion about $x=1$ of $\log _{2}\left(1-\alpha_{1}^{L}\right) \approx-\log _{2}(e) \alpha_{1}^{L}+O\left(\alpha_{1}^{2 L}\right) \approx$ $-1.58 \alpha_{1}^{L}+O\left(\alpha_{1}^{2 L}\right)$. Thus, there exists some $L_{2} \in \mathbb{N}$ such that $\left|\log _{2}\left(1-\alpha_{1}^{L}\right)\right| \leq 2 \alpha_{1}^{L}$ for all $L \geq L_{2}$. Take $L_{0}=\max \left\{L_{1}, L_{2}\right\}$.

Then, for any $L \geq L_{0}$ and any $\vec{x}^{L} \in V_{L}^{-}$, we have:

$$
\begin{align*}
& H\left[\mathcal{S}_{L} \mid \vec{x}^{L}\right] \\
& \stackrel{(a)}{\leq} H\left[\left(1-\alpha_{1}^{L}, \frac{\alpha_{1}^{L}}{N-1}, \ldots, \frac{\alpha_{1}^{L}}{N-1}\right)\right] \\
& =-\left[\left(1-\alpha_{1}^{L}\right) \log _{2}\left(1-\alpha_{1}^{L}\right)+\alpha_{1}^{L} \log _{2}\left(\frac{\alpha_{1}^{L}}{N-1}\right)\right] \\
& =-\left(1-\alpha_{1}^{L}\right) \log _{2}\left(1-\alpha_{1}^{L}\right) \\
& -\alpha_{1}^{L} L \log _{2}\left(\alpha_{1}\right)+\alpha_{1}^{L} \log _{2}(N-1) \\
& \stackrel{(b)}{\leq}\left(1-\alpha_{1}^{L}\right) 2 \alpha_{1}^{L}-\alpha_{1}^{L} L \log _{2}\left(\alpha_{1}\right)+\alpha_{1}^{L} \log _{2}(N-1) \\
& \leq L C_{1} \alpha_{1}^{L} \\
& \leq C_{2} \alpha^{L}, \tag{12}
\end{align*}
$$

where $C_{1} \equiv 2-\log _{2}\left(\alpha_{1}\right)+\log _{2}(N-1)>0$, step (a) follows from the fact that $1-\alpha_{1}^{L} \geq 1 / 2$ for $L \geq L_{1}$, and step (b) follows from the Taylor expansion bound on $\left|\log _{2}\left(1-\alpha_{1}^{L}\right)\right|$ for $L \geq L_{2}$. In the last line, α may be chosen as any real number in the interval $\left(\alpha_{1}, 1\right)$ and $C_{2}=C_{2}(\alpha)$ is chosen sufficiently large to ensure the last inequality holds for all $L \geq L_{0}$.

Equation 12 implies that, for all $L \geq L_{0}$:

$$
\begin{aligned}
\operatorname{Pr}\left(U_{L} \leq C_{2} \alpha^{L}\right) & \geq \operatorname{Pr}\left(V_{L}^{-}\right) \\
& \geq 1-K_{1} \alpha_{1}^{L}
\end{aligned}
$$

So, we know:

$$
\operatorname{Pr}\left(U_{L}>C_{2} \alpha^{L}\right) \leq K_{1} \alpha_{1}^{L} \leq K_{1} \alpha^{L}, \text { for all } L \geq L_{0}
$$

Therefore, for any $\alpha_{2} \in(\alpha, 1)$ and L sufficiently large:

$$
\operatorname{Pr}\left(U_{L}>\alpha_{2}^{L}\right) \leq K_{1} \alpha_{2}^{L}
$$

And, hence, there exists some $K_{2} \geq K_{1}$ such that:

$$
\operatorname{Pr}\left(U_{L}>\alpha_{2}^{L}\right) \leq K_{2} \alpha_{2}^{L}, \text { for all } L \in \mathbb{N}
$$

To establish the theorem in general now, we show that for any machine M there exists a power machine M^{n} satisfying Eq. 11. To do so requires several additional lemmas.
Lemma 3. Let M be a nonexact ϵ-machine. Then, for all x and σ_{j} with $\operatorname{Pr}\left(x \mid \sigma_{j}\right)>0$:

$$
g\left(x, \sigma_{j}\right) \leq f\left(x, \sigma_{j}\right) \frac{\operatorname{Pr}(x)}{\operatorname{Pr}\left(\sigma_{j}\right)} \lambda^{2}
$$

where $\lambda \equiv \max _{i, j} \pi_{i} / \pi_{j}$ and $\operatorname{Pr}\left(\sigma_{j}\right)$ and $\operatorname{Pr}(x)$ are the respective stationary probabilities of the state σ_{j} and symbol $x: \operatorname{Pr}\left(\sigma_{j}\right)=\pi_{j}$ and $\operatorname{Pr}(x)=\operatorname{Pr}\left(X_{0}=x \mid \mathcal{S}_{0} \sim \pi\right)$.
Proof. Fix x and σ_{j}. Take $\sigma_{k_{1}} \in \mathcal{S}_{x, j}$ such that:

$$
\operatorname{Pr}\left(\sigma_{k_{1}} \mid x\right) / \operatorname{Pr}\left(\sigma_{k_{1}}\right)=\max _{\sigma_{k} \in \mathcal{S}_{x, j}} \operatorname{Pr}\left(\sigma_{k} \mid x\right) / \operatorname{Pr}\left(\sigma_{k}\right)
$$

and take $\sigma_{k_{2}} \in \mathcal{S}_{x, j}$ such that:

$$
\operatorname{Pr}\left(\sigma_{k_{2}} \mid x\right)=\max _{\sigma_{k} \in \mathcal{S}_{x, j}} \operatorname{Pr}\left(\sigma_{k} \mid x\right)
$$

Then: $\quad \frac{\operatorname{Pr}\left(\sigma_{k_{2}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{2}}\right)} \geq \frac{\operatorname{Pr}\left(\sigma_{k_{1}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{2}}\right)}$

$$
\begin{aligned}
& =\frac{\operatorname{Pr}\left(\sigma_{k_{1}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{1}}\right)} \cdot \frac{\operatorname{Pr}\left(\sigma_{k_{1}}\right)}{\operatorname{Pr}\left(\sigma_{k_{2}}\right)} \\
& \geq \frac{\operatorname{Pr}\left(\sigma_{k_{1}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{1}}\right)} \cdot 1 / \lambda
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\operatorname{Pr}\left(\sigma_{k_{2}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{j}\right)} & =\frac{\operatorname{Pr}\left(\sigma_{k_{2}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{2}}\right)} \cdot \frac{\operatorname{Pr}\left(\sigma_{k_{2}}\right)}{\operatorname{Pr}\left(\sigma_{j}\right)} \\
& \geq \frac{\operatorname{Pr}\left(\sigma_{k_{2}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{2}}\right)} \cdot 1 / \lambda
\end{aligned}
$$

Combining these relations we see that:

$$
\frac{\operatorname{Pr}\left(\sigma_{k_{1}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k_{1}}\right)} \leq \lambda^{2} \cdot \frac{\operatorname{Pr}\left(\sigma_{k_{2}} \mid x\right)}{\operatorname{Pr}\left(\sigma_{j}\right)}
$$

And, therefore:

$$
\begin{aligned}
g\left(x, \sigma_{j}\right) & =\max _{\sigma_{k} \in \mathcal{S}_{x, j}}\left\{\operatorname{Pr}\left(x \mid \sigma_{k}\right)\right\} \\
& =\max _{\sigma_{k} \in \mathcal{S}_{x, j}}\left\{\operatorname{Pr}\left(\sigma_{k} \mid x\right) \cdot \frac{\operatorname{Pr}(x)}{\operatorname{Pr}\left(\sigma_{k}\right)}\right\} \\
& =\max _{\sigma_{k} \in \mathcal{S}_{x, j}}\left\{\operatorname{Pr}\left(\sigma_{k} \mid x\right) / \operatorname{Pr}\left(\sigma_{k}\right)\right\} \cdot \operatorname{Pr}(x) \\
& =\frac{\operatorname{Pr}\left(\sigma_{k 1} \mid x\right)}{\operatorname{Pr}\left(\sigma_{k 1}\right)} \cdot \operatorname{Pr}(x) \\
& \leq \lambda^{2} \cdot \frac{\operatorname{Pr}\left(\sigma_{k 2} \mid x\right)}{\operatorname{Pr}\left(\sigma_{j}\right)} \cdot \operatorname{Pr}(x) \\
& =f\left(x, \sigma_{j}\right) \frac{\operatorname{Pr}(x)}{\operatorname{Pr}\left(\sigma_{j}\right)} \lambda^{2}
\end{aligned}
$$

Define $A_{\epsilon}=\mathcal{A}_{\epsilon, 1}=\{x \in \mathcal{A}: u(x)<\epsilon\}$.
Lemma 4. Let M be a nonexact ϵ-machine such that:

1. $\operatorname{Pr}\left(A_{\epsilon}\right)>1-\epsilon$, for some $\epsilon<1 / 2$, and
2. $\operatorname{Pr}\left(\sigma_{\max , x} \mid x\right) / f\left(x, \sigma_{\max , x}\right) \lambda^{2} \geq 2^{2 N^{2} \lambda^{2}}$, for all $x \in$ A_{ϵ}.
Then, $\mathbb{E}_{\pi_{\text {edge }}}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0}\right)}{g\left(X_{0}, \mathcal{S}_{0}\right)}\right)\right\}>0$.
Proof. Applying Lemma 3 we see:

$$
\begin{align*}
& \mathbb{E}_{\pi_{\text {edge }}}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0}\right)}{g\left(X_{0}, \mathcal{S}_{0}\right)}\right)\right\} \\
& \quad=\sum_{x \in \mathcal{A}} \sum_{j} \operatorname{Pr}\left(x, \sigma_{j}\right) \log _{2}\left(\frac{\operatorname{Pr}\left(x \mid \sigma_{j}\right)}{g\left(x, \sigma_{j}\right)}\right) \\
& \quad \geq \sum_{x \in \mathcal{A}} \sum_{j} \operatorname{Pr}\left(x, \sigma_{j}\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right) \operatorname{Pr}(x) / \operatorname{Pr}\left(\sigma_{j}\right)}{f\left(x, \sigma_{j}\right) \lambda^{2} \operatorname{Pr}(x) / \operatorname{Pr}\left(\sigma_{j}\right)}\right) \\
& \quad=\sum_{x \in \mathcal{A}} \operatorname{Pr}(x) \sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
& \quad=\sum_{x \in A_{\epsilon}} \operatorname{Pr}(x) \sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
& \quad+\sum_{x \in A_{\epsilon}^{c}} \operatorname{Pr}(x) \sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) . \quad(13 \tag{13}
\end{align*}
$$

Now, for any $x \in A_{\epsilon}^{c}$ we have:

$$
\begin{aligned}
\sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) & \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
& \geq \sum_{j} \lambda^{2}\left[\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}} \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}}\right)\right] \\
& \geq \sum_{j} \lambda^{2} \cdot-H\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}}\right) \\
& \geq \sum_{j} \lambda^{2} \cdot(-1) \\
& =-N \lambda^{2}
\end{aligned}
$$

where $H(\cdot)$ is the binary entropy function. So:

$$
\begin{align*}
\sum_{x \in A_{\epsilon}^{c}} \operatorname{Pr}(x) \sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) & \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
& \geq \operatorname{Pr}\left(A_{\epsilon}^{c}\right) \cdot-N \lambda^{2} \\
& >-\epsilon N \lambda^{2} \tag{14}
\end{align*}
$$

Also, if we let $\mathcal{S}^{-} \equiv \mathcal{S} /\left\{\sigma_{\max , x}\right\}$, then for any $x \in A_{\epsilon}$:

$$
\begin{aligned}
& \sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
&= \operatorname{Pr}\left(\sigma_{\max , x} \mid x\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{\max , x} \mid x\right)}{f\left(x, \sigma_{\max , x}\right) \lambda^{2}}\right) \\
&+\sum_{\sigma_{j} \in \mathcal{S}^{-}} \operatorname{Pr}\left(\sigma_{j} \mid x\right) \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
& \geq \frac{1}{N} 2 N^{2} \lambda^{2}+\sum_{\sigma_{j} \in \mathcal{S}^{-}} \lambda^{2}\left[\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}} \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right)\right] \\
& \geq \frac{1}{N} 2 N^{2} \lambda^{2}+\sum_{\sigma_{j} \in \mathcal{S}^{-}} \lambda^{2}\left[\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}} \log _{2}\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}}\right)\right] \\
& \geq 2 N \lambda^{2}+\sum_{\sigma_{j} \in \mathcal{S}^{-}} \lambda^{2} \cdot-H\left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{\lambda^{2}}\right) \\
& \geq 2 N \lambda^{2}-N \lambda^{2} \\
&= N \lambda^{2}
\end{aligned}
$$

And, hence:

$$
\begin{align*}
\sum_{x \in A_{\epsilon}} \operatorname{Pr}(x) \sum_{j} \operatorname{Pr}\left(\sigma_{j} \mid x\right) \log _{2} & \left(\frac{\operatorname{Pr}\left(\sigma_{j} \mid x\right)}{f\left(x, \sigma_{j}\right) \lambda^{2}}\right) \\
& \geq \operatorname{Pr}\left(A_{\epsilon}\right) \cdot N \lambda^{2} \\
& >(1-\epsilon) N \lambda^{2} \tag{15}
\end{align*}
$$

Combining Eqs. (13), (14), and 15 , we see that:

$$
\mathbb{E}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0}\right)}{g\left(X_{0}, \mathcal{S}_{0}\right)}\right)\right\}>(1-2 \epsilon) N \lambda^{2} \equiv C^{\prime}
$$

where $C^{\prime}>0$ for $\epsilon<1 / 2$. Since M is not exactly synchronizable, we know $g\left(x, \sigma_{j}\right)>0$ for all x and j, and so
this expectation must be finite. Hence, there exists some real number $C>C^{\prime}>0$ such that:

$$
\mathbb{E}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(X_{0} \mid \mathcal{S}_{0}\right)}{g\left(X_{0}, \mathcal{S}_{0}\right)}\right)\right\}=C
$$

Remark. In the above proof we implicitly assumed $\operatorname{Pr}\left(x, \sigma_{j}\right) \neq 0$ for all x and j. The sums for the expectation are, of course, computed only over those x and j for which $\operatorname{Pr}\left(x, \sigma_{j}\right) \neq 0$. Terms involving pairs $\left(x, \sigma_{j}\right)$ with $\operatorname{Pr}\left(x, \sigma_{j}\right)=0$ should be omitted.

Lemma 5. For any nonexact ϵ-machine M, there exists some $n \in \mathbb{N}$ such that the power machine M^{n} is an ϵ-machine with

$$
\mathbb{E}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(Y_{0} \mid R_{0}\right)}{g\left(Y_{0}, R_{0}\right)}\right)\right\}>0
$$

where Y_{L} is the $R V$ for the the $L_{t h}$ output symbol generated by the machine M^{n} and R_{L} is the $R V$ for the $L_{t h}$ M^{n}-state.

We also denote the alphabet of M^{n} as \mathcal{B} and the set A_{ϵ} for the machine M^{n} as B_{ϵ}; i.e., $B_{\epsilon} \sim A_{\epsilon, n}$ for M. We define $\bar{\sigma}(\phi)$ to be the most likely state in a distribution ϕ over the machine states, and $\operatorname{Pr}(\bar{\sigma}(\phi))$ to be the probability of this state in the distribution ϕ. For example, if $\phi=(0.3,0.1,0.2,0.4)$, then $\bar{\sigma}(\phi)=\sigma_{4}$ and $\operatorname{Pr}(\bar{\sigma}(\phi))=0.4$.

Proof. Given any nonexact ϵ-machine M,

1. Take $\bar{\epsilon}^{-1}=N \lambda^{2} \cdot 2^{2 N^{2} \lambda^{2}}$.
2. Take ϵ small enough that $\operatorname{Pr}(\bar{\sigma}(\phi))>1-\bar{\epsilon}$ for any distribution ϕ with $H[\phi]<\epsilon$. (Without loss of generality, we may assume $\epsilon<1 / 2$.)
3. For ϵ as above, take n relatively prime to the period p of M 's graph and large enough such that $\operatorname{Pr}\left(A_{\epsilon, n}\right)>1-\epsilon$. (Note that this is possible since $\lim _{L \rightarrow \infty} \operatorname{Pr}\left(A_{\epsilon, L}\right)=1$, for all $\epsilon>0$, since $\lim _{L \rightarrow \infty} \mathcal{U}(L)=0$.)

Then, M^{n} is an ϵ-machine for the process \mathcal{P}^{n} and $\operatorname{Pr}\left(B_{\epsilon}\right)=\operatorname{Pr}\left(A_{\epsilon, n}\right)>1-\epsilon$. Moreover, for all $y \in B_{\epsilon}$ we have:

$$
\begin{aligned}
H[\phi(y)]<\epsilon & \xlongequal[(a)]{\Longrightarrow} \operatorname{Pr}(\bar{\sigma}(\phi(y))>1-\bar{\epsilon} \\
& \Longrightarrow f\left(y, \sigma_{\max , y}\right)<\bar{\epsilon} \\
& \Longrightarrow \frac{\operatorname{Pr}\left(\sigma_{\max , y} \mid y\right)}{f\left(y, \sigma_{\max , y}\right)}>\frac{1 / N}{\bar{\epsilon}} \\
& \xlongequal{(b)} \frac{\operatorname{Pr}\left(\sigma_{\max , y} \mid y\right)}{f\left(y, \sigma_{\max , y}\right)}>\lambda^{2} \cdot 2^{2 N^{2} \lambda^{2}} \\
& \Longrightarrow \frac{\operatorname{Pr}\left(\sigma_{\max , y} \mid y\right)}{f\left(y, \sigma_{\max , y}\right) \lambda^{2}}>2^{2 N^{2} \lambda^{2}}
\end{aligned}
$$

where step (a) follows from item 2 above and step (b) follows from our choice of $\bar{\epsilon}$ above. Hence, by Lemma 4 .

$$
\mathbb{E}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(Y_{0} \mid R_{0}\right)}{g\left(Y_{0}, R_{0}\right)}\right)\right\}=C>0
$$

(Note that λ for M is the same as λ for M^{n}, since M and M^{n} have the same stationary distribution π.)

Finally, in order to convert between U_{L} and Q_{L} convergence in our theorem we need one last lemma.

Lemma 6. For any Φ_{L} :

1. If $Q_{L} \leq 1 / 2$, then $U_{L} \geq Q_{L}$.
2. If $Q_{L}>1 / 2$, then $U_{L} \geq H(1 / N)$, where $H(\cdot)$ is the binary entropy function.

Proof. Note that:

$$
\begin{aligned}
U_{L} & =H\left[\Phi_{L}\right] \\
& \geq H\left[\left(1-Q_{L}, Q_{L}, 0, \ldots, 0\right)\right] \\
& =H\left(Q_{L}\right)
\end{aligned}
$$

Since $H\left(Q_{L}\right) \geq Q_{L} \log _{2}\left(1 / Q_{L}\right)$, we know $H\left(Q_{L}\right) \geq Q_{L}$ for $Q_{L} \leq 1 / 2$. Since $H\left(Q_{L}\right)$ is monotonically decreasing on $\left[\frac{1}{2}, 1-1 / N\right]$ and Q_{L} is at most $1-1 / N$, we know $H\left(Q_{L}\right) \geq H(1-1 / N)=H(1 / N)$ for $Q_{L}>1 / 2$.

Using these lemmas we can now prove the primary result of this section.

Proof. (Nonexact Machine Synchronization Theorem) We first prove claim 2 of the theorem and then use this to show its claim 1.

Proof of Claim 2: Given any nonexact ϵ-machine machine M, take a power machine M^{n} as in Lemma 5 such that:

$$
\mathbb{E}\left\{\log _{2}\left(\frac{\operatorname{Pr}\left(Y_{0} \mid R_{0}\right)}{g\left(Y_{0}, R_{0}\right)}\right)\right\}=C>0
$$

Denote the random variable U_{L} for the machine M^{n} as V_{L} and the quantity $\mathcal{U}(L)$ for the machine M^{n} as $\mathcal{V}(L)$. By Lemma 2 we know there exist constants $B_{1}>0$ and $0<\eta_{1}<1$ such that:

$$
\operatorname{Pr}\left(V_{L}>\eta_{1}^{L}\right) \leq B_{1} \eta_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

A proof identical to that of Prop. 3 below then shows there exists some $B_{2}>B_{1}$ such that:

$$
\mathcal{V}(L) \leq B_{2} \eta_{1}^{L}, \text { for all } L \in N
$$

Or, equivalently:

$$
\mathcal{U}(n L) \leq B_{2} \eta_{1}^{L}, \text { for all } L \in \mathbb{N}
$$

Taking $\eta_{2}=\eta_{1}^{1 / n}$ we have:

$$
\mathcal{U}(m) \leq B_{2} \eta_{2}^{m}
$$

for any length m that is an integer multiple of n. Since $\mathcal{U}(m) \leq \log _{2}(N)$ for any m and is monotonically decreasing, it follows that:

$$
\mathcal{U}(m) \leq K \eta_{2}^{m}, \text { for all } m \in \mathbb{N}
$$

where $K \equiv 1 / \eta_{2}^{n} \cdot \max \left\{B_{2}, \log _{2}(N)\right\}$. Thus, by the Markov inequality we have, for any $m \in \mathbb{N}$ and $t>0$:

$$
\operatorname{Pr}\left(U_{m}>t\right) \leq \frac{\mathbb{E} U_{m}}{t}=\frac{\mathcal{U}(m)}{t} \leq \frac{K \eta_{2}^{m}}{t}
$$

Taking $t=\eta_{2}^{m / 2}$ yields:

$$
\operatorname{Pr}\left(U_{m}>\alpha^{m}\right) \leq K \alpha^{m}
$$

where $\alpha \equiv \eta_{2}^{1 / 2}$.
Proof of Claim 1: By Claim 2 we know there exist constants $K>0$ and $0<\alpha<1$ such that:

$$
\operatorname{Pr}\left(U_{L}>\alpha^{L}\right) \leq K \alpha^{L}, \text { for all } L \in \mathbb{N}
$$

Take L_{0} large enough that $\alpha^{L_{0}}<H(1 / N)$. Then, for all $L \geq L_{0}$ we have:

$$
\begin{aligned}
\operatorname{Pr}\left(Q_{L}\right. & \left.>\alpha^{L}\right)=\operatorname{Pr}\left(\alpha^{L}<Q_{L} \leq 1 / 2\right)+\operatorname{Pr}\left(Q_{L}>1 / 2\right) \\
& \stackrel{(*)}{\leq} \operatorname{Pr}\left(U_{L}>\alpha^{L}, Q_{L} \leq 1 / 2\right)+\operatorname{Pr}\left(U_{L} \geq H(1 / N)\right) \\
& \leq \operatorname{Pr}\left(U_{L}>\alpha^{L}\right)+\operatorname{Pr}\left(U_{L}>\alpha^{L}\right) \\
& \leq 2 K \alpha^{L}
\end{aligned}
$$

where step $\left(^{*}\right)$ follows from Lemma 6. Hence, for some $\tilde{K} \geq 2 K$ we have:

$$
\operatorname{Pr}\left(Q_{L}>\alpha^{L}\right) \leq \tilde{K} \alpha^{L}, \text { for all } L \in \mathbb{N}
$$

VII. CONSEQUENCES

As a direct consequence of Thm. 1 we establish exponential convergence results for $\mathcal{U}(L)$ and $h_{\mu}(L)$ analogous to those in the exact case [1]. We also use Thm. 1 to prove the existence of pointwise almost everywhere (a.e.) exponential synchronization for nonexact machines. This establishes that any ϵ-machine is indeed asymptotically synchronizable in the pointwise sense of Def. 8 .

A. Exponential Convergence of $\mathcal{U}(L)$

Proposition 3. For any nonexact ϵ-machine M there exist constants $K>0$ and $0<\alpha<1$ such that

$$
\mathcal{U}(L) \leq K \alpha^{L}, \text { for all } L \in \mathbb{N}
$$

Proof. Let M be any nonexact ϵ-machine. Then by Thm. 1 there exist constants $C>0$ and $0<\alpha<1$ such that $\operatorname{Pr}\left(U_{L}>\alpha^{L}\right) \leq C \alpha^{L}$, for all $L \in \mathbb{N}$. Define:

$$
\begin{aligned}
& A_{L}=\left\{w \in \mathcal{L}_{L}(M): u(w) \leq \alpha^{L}\right\} \text { and } \\
& A_{L}^{c}=\mathcal{L}_{L}(M) / A_{L}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\mathcal{U}(L) & =\sum_{w \in \mathcal{L}_{L}(M)} \operatorname{Pr}(w) u(w) \\
& =\sum_{w \in A_{L}} \operatorname{Pr}(w) u(w)+\sum_{w \in A_{L}^{c}} \operatorname{Pr}(w) u(w) \\
& \leq \operatorname{Pr}\left(A_{L}\right) \cdot \alpha^{L}+\operatorname{Pr}\left(A_{L}^{c}\right) \cdot \log _{2}(N) \\
& \leq 1 \cdot \alpha^{L}+C \alpha^{L} \cdot \log _{2}(N) \\
& =K \alpha^{L}
\end{aligned}
$$

where $K \equiv 1+C \log _{2}(N)$.

B. Exponential Convergence of $h_{\mu}(L)$

Proposition 4. For any nonexact ϵ-machine M, there exist constants $K>0$ and $0<\alpha<1$ such that:

$$
h_{\mu}(L)-h_{\mu} \leq K \alpha^{L}, \text { for all } L \in \mathbb{N}
$$

Proof. This follows directly from Prop. 3 and Lemma 7 below.

Lemma 7. For any ϵ-machine M and any $L \in \mathbb{N}$:

$$
\begin{equation*}
h_{\mu}(L+1)-h_{\mu} \leq \mathcal{U}(L) \tag{16}
\end{equation*}
$$

Proof. Note that:

$$
\begin{align*}
H\left[\vec{X}^{L}, X_{L}, \mathcal{S}_{L}\right] & =H\left[\vec{X}^{L}\right]+H\left[\mathcal{S}_{L} \mid \vec{X}^{L}\right]+H\left[X_{L} \mid \vec{X}^{L}, \mathcal{S}_{L}\right] \\
& =H\left[\vec{X}^{L}\right]+H\left[\mathcal{S}_{L} \mid \vec{X}^{L}\right]+H\left[X_{L} \mid \mathcal{S}_{L}\right] \\
& =H\left[\vec{X}^{L}\right]+H\left[\mathcal{S}_{L} \mid \vec{X}^{L}\right]+h_{\mu} \tag{17}
\end{align*}
$$

and also that:

$$
\begin{array}{r}
H\left[\vec{X}^{L}, X_{L}, \mathcal{S}_{L}\right]=H\left[\vec{X}^{L}\right]+H\left[X_{L} \mid \vec{X}^{L}\right] \\
+H\left[\mathcal{S}_{L} \mid \vec{X}^{L}, X_{L}\right] \tag{18}
\end{array}
$$

Equating the RHS of Eqs. (17) and (18) gives:

$$
\begin{align*}
H\left[\mathcal{S}_{L} \mid \vec{X}^{L}\right]+h_{\mu} & =H\left[X_{L} \mid \vec{X}^{L}\right]+H\left[\mathcal{S}_{L} \mid \vec{X}^{L}, X_{L}\right] \\
& \geq H\left[X_{L} \mid \vec{X}^{L}\right] \tag{19}
\end{align*}
$$

Or, in other words:

$$
\begin{equation*}
\mathcal{U}(L)+h_{\mu} \geq h_{\mu}(L+1) \tag{20}
\end{equation*}
$$

Remark. If we define the synchronization and predication decay exponents, respectively, as:

$$
\begin{aligned}
& \alpha_{s}=\limsup _{L \rightarrow \infty} \mathcal{U}(L)^{1 / L} \\
& \alpha_{p}=\limsup _{L \rightarrow \infty}\left(h_{\mu}(L)-h_{\mu}\right)^{1 / L}
\end{aligned}
$$

then Lemma 7 also implies that $\alpha_{p} \leq \alpha_{s}$. This is to say, the observer's predictions approach their optimal level at least as fast as the observer synchronizes. Since Lemma 7 applies to any ϵ-machine, this statement also holds for any ϵ-machine (exact or nonexact).

C. Pointwise A.E. Asymptotic Synchronization

Proposition 5. For any nonexact ϵ-machine M there exists some $0<\alpha<1$ such that for a.e. $\vec{x} \in \mathcal{L}_{\infty}(M)$, there exists $L_{0} \in \mathbb{N}$ such that for all $L \geq L_{0}$,

$$
u\left(\vec{x}^{L}\right) \leq \alpha^{L}
$$

Proof. Apply the Borel-Cantelli Lemma to Thm. 1.

VIII. CONCLUSION

We analyzed the process of asymptotic synchronization to nonexact ϵ-machines. Although the treatment is more involved mathematically, the primary results are essentially the same as those for the exact case given in Ref. [1. An observer's average state uncertainty $\mathcal{U}(L)$ vanishes exponentially fast and, consequently, an observer's average uncertainty in predictions $h_{\mu}(L)$ converges to the machine's entropy rate h_{μ} exponentially fast, as well.

In the future, we hope to extend these synchronization results to more general model classes such as countable state ϵ-machines or nonunifilar HMMs. We also would like to develop better bounds on the exponent α given in the convergence theorems.

Acknowledgments

NT was partially supported by an NSF VIGRE fellowship. This work was partially supported by the Defense Advanced Research Projects Agency (DARPA) Physical Intelligence project via subcontract No. 9060-000709. The views, opinions, and findings contained here are those of the authors and should not be interpreted as representing the official views or policies, either expressed or implied, of the DARPA or the Department of Defense.
[1] N. Travers and J. P. Crutchfield. Exact synchronization for finite-state sources. 2010. arxiv.org:1008.4182 [nlin.CD].
[2] J. P. Crutchfield and D. P. Feldman. Regularities unseen, randomness observed: Levels of entropy convergence. CHAOS, 13(1):25-54, 2003.
[3] C. J. Ellison, J. R. Mahoney, and J. P. Crutchfield. Prediction, retrodiction, and the amount of information stored in the present. J. Stat. Phys., 136(6):1005-1034, 2009.
[4] J. R. Mahoney, C. J. Ellison, and J. P. Crutchfield. Information accessibility and cryptic processes. J. Phys. A: Math. Theo., 42:362002, 2009.
[5] J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Let., 63:105-108, 1989.
[6] T. M. Cover and J. A. Thomas. Elements of Informa-
tion Theory. Wiley-Interscience, New York, second edition, 2006.
[7] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University of Illinois Press, Champaign-Urbana, 1962.
[8] J. L. Massey. Markov information sources. In J. K. Skwirzynski, editor, New Directions in Signal Processing in Communication and Control, volume E25 of NATO Advanced Study Institutes Series, pages 15-26. Noordhoff, Leyden, The Netherlands, 1975.
[9] P. W. Glynn and D. Ormoneit. Hoeffding's inequality for uniformly ergodic Markov chains. Stat. Prob. Lett., 56(2):143-146, 2002.

[^0]: *Electronic address: ntravers@math.ucdavis.edu
 \dagger Electronic address: chaos@cse.ucdavis.edu

