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Abstract
Profit maximization is difficult. Sophisti-

cated and experienced managers often disagree
about which action is most likely to maximize
profits for a given firm. Economic models of
profit maximization, on the other hand, are—in
general—easy to solve. Well-trained economists
can readily discern the action which maximizes
the firm’s objective function. The global maxi-
mum is unique and achievable because the ob-
jective function is designed to have this prop-
erty. This paper weakens the assumption of an-
alytically tractable objective functions. I pro-
pose a model of profit maximization in which it
is, essentially, impossible for the firm to dis-
cover the global maximum. Firms have no
choice but to, in the words of Charles Lind-
blom, “muddle through” in their attempt to
find the optimal budgetary allocation in an ex-
tremely complex economic landscape [9]. Com-
puter simulations provide details of that land-
scape as well as evidence that certain strategies
may be more effective in difficult environments.
Specifically, “patience” may be a virtue that ap-
plies to firms as well as to people.1

1 Introduction

Since the original formalization of the utility function
approach to economic theory by von Neumann and Mor-
genstern in 1944, it has been standard to assume that
the objective function is tractable [13]. That is, the pref-
erences of an agent may be represented by a function
which the agent is able to maximize, subject to certain
constraints. An agent knows which specific values of the
inputs maximize her objective function. For a large class
of functions, this is a perfectly reasonable assumption.
But, for an equally large class of alternative functions, it
is not. The question is: Which class of functions—those
which are easy to maximize or those which are difficult—
is more useful for modeling the behavior of economic
agents?

1Published in Evolutionary Programming V: Proceedings of the
Fifth Annual Conference on Evolutionary Programming. Edited
by Lawrence J. Fogel, Peter J. Angeline and Thomas Bäck. MIT
Press: Cambridge, Massachusetts, 1996, pp. 9–15.

I propose that functions which are difficult to max-
imize will prove to be better suited for modeling pur-
poses than functions which are not. The primary reason
for this lies in the irreducible complexity confronting eco-
nomic agents in the real world. In order to understand
how and why agents make decisions and to suggest meth-
ods by which those decisions might be improved, it is
necessary to model that complexity. This is the flip side
to Simon’s description of bounded rationality [12]. Fail-
ure to maximize can be explained in two complementary
ways: either agents are not intelligent enough to find a
findable maximum or the maximum is difficult for agents,
no matter how intelligent, to find. See [11] for a survey
of recent work focusing on the first explanation. This
paper details a model of the second.

The next section provides the theoretical background
to the classic example of profit maximization. A firm
has a fixed budget which it must allocate among a spec-
ified set of production inputs. Different budgetary allo-
cations yield different profit levels, and the firm would
like to discover which combination of inputs produces
the most profit. The third section describes a model
of economic “landscapes.” A landscape is a metaphor
which highlights the importance of local knowledge in
the search for increased profits. Firms presumably know
more about the profit characteristics of input combina-
tions which are “close” to their current position. There
is a “neighborhood” of alternate input combinations, al-
ternate points on a profit landscape, which are similar
to the current combination. Firms search this neighbor-
hood, move to points with higher profits, and thereby
climb the peaks of the profit landscape. The landscape
framework provides for an explicit model of the evolu-
tion of firm behavior [1]. The fourth section applies the
landscape model to questions of firm strategy. Certain
strategies for traversing the profit landscape are more
successful, on average, than others. In particular, a “pa-
tient” firm which looks for gradual improvements in prof-
its will achieve higher long-run profits than a “greedy”
firm which insists on always moving to the highest avail-
able point on the landscape. The fifth section concludes.
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2 Theoretical Background

To be concrete, consider the example of a firm which
seeks to maximize its profits by selecting the optimal al-
location of input spending subject to a budget constraint.

Definition 2.1 The budget, B ∈ {0, 1, 2, . . .}.

The budget constraint and all input variables are re-
stricted to the set of non-negative integers.

Definition 2.2 The set of inputs, X = {x : x =
x1x2 . . . xn with xi ∈ {0, 1, 2, . . .}}.

The profit function, Π, is drawn from the class of func-
tions which map a vector of N non-negative integers to
R.

Definition 2.3 The budget constraint,
∑n

i=1 xi = B.

2.1 Complexity

For an arbitrary function Π, the firm’s profit maximiza-
tion problem is well posed but difficult. The space of pos-
sible solutions is huge and, without assuming global qua-
siconcavity for Π, it is difficult to know how neighboring
points are related to one another. Profit maximization
becomes a problem of combinatorial optimization. In-
deed, von Neumann and Morgenstern themselves insisted
that “The emphasis on mathematical methods seems to
be shifted more towards combinatorics and set theory—
and away from the algorithm of differential equations
which dominate mathematical physics.” [13, p. 45] Con-
sider:

Claim 2.1 The number of different combinations of in-
put allocations which satisfy the budget constraint is(
N+B−1

B

)
. For a proof, see [3].

Even for relatively modest values of N and B, this
is a very large number. For example, if N = 20 and
B = 50 then there over 4.6× 1016 possible combinations
of integer budget allocations which exactly satisfy the
budget constraint. This number increases approximately
exponentially in N .

Moreover, the optimal allocation is extremely difficult
to find if Π is non-trivial. The problem is NP complete.
In contrast, assuming global quasiconcavity of Π allows a
firm to solve for the profit maximizing budget allocation
easily. Global quasiconcavity is important, and almost
universally assumed, because it makes finding the op-
timal input combination a reasonable goal. Consider a
profit maximization problem involving a budget of 50 to
be allocated among 20 different inputs. Without global
quasiconcavity or some other restricting assumption, it
is impossible to know whether or not any particular local
maximum is also the global maximum.

2.2 The Landscape Metaphor

In answering this question, it is helpful to picture profit
functions as landscapes. Visualize the case for N = 3.
All possible integer combinations of the three inputs
which satisfy the budget constraint constitute a two di-
mensional grid on a simplex. Each combination of inputs
generates a specific amount of profits via the Π func-
tion. Define the height of the landscape at any given
point to be the value of profits generated by the com-
bination of inputs specified by that point. A discontin-
uous set of points floats above the grid of input com-
binations. Higher points correspond to higher profits.
Connect neighboring profit points to each other if their
corresponding budget points are next to each other on
the simplex. The resulting profit landscape describes the
set of all possible profit amounts along with a method
for moving from one level of profit to another by moving
from one combination of inputs to another around the
simplex. The metaphor, if not the easy visualization,
can be extended to an arbitrary N .

The landscape metaphor originates in the study of
population genetics [14]. Wright described a fitness land-
scape in which each specific genotype had an associated
fitness, a measure of the reproduction likelihood of the
organism defined by that genotype. Evolution could then
be viewed as a search for higher points on the fitness
landscape.[6] In political science, the quintessential land-
scape would be electoral; a particular position on the is-
sues yields a specific number of votes [4]. Kollman et
al. perform computer simulations of a complex polit-
ical landscape to model party behavior [7]. Jones pro-
vides an excellent overview and analysis of the landscape
metaphor [5].

3 An Economic Landscape

Whatever the merits of the landscape metaphor in biol-
ogy and political science, however, the question remains
as to whether or not landscapes are useful in economics.
We can already imagine the traditional profit function as
a surface in the three dimensional (or more) space above
a grid of acceptable input combinations. How does call-
ing this profit function a “landscape” provide additional
insight into the underlying economic phenomenon of in-
terest?

The answer is that the landscape metaphor highlights
the idea of a “neighborhood” to which a firm could move
and, therefore, the importance of uncertainty surround-
ing the status quo. Presumably, firms have better in-
formation about the profitability of input combinations
near to their current position. Because they do not know
the global optimum, they must search for it—or at least
for points which improve on the status quo. Conceptu-
ally, that search occurs on a profit landscape.
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3.1 Model

Consider a firm faced with the single period profit maxi-
mization problem defined in Section 2. The key unspec-
ified part of the model is Π:

Definition 3.1 The profit function, Π(X) = c1x1 +
c2x2 + . . . + cnxn + cn+1x

2
1 + cn+2x

2
2 + . . . + c2nx

2
n +

c2n+1x1x2 + c2n+2x1x3 + . . . + cn∗(n+3)/2xn−1xn with
X = {x : x = x1x2 . . . xn with xi ∈ {0, 1, 2, . . .}} such
that

∑N
i=1 xi = B ∈ {0, 1, 2, . . .} and with ci ∈ [−1, 1].

In words, the profit function is linear in the input vari-
ables, their squares and cross products. Because the
profit function is the heart of the model, it requires a
few words of explanation and justification. Assume that
there is a “true” profit function. What are the char-
acteristics of this (unknown) function and how does it
compare with our proposal?

Approximation: Whatever the form of the true func-
tion, it may be approximated with a polynomial.
Consider Π to be such an approximation. More-
over, the specification allows us to place the prob-
lem of price effects within the overall profit function.
Depending on the how much of a given input a firm
purchases, the price which it pays for that input may
change. Definition 3.1 allows us to focus just on the
share of the budget which is devoted to a particu-
lar input; the effect of any gains or losses associated
with price movements caused by changes in budget
allocations are subsumed within the profit function.

Returns: Standard economic theory describes firms as
facing decreasing or constant returns. An additional
unit of a given input therefore does not increase prof-
its. However, recent work has helped to point out
the importance of increasing returns [2, 8]. Clearly,
there are situations in which increasing the bud-
getary share of a given input yields increasing prof-
its, just as there situations in which increasing the
same item yields constant or even decreasing profits.
The proposed profit function mimics this character-
istic.

Multiple local optima: It often appears to a firm that
its particular combination of inputs is optimal be-
cause small departures from that combination lead,
or can confidently be forecast to lead, to lower prof-
its. One of the primary goals of the day-to-day
functioning of the firm is, in fact, to maximize prof-
its taking a particular budget allocation as given.
Firms of the same size and in the same industry of-
ten allocate their budgets in very different ways. If
all are optimizing, then perhaps all are at different
local optima. For non-trivial choices of the ci terms,
the proposed profit function will feature numerous
local optima.

Difficulty: The most important characteristic of our
profit function is that it is difficult to solve. Even a
firm which knows exactly what it is trying to max-
imize will have trouble finding the global optimum,
or even knowing whether or not the specific local
optimum which it has discovered is the global one.
The primary contributors to this difficulty are the
intermixing of decreasing, constant and increasing
returns along with the existence of multiple local
optimum. This economic landscape is rugged. Any
landscape which is not rugged, on which the global
optimum is easy to find, fails to capture the com-
plexity of actual economic life.

There are obviously an infinite number, not just of
functions but of classes of functions, which map an N -
tuple of integers into the reals. A particular realization
of our function, defined by a specific set of values for
the ci terms is an example drawn from one such class.
A profit function, to be realistic, to adequately capture
and model the difficulties faced by firms, must have cer-
tain attributes. First, it must be difficult, where dif-
ficulty implies the existence of numerous local optima
and a hard-to-find global optimum. Second, that dif-
ficulty should derive from the underlying economics of
the model. There are many rugged landscapes which
have little connection to economics. The profit land-
scape outlined above is rugged because it allows for in-
creasing and decreasing returns along with a variety of
complimentarities—both beneficial and harmful—among
various inputs. Third, the profit function, or the model
in which it is embedded, should capture the importance
of the status quo and of the information gleaned from the
neighborhood surrounding it. In their search for higher
profits, firms have to start from where they are. We now
formalize the importance of vicinity to the status quo.

3.2 Neighborhoods

The landscape metaphor is unintelligible without the no-
tion of a neighborhood. For a certain point to be a
“peak,” all the surrounding points must yield lower prof-
its. But precisely which points are “surrounding,” are in
the “neighborhood,” of a putative peak?

In the context of our model, a fairly straightforward
definition of neighborhood is:

Definition 3.2 The neighborhood of an input vector,
X = {x : x = x1x2 . . . xn with xi ∈ {0, 1, 2, . . .}} con-
sists of all those points, X ′ = {x′ : x′ = x′

1x
′
2 . . . x

′
n

with x′
i ∈ {0, 1, 2, . . .}} with exactly one x′

i = xi − 1 and
x′
i+1 = xi+1 +1 and, for all x′

j such that j �= i, i+1 then
x′
j = xj.

In words, the neighborhood of a given budget alloca-
tion X is the set of points such that all the individual al-
locations are identical except for two; and, for those two,
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one input receives one more unit—call them dollars—
and the other input receives one less unit. It is clear
that if X satisfies the budget constraint, then all points
in the neighborhood of X will also satisfy the constraint.
Note that the redistribution of one dollar cannot go from
a given input to any arbitrary input. Instead, each in-
put is “partnered” with one other input to which it may
transfer dollars. Each input may also, therefore, receive
dollars from one other input. The subscripts denote this
transfer scheme. Input i may receive dollars from in-
put i− 1 and transfer dollars to input i+ 1. (For i = N ,
transfers go to i = 0, thereby completing the cycle.) Any
circular transfer scheme may be modeled by renumbering
the inputs.

Other definitions of neighborhood are possible, and
may even be more appropriate in certain circumstances.
For example, the network of possible transfers could be
more dense. Each input could transfer/receive dollars
from two other inputs. This would double, in general,
the number of points in the neighborhood surrounding
any given point. Another change to the definition of
a neighborhood would involve allowing larger changes in
the budget allocations than just a single dollar. Consider
a firm with the ability the re-allocate up to two dollars,
from a single budget item, to other inputs. A neighbor-
hood would then include the same set of points as before
plus points which involve larger redistributions. Not only
could the firm take one dollar from xi and redistribute
it to xi+1, it could do the same with two dollars.

It is important to note that changing the definition of a
neighborhood does more than simply change the frame-
work for considering a given landscape; it fundamentally
alters the landscape itself. A peak with one dollar re-
distribution may or may not be a peak under two dollar
redistribution. A point which is “near” the global opti-
mum under one definition of neighborhood may be “far”
from the global optimum under another. It is necessary
to include in the definition of landscape a definition of
neighborhood. A landscape without neighborhoods is
a landscape without structure. Neighborhoods are the
conceptual device which transform standard profit func-
tions into profit landscapes.

3.3 Descriptive Statistics

Consider a profit landscape with one dollar redistribu-
tion and one connection per input, under the conditions
specified in Section 2 and using the profit function from
Definition 3.1. All points on the landscape are accessi-
ble from any given starting point in a finite number of
moves. For any particular realization of the landscape,
the set of coefficients, the ci’s, are randomly drawn from
the uniform interval [−1, 1]. The firm has a budget of
50 dollars which it seeks to allocate among 20 inputs in
order to maximize its next period profits. There is no
uncertainty. For any specified allocation, the firm knows

what level of profits will result. All of the following re-
sults are relatively robust to changes in the size of the
budget and the number of inputs.

3.3.1 Local Optima

We know that the space of possible budgetary combina-
tions is finite but immense. Specifically, there are over
4.6 × 1016 possible budgets, all of which are accessible
from any starting point on the profit landscape. The
first question is: How many local optima are there? If
there are very few, then the firm might consider a simple
hillclimbing strategy. If there are many local maxima,
then this strategy is likely to lead to a profit level which
is below the global maximum.

In fact, out of 2, 000, 000 individual budget combina-
tions tested (1, 000 unique points on 2, 000 different land-
scapes), only 8 were found to be local maxima—points
such that each of the surrounding points yields lower
profits. However, given the size of the entire landscape,
this result still suggests that the expected number of local
maxima in the entire space is at least 1.8 × 1011 unique
input allocations. Even though local maxima form an
extremely small subset of all points, the large number
of points means that, in absolute terms, the number of
local maxima is large as well. In general, firms that hill-
climb from an arbitrary point will reach a local maximum
which is both lower than the global maximum and dif-
ferent from the local maximum which they would have
reached if they had started from a different initial point.

3.3.2 Comparative Statics

Of interest are the “comparative statics” of the model as
three key parameters are varied: the budget, the number
of inputs, and the number of connections to each input.
It is obvious that, as the budget increases, profits should
increase as well. To adjust for this effect, it is convenient
to normalize the profit level by dividing by the maximum
possible profit (the budget plus the square of the budget,
which would occur if the coefficients for both the linear
and quadratic terms of one input were both equal to 1
and if the entire budget were spent on this input).

Consider the expected profit of a firm which starts
from an arbitrary budget allocation, surveys all the
neighboring points, moves to the ones with the highest
expected profit, surveys again, and so on, until it reaches
a local maximum. How does the expected profit change
as the size of the budget, the number of inputs, and the
density of connections is varied?

Budget: In the absence of normalization, profits in-
crease approximately as the square of the budget.
With the normalization, however, the level of profit
at a local maximum averaged over 100 different
landscapes is statistically indistinguishable as the
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Number of Connections Per Input

1 2 3 4 5
Steepest Ascent 15.6 (0.2) 24.7 (0.3) 32.1 (0.3) 37.9 (0.4) 43.0 (0.4)

Strategy Median Ascent 16.5 (0.2) 25.3 (0.3) 32.2 (0.3) 39.0 (0.4) 43.7 (0.5)
Least Ascent 19.1 (0.2) 30.1 (0.3) 38.4 (0.4) 43.1 (0.5) 48.8 (0.6)

Table 1: Mean normalized profits over 1,000 landscapes for different firm strategies and connections per input. Coefficients
for the profit function are drawn from [−1, 1]. Standard errors in parentheses.

budget increases from 20 through 250, with a con-
stant 20 inputs and 1 connection per input.

Inputs: As the number of inputs increase beyond a
“small” number, normalized profits begin to fall.
This is a generic result for any model in which each
input is connected to less than half the other in-
puts. The intuition is that an increase in inputs,
beyond some minimum, makes it more difficult to
transfer dollars from one input to another which is
“far away,” given the constraint of the specified con-
nections.

Connections: More connections mean that each point
on the landscape has a larger number of neighboring
points. Hillclimbing becomes easier because there
are more directions in which to go. However, once
the number of connections surpasses half the num-
ber of inputs, the landscape becomes so densely con-
nected that no further improvements are possible.

4 Application to Firm Strategy

No one believes that an actual firm functions as a me-
chanical hillclimber, estimating all the points, and only
those points, in the neighborhood of its current posi-
tion and then moving to the best available alternative.
The real economy is, obviously, infinitely more complex
than this model. But it is possible that firms behave
“as if” they were simple hillclimbers on a rugged profit
landscape. In that event, it is interesting to investigate
which strategies are most likely to yield large profits.

4.1 Computational Aspects

Consider three simple strategies for hillclimbing firms.
Steepest Ascent (SA) means that a firm always moves to
the highest point in its immediate neighborhood until it
arrives at a local maximum. All the statistics in section 3
were generated under SA. Under Median Ascent (MA), a
firm selects, from the subset of points higher than its cur-
rent location, the median point and then moves. Least
Ascent (LA), as its name implies, causes the firm to take
the smallest upward step at each iteration. All three
strategies iterate until a local maximum is reached. In
these experiments, we are only interested in the average

value of the local maximum reached—not in the number
of steps required to reach it. A more complete analysis
would consider the cost of sampling alternate points and
the time spent at points below the eventually reached
maximum.

Table 1 reports the mean (of 1, 000 landscapes) profit
of the local maximum reached by each of the three strate-
gies in a model with 20 inputs and a budget of 50 with
increasing numbers of connections per input. (To make
the following tables easier to read, all profits were mul-
tiplied by 100. This simple scaling has no effect on the
conclusions.)

The most interesting result is the clear superiority of
Least Ascent. A firm will perform much better if it is
“patient,” if, instead of always making the “best” move
at each step across the landscape, it moves upward in the
most gradual fashion possible. The underlying structure
of the profit landscape is such that extremely gradual
slopes tend to lead to higher local maxima.

The problem with computationally derived results, like
those above, lies in their possibly knife-edge quality. It is
possible that a small change in the model—in the coeffi-
cients of the profit function, say—will lead to completely
different results. Fortunately, this danger can be mini-
mized by exploring alternative formulations of the same
model. If the results are the same for reasonable changes
in the original assumptions, than we may be fairly sure
that are conclusions are robust, that they are a generic
feature of models like this one and not just of this one in
particular.

Consider a different version of the profit function, one
in which the coefficients for the linear and quadratic
terms are drawn from [0, 1] and the coefficients for the
cross products from [−1, 0]. Even though the result-
ing profit function has more structure—i.e. makes more
assumptions—than before, the complexity of interactions
creates a landscape on which the global optima is every
bit as hidden. Table 2 reports the results from a com-
parison of the three strategies on this new landscape.

Again, we see the superiority of Least Ascent. The
same normalization correction is used in this table and
the next, even though it is less well suited to these profit
functions. However, doing so maintains comparability
across tables.

Finally, consider a profit function in which there is a
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Number of Connections Per Input

1 2 3 4 5
Steepest Ascent -6.5 (0.2) 1.0 (0.2) 7.9 (0.3) 13.4 (0.3) 19.9 (0.4)

Strategy Median Ascent -5.7 (0.2) 1.9 (0.2) 8.3 (0.3) 14.4 (0.4) 20.9 (0.5)
Least Ascent -2.3 (0.1) 8.8 (0.3) 22.5 (0.5) 34.8 (0.7) 41.6 (0.7)

Table 2: Mean normalized profits over 1, 000 landscapes for different firm strategies and connections per input. Coefficients
for the profit function are between [0, 1] for linear and squared terms and [−1, 0] for cross products. Standard errors in
parentheses.

Number of Connections Per Input

1 2 3 4 5
Steepest Ascent -6.52 (0.2) -1.70 (0.1) 0.002 (0.1) 0.65 (0.1) 1.06 (0.1)

Strategy Median Ascent -6.06 (0.2) -0.86 (0.1) 0.59 (0.1) 1.08 (0.1) 1.34 (0.1)
Least Ascent -5.43 (0.1) 0.10 (0.1) 0.74 (0.1) 1.08 (0.1) 1.09 (0.1)

Table 3: Mean normalized profits over 1, 000 landscapes for different firm strategies and connections per input. Coefficients
for the profit function are 0 for linear terms, [−19, 0] for squared terms, and [0, 2] for cross products. Standard errors in
parentheses.

penalty for input values which differ from one another.
This Leontief-type specification derives its formulation
from a penalty function in which the square of the dis-
tance from each input to every other input matters. It
follows that there will be N − 1 squared terms for each
input (each with a negative coefficient) and two cross
product terms for each pair of inputs. To include this
assumption within the more general framework, we may
use 0 as the coefficient for each linear term, add together
N −1 separate draws from [−1, 0] for the squared terms,
and combine two separate draws from [0, 1] for the cross
products. The results are presented in Table 3.

Again, Least Ascent does at least as well as MA and
SA, except for the five connections case. In general,
the performance of all three strategies converge as the
number of connections increase. Once the landscape be-
comes densely connected enough, all hillclimbers reach
relatively high points.

4.2 Practical Aspects

How relevant are these results to the functioning of ac-
tual firms?

First, this model is most appropriate for firms which
operate in extremely difficult environments. The above
analysis suggests that firms should not rush in pursuit
of the currently most profitable opportunities. A project
involving the transfer of funds from one input to another
which increases profits gradually is better than a project
which does so quickly—not because the quick project is
more risky, but because the gradual project is likely to
lead to more opportunities for further improvement.

Second, this model works for the non-profit sector as
well. As long as a firm has a well-defined objective func-

tion which depends on budgetary inputs and may be
approximated by a second-order polynomial, then the
above analysis is applicable. Most notably, it appears
that the desirability of Least Ascent is independent of
the details of the objective function. For every tested
objective, Least Ascent is at least as good as any other
strategy. In general and on average, it is better.

Third, a CEO need not explicitly insist that less prof-
itable projects be funded. Instead, she can organize the
firm to make this outcome more likely. For example, if
decision making is decentralized, then smaller divisions
will be able to devote parts of their budget to projects
which are less profitable than projects found in other di-
visions. Decreased central control and evaluation leads
to a more gradual walk through the profit landscape
without the need for any individual to explicitly decide
against a more profitable option.

The real allure of computer simulation is that it is
most useful in precisely those contexts in which tradi-
tional economic modeling breaks down. Whether or not
this model, in particular, captures any of the important
underlying structure of the environment in which firms
must operate is an open question. There can be little
doubt, however, that models like this one provide a new
method for understanding the complex problems faced
by economic agents.

5 Conclusion

The fundamental assumption of this paper is that firms
face problems which are difficult rather than easy. Firms
do not know which combination of inputs will maximize
profits. We have sought to model this search within the
classical framework of a single period input allocation
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subject to a budget constraint. Our model assumed
a profit function which is significantly more complex
than those traditionally employed and is analytically in-
tractable. Analytical intractability is a virtue, not a vice.
Using the techniques of computational modeling allows
us to derive conclusions which follow from the assump-
tions in exactly the same manner that analytically de-
rived conclusions follow from simpler assumptions. In a
discussion of bounded rationality in the context of evo-
lutionary game theory, Mailath writes:

Modelers do not make assumptions of bounded
rationality because they believe players are
stupid, but rather that players are not as so-
phisticated as our models generally assume. In
an ideal world, modelers would study very com-
plicated games and understand how agents who
are boundedly rational in some way behave and
interact. But the world is not ideal and these
models are intractable. In order to better un-
derstand these issues, we need to study simple
models which we can solve [10, p. 265].

Mailath mistakenly assumes that because something
is analytically intractable, it is completely intractable.
This is not true. Our profit landscape is designed to
be as “complicated” as real world economic problems
and our search strategies are designed to be as “sophis-
ticated” as actual economic agents. It is possible, even
likely, that we are off on both counts. That is, economic
optimization problems may be more or less complex than
our profit landscape and economic agents may be more
or less efficient at searching for improvements than our
computational strategies. The key point is that both the
landscape and the strategies are tunable. We can make
the landscape more or less complex while holding the
strategies constant. We can make the strategies more
or less sophisticated while holding the landscape con-
stant. We can change both simultaneously. In all of these
cases, the resulting model is computationally, albeit not
analytically, tractable. Well-defined assumptions about
landscapes and strategies yield precise conclusions about
outcomes and comparisons. Mailath’s “simple models”
may be sufficient for doing economic analysis, but they
are not necessary. Computational techniques extend eco-
nomic analysis to traditionally intractable models.

Interesting economic problems are difficult. Employ-
ing “simple models”—models in which the analytic solu-
tion can be derived with pencil and paper—has proved to
be a fruitful method for understanding these problems.
Employing complex models—models in which there is no
analytic solution—has become widely practicable only
recently. Our hope is that models which capture, indeed
embrace, the complexity of real world economic scenar-
ios will prove at least as fruitful for research and under-
standing as models which assume away that complexity.

If parsimony has its costs, then perhaps complexity will
have its benefits.
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