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The reproduction of a living cell requires a repeatable set of chemical events to be properly coordinated. Such

events define a replication cycle, coupling the growth and shape change of the cell membrane with internal

metabolic reactions. Although the logic of such process is determined by potentially simple physico-chemical

laws, the modeling of a full, self-maintained cell cycle is not trivial. Here we present a novel approach to the

problem which makes use of so called symmetry breaking instabilities as the engine of cell growth and division.

It is shown that the process occurs as a consequence of the breaking of spatial symmetry and provides a reliable

mechanism of vesicle growth and reproduction. Our model opens the possibility of a synthetic protocell lacking

information but displaying self-reproduction under a very simple set of chemical reactions.
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I. INTRODUCTION

In 1952 Alan Turing published a very influential paper in

Philosophical Transactions of the Royal Society, entitled The

Chemical Basis of Morphogenesis. In that article Turing pro-

posed a possible solution to the problem of how developing

systems can become heterogeneous, spatially organized enti-

ties starting from an initially homogeneous state (Turing 1952,

Meinhardt 1982, Murray 1989, Lengyel and Epstein, 1992).

Turing showed that an appropriate compromise between lo-

cal reactions and long-range communication through diffu-

sion could generate macroscopic spatial structures. The inter-

play of both components was described in terms of a system

of partial differential equations, so called reaction-diffusion

(RD) equations, namely a set

(1)

(2)

Here, and indicate the concentrations of the two mor-

phogens and their specific molecular interaction are described

by the reaction terms ( , ) with . These

reactions could be, for example, activations, inhibitions or

autocatalysis and degradation. The concentrations are spa-

tially and time-dependent functions i. e. and

. Here indicates the coordinates of a point

where is the spatial domain where reactions occur.

The last terms in the right hand side of both equations stand

for diffusion over space: here and are the correspond-

ing diffusion rates, indicating how fast each molecule diffuses

through space. If is a two-dimensional area, we would have

and the diffusion term reads:

(3)

which can be properly discretized using standard numeri-

cal methods. The key idea of Turing instabilities is that

FIG. 1 Osmotic pressures in an ideal vesicle. These heterogeneous

pressures can deform the membrane, eventually triggering membrane

fission. Arrows indicate if the total pressure is compressive (the

equator) or expansive (the poles). Models of cell replication must

somehow create such spatially uneven pressure distribution.

small initial fluctuations can be amplified through the reac-

tion terms (typically nonlinear) and their effects propagate

through space thanks to diffusion. These patterns are gen-

erated from an initially almost homogeneous distribution of

morphogens. Specifically, we use as a reference state the

equilibrium concentrations obtained from the condi-

tion . It is not difficult to see that if the

system starts exactly from this homogeneous state, it will re-

main there forever. Now consider a very small perturbation

of such homogeneous state, where the initial concentration

is now: with a small noise

term. Such initial fluctuations (inevitable due to the intrinsic

noise) can be amplified by reactions and propagated by dif-

fusion. Under some conditions (Turing 1952; Murray, 1989)

they can generate large-scale spatial structures with a charac-

teristic scale. Such scale (wavelength) only depends on the

intrinsic parameters involved in the RD terms. Such process

of amplification of fluctuations can eventually shift the spatial

distribution of morphogens from homogeneous to heteroge-

neous. Technically, this corresponds to a so called symmetry

breaking (SB) phenomenon: the initial symmetry defined by

the nearly homogeneous spatial state is broken. The conse-
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quence of such SB is a heterogeneous pattern of morphogen

concentrations (Nicolis and Prigogine, 1977; Nicolis, 1995).

Although the mechanisms underlying pattern formation in

multicellular systems are typically richer than the previous

RD scheme, they provide the appropriate framework to ex-

plain different situations. Some examples are pattern forma-

tion in fish (Kondo and Asai, 1995), bacterial growth in two

dimensional cell cultures (Golding et al., 1998), sea shell pat-

terns (Meinhardt, 1998), the skin of vertebrates (Suzuki et al.,

2003; Maini 2003), the self-organization of ant cemeteries

(Theraulaz et al., 2003) and the spatial distribution of popu-

lation densities in ecosystems (Solé and Bascompte, 2006).

One particular scenario where living systems develop a spa-

tial asymmetry is provided by single cells in morphogene-

sis. During early morphogenesis, cells often display a spa-

tially asymmetric distribution of some molecules which ap-

pear preferentially located in different cell poles (Alberts et

al., 2002). Such changes involve complex networks of molec-

ular interactions and the reorganization of the cytoskeleton

and are typically triggered by fertilization. At a simpler level,

dynamical instabilities generating waves have been found in

the cell cycle division of some bacteria. This seems to be

the case of Escherichia coli, where a wave of protein concen-

trations, with rapid oscillations between the two membrane

poles, seems to organize the division process (Raskin and de

Boer, 1999; Hale et al., 2001). Although the full mechanism

is rather complex and involves polymerization processes be-

neath the cytoplasmic membrane, the mechanism driving the

cycle is simple.

The problem of how supramolecular assemblies self-

reproduce is at the heart of current efforts directed towards

building synthetic protocells (Szostack et al., 2001; Ras-

mussen et al., 2005). Although many works have been de-

voted to studying the chemical coupling between vesicles, en-

zymes and information molecules, they have so far failed to

produce reliable self-replicating protocells, although signif-

icant steps have been performed (Luisi et al., 1999; Ober-

holzer and Luisi 2002; Nomura el al., 2003; Takakura el al.,

2003, Hanczyc and Szostak, 2004; Noireaux and Libchaber,

2004; Deamer, 2005: Noireaux et al., 2005). One of the most

promising approaches involves a top-down approximation us-

ing microscopic lipid vesicles incorporating preexisting bio-

logical molecules (Noireaux and Libchaber, 2004). The goal

of this approach is finding a coupled set of reactions link-

ing enzymes and/or information molecules with a container

in such a way that growth and eventually reproduction can be

achieved.

One problem with this top-down approach is that reliable

processes leading to cell division need the appropriate cou-

pling between the molecules involved (Solé et al., 2006). Such

coupling must be able to increase cell size until some instabil-

ity triggers vesicle splitting by generating a spatial breaking of

symmetry through some active growth and deformation pro-

cess. Properly designed, such process can eventually end up

in vesicle splitting.

Here we propose a well-defined mesoscopic physico-

chemical scenario of symmetry breaking instabilities which

is shown to generate the appropriate, self-maintained spatial
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FIG. 2 The basic protocell model considered in this paper. It

involves the presence of a membrane together with precursors

( ) and two basic types of molecules (the morphogens and

) which interact and diffuse through the (two-dimensional) space,

defining a minimal, spatially-extended metabolic network.

heterogeneities.

II. PROTOCELL MODEL

The analysis of minimal cellular structures can contribute to

a better understanding of possible prebiotic scenarios in which

cellular life could have originated (Maynard Smith and Sza-

thmáry, 2001) as well as to the design and synthesis of artifi-

cial protocells (Rasmussen et al., 2004). Considering a min-

imal cell structure, basically two mechanisms can give origin

to reproduction: spontaneous division and induced division.

Spontaneous division takes place when the vesicle grows un-

til splitting into two daughter cells becomes energetically fa-

vorable. Induced division is a more complex mechanism that

allows to internally controlling the division process. These

two scenarios are very different. In most models of proto-

cell replication, reactions are well described but the container

appears only implicitely defined (Ganti, 2000; Kaneko and

Yomo 2002; Munteanu and Solé, 2006; Kaneko, 2005, 2006;

Sato and Kaneko, 2006) and thus an important ingredient of

protocell dynamics (the explicit presence of a changing con-

tainer) is missing. So far, models dealing with some type of

self-reproducing spatial structure have been limited to special

types lattice systems (Ono and Ikegami, 1999, Madina et al.,

2003).

In an early work, the Russian biomathematician Nicolas

Rashevsky (Rashevsky, 1960; Solé et al., 2006) explored the

conditions for instability-induced cell division. He concluded

that during the process of membrane growth there is a critical

radius beyond which spontaneous division is energetically fa-

vorable. Moreover, he suggested that time and space-variable

osmotic pressures were one of the most suitable mechanisms

inducing membrane division.

In a previous work we have shown that osmotic-induced
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division is a feasible mechanism of vesicle self-replication

(Macı́a and Solé, 2006). In this framework, the non-uniform

distribution of osmotic pressures along the membrane is re-

lated to the non-uniform, enzyme-driven metabolite distribu-

tion inside the vesicle, with metabolic reactions taking place

in specific locations, where metabolic centers are located.

These centers (using the term coined by Rashevsky) could

be specifically designed, synthetic trans-membrane proteins.

This method, however, can trigger just a single vesicle divi-

sion cycle. After division, only onemetabolic center is present

at each daughter cell and the division process cannot start

again.

In our model (see below) replications take place indefinitely

(provided that the appropriate precursors are available) and no

enzymatic centers are required. A first approximation to such

a minimal cell structure considers a continuous closed mem-

brane involving some simple, internal metabolism. Here we

propose a chemical mechanism coupled with vesicle growth,

which generates the appropriate osmotic pressure distribution

along the membrane (see figure 1). These pressure changes

are generated by the interaction of Turing-like instabilities

with vesicle dynamics. They are able to induce the correct

vesicle deformation and eventually cell division.

Although previous work on pattern formation has already

considered changing spatial domains due to tissue or organ-

ism growth (Meinhardt, 1982, Painter et al., 1992, Varea et al.,

1997) and even membrane-boundTuring patterns (Levine and

Rappel, 2005) as far as we know this is the first model where

the boundaries are themselves a function of the reaction-

diffusion dynamics, includingmembrane permeability and os-

motic pressures altogether. As such, our model actually de-

fines a totaly new class of spatially-extended dynamical sys-

tem.

III. METABOLISM-MEMBRANE SYSTEM

The problem of vesicle growth and division is not primar-

ily thermodynamic, but kinetic (Morowitz, 1992). If a reliable

cycle of cell growth and splitting is to be sustained, we need:

(a) precursors provided from the external environment and

(b) a restricted microenvironment where an appropriate set of

reactions can drive the system out from equilibrium. Low-

energy molecules and membrane precursors would be selec-

tively transported across the membrane and high-energy com-

pounds would be produced through energy-conversion pro-

cesses.

Here we explicitly define all the components of our proto-

cell model. The main goal is to introduce a set of reactions to

be represented by a set of RD equations, namely:

(4)

with the index associated to the i-th morphogen.

However, we will extend the formalism by incorporating a

changing boundarywhich now acts as a permeablemembrane,

also coupled to the reactions described by . These reactions

will define the protocell metabolism. Since osmotic pressures

FIG. 3 Spatial distributions of morphogen concentrations and ,

confined within a rigid circular container. Here the sum is

plotted, whit each morphogen concentrated in one of cell’s poles.

Non-uniform concentrations emerge from the autocatalytic effects of

reactions (4) and (5) coupled with the inhibitory effects associated

to reaction (6). Numerical calculations have been performed from a

discrete integration of equations (7-11) and using the parameters in

table I.

are associated to differences in molecular concentrations, ac-

tive mechanisms generating spatial heterogeneity are expected

to create changing pressure fields. These instabilities can

break the osmotic pressure symmetry along the membrane,

and after division the reactions defining the metabolism must

be able to trigger a new growth-division cycle.

Let us first present the specific set of chemical reactions

defining our basic metabolism. Several choices are possible

and here we use one of the simplest scenarios found. As dis-

cussed by Morowitz, the logic of replication could be sepa-

rated from chemical constraints, but in order to be able to test

the feasibilty of a given minimal protocell model, we should

consider chemically reasonable sets of reactions to be imple-

mented (Morowitz, 1992). Here we present such a simple, but

chemically reasonable scenario. The set of reactions used here

are:

(5)

(6)

(7)

In our model, reactions (4) and (5) can take place only

inside the vesicle (due for example to the existence of in-

hibitory conditions outside it). Here and are the ba-

sic reagents, which are continuously and uniformly pumped
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from a source located at the limits of the system. The differ-

ent substances involved in these reactions can cross the mem-

brane with certain permeability and diffuse. The concentra-

tions of the different molecules are denoted , where

. For notational simplicity the spatio-

temporal dependence is not explicitly written. The following

set of partial differential equations describe the dynamics of

the proposed system:

(8)

(9)

(10)

(11)

(12)

Here , and are the degradation rates of , and

respectively. The diffusion coefficients are denoted by ,

, , and . For simplicity we assume that the

value of the diffusion coefficients are the same inside and out-

side the membrane. Finally and are the constant rates

of reagent supply.

This set of chemical reactions are able to trigger the emer-

gence of a non-uniform spatial concentration of morphogens

as a consequence of Turing-like instabilities. These instabil-

ities are generated by the autocatalytic reactions (4) and (5)

associated to the inhibitor effect of reaction (4). The previous

model (7-11)) can be numerically solved by using a spatial

discretization of the surface domain , and considering zero-

flux boundary conditions at the limits of the domain, i. e. at

the membrane.

We start with an initially homogeneous state where

with a constant and a small

noise term (Meinhardt, 1982). As a result of the previous

set of interactions, concentrations change until they achieve

a steady state. In figure 3 an example of the spatial distri-

bution of and is shown, using the parameters given in

table I. As expected from a symmetry-breaking phenomenon,

the two morphogens get distributed in separated (exclusive)

spatial domains. Each one tends to concentrate in one of the

poles. These effects, coupled with membrane growth, will be

exploited to design an active mechanism for controlled mem-

brane division.

A second component of our model involves membrane

growth. The cell membrane will grow as a consequence of the

continuous input of molecules or aggregates available from an

external source. As a consequence of this process, the bound-

ary (which now allows diffusion with the external enviro-

ment) in not rigid anymore. At each time, will be a time-

dependent funciont . The concentration at each instant

depends on the number of molecules and the volume .

This dependence can be indicated as follows:

(13)

Considering that , equation (12) becomes:

(14)

The first term in the right-hand side accounts for the change

in concentrations associated to changes in the number of

moles inside the protocell, assuming constant volume.

The second term accounts for the change in concentration

due to changes in membrane volume associated to membrane

growth. If the composition of the external solution does not

change over time, the rate at which the externally provided

compounds are incorporated into the membrane can be con-

sidered proportional to its area :

(15)

where is the time required until membrane size is dupli-

cated.

Cell volume changes due to both net water flow as well as

to the growth of the membrane:

(16)

In order to compute the net water in- and outflow, we must

consider all the flows crossing the membrane. These flows are

described by an additional set of equations. These equations

account for the different interactions between all the elements

of our system: water, solutes, and membrane (Kedem el al.
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FIG. 4 Space discretization for the lattice model. The grid is formed

by squares with a unit surface . There are tree types of

squares or discrete elements: internal elements, covering the internal

space surrounded by the membrane, external elements for the area

outside the membrane and membrane discrete element.

1958, Patlak et al. 1963, Curry 1984). The net water flows

can be expressed as follows:

(17)

where is the hydraulic conductivity of the water, is the

hydrostatic pressure difference between the interior and the

exterior, is the ideal gas constant, is the temperature, and

is the solute reflection coefficient for the -th substance

(zero for a freely permeable solute, and one for a completely

impermeable one).

Moreover, to properly compute the concentration changes

through time in equation (13) we must also take into account

the total substance flow inwards or outwards the membrane.

The flow can be expressed as (Curry 1984):

(18)

Here, is the permeability of the -th substance (defined

as the rate at which molecules cross the membrane), and

(19)

is the so called Peclet number.

IV. MEMBRANE SHAPE

Membrane growth, as described by equations (14) and

(15) will be affected by the Turing instabilities generated by

reactions (4-6). The membrane expansion is followed by a

loss of spatial symmetry due to the effects of non-uniform

osmotic pressures along the membrane surface .

The osmotic pressure at each membrane point is related to

the current gradient of concentration between both membrane

sides. At each point the osmotic pressure value

generated by the -th substance can be written as:

(20)

where is a constant. For very low concentrations, we have

, where is the ideal gas constant and is the

temperature (if the concentrations are expressed in mols/liter).

The osmotic pressure at one point of the membrane and at

time can be calculated by adding the pressure generated by

each substance, as follows:

(21)

Finally we must take into account the contribution of the

surface tension and the bending elasticity to the total pressure.

This gives (for our two-dimensional system):

(22)

where is the surface tension coefficient, and is the elastic

bending coefficient. Here (r) is the local radius of curva-

ture, and is the spontaneous radius of curvature.

For simplicity we focus our attention on a two-dimensional

model. The method employed to study the evolution of mem-

brane shape has been previously presented in (Macı́a and Solé,

2006). This method considers only the local effect of osmotic

pressures computed at each membrane point. Calculations are

performed on a grid (Schaff et al., 2001). Figure 4 indicates

how this discrete approximation is possible. In the lattice there

are tree types of discrete elements: internal elements, which

cover all the internal medium, external elements and mem-

brane elements, which cover the real membrane and are in

contact with both internal and external elements.

Membrane shape can be described by a set of characteristic

points , each one associated to onemembrane element. The

position of each of these points can change dynamically as a

consequence of pressure changes. In a first approximation, the

displacement is proportional to the total pressure described by

(21):

(23)

Here is the discrete time interval used in the computation

and b is a constant. This constant value cannot be arbitrary.

The position of the characteristic points defines the membrane

shape and size. Such shape and size must be in agreement

with the membrane size and volume as determined by equa-

tions (14) and (15).
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FIG. 5 Evolution of the concentrations profiles of and coupled with the membrane expansion process. Simulation parameters from table

I. Here we can see that after a transient, two peaks emerge (a) indicating two maximal concentrations of and . As the simulation proceeds,

the peaks separate (b-c) as the membrane (not shown) gets deformed. In (d) we shaw the two concentration profiles right after cell splitting.

V. RESULTS

The previous set of equations and boundary conditions al-

lows the development of membrane growth and instability, us-

ing a realistic set of parameters (see table I). As discussed in

section III, the system of chemical reactions generates steady

non-uniform spatial concentrations. The question was to see

if such spatial instabilities could trigger membrane changes

leading to self-replication. In this section we summarize our

basic results, showing that our model indeed displays the ex-

pected Turing-induced replication cycle.

As shown in figure 5, a spatial instability rapidly develops

(figure 5a). The container where the metabolic reactions (4-6)

are confined is a vesicle membrane. This membrane can be

deformed and grow due the incorporation of new, externally

provided, precursor molecules. The growth in membrane size,

given by equation (14) in related with the volume increase

given by equation (15). When cell area increases, the internal

volume increases too, and the Turing instabilities move the

maximal concentrations of and in opposite directions.

Assuming that water and the different substances can cross the

membranewith certain permeability, the non-uniform concen-

tration distribution generates a non-uniform osmotic pressure

along the membrane. Due this pressure, the membrane can be

deformed with the characteristic shape described in figure 1.

In this context, the metabolic reactions (4-6) have an active

control on the membrane growth and shape.

Figure 5 shows the evolution of the concentration profiles

of and coupled with the membrane expansion process.

As cell volume increases (in our 2D model this is represented

by the internal area ) it enhances the spatial segregation

of morphogens, due the increase in the size of the domain. In

fact, in these regions where the concentrations of and are

maximal there is a maximal expansive osmotic pressure. This

pressure enhances the expansion in the poles, and as a conse-

quence, the compression in the equatorial zone. The expan-

sion taking place in the two poles enhances the separation of

and , and so on. The coupling of these two mechanisms,

each one enhancing the other, creates a controlled membrane

deformation. Beyond certain critical point membrane split-

ting becomes energetically favourable. In figure 6 we show

the pressure distribution along the membrane in different sim-

ulation steps, consistently matching the theoretical pattern in-

dicated in figure 1. Eventually, the narrow membrane division

is a singularity and must be specifically introduced in the sim-

ulations (see Macı́a and Solé, 2006).

After division takes place, concentration distributions in

each daughter cell are not anymore as those at the starting

division cycle. Figure 5a shows the initial steps of the first

cycle division, where the maximal concentration of and

are comparable. However, figure 5d shows the situation right

after division. In each cell there is a clearly dominant sub-

stance. Figure 7 shows the evolution on one daughter cell (the

left one of figure 5d). As shown in figure 7(a-c) the minority

substance regenerates and a new division cycle takes place.

This is possible due the fact that, in spite of the kinetically

symmetric features of both and (see Table 1), their re-

spective reagents are different from the reagent of reaction (5).
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FIG. 6 Pressure distribution along the membrane at different simulation steps (resulting from the concentrations profiles of and ).

Simulation parameters from Table I. Starting from a symmetric membrane and homogeneous concentrations of morphogens, the membrane

gets elongated after a short transient (a) and starts to deform (b-c).

The concentration of the dominant morphogen ( in figure

7a) has a growth limitation due to the substrate ( ) deple-

tion. This depletion is a consequence of the flow penetration

limitation imposed by the membrane permeability. On the

other hand, for the minority substance ( ), the substrate

consumption ( ) is lower due the low concentration of the

autocatalytic substance . At the beginning, the inflow rate

of is greater than its consumption. If the inhibitory effect

of reaction (6) is not enough to limit the autocatalytic growth

of , the concentration can grow until the consumption of

substrate is faster than the inflow rate. Then the depletion

of substrate becomes the dominant mechanism and the

growth of is limited. To accomplish these effects it is

required that the diffusion coefficients of and are

larger than the diffusion coefficient of and .

These are common characteristics of Turing pattern forma-

tion in a wide range of scenarios (Meinhardt, 1982 and Mur-

ray, 1981) Furthermore, the permeability of and must

be bigger than the permeability of and in order to accom-

plish a significant effect of the osmotic pressure in the poles.

Finally, the kinetic constants , must be greater than

to ensure that the inhibitory effect of reaction (6) enhances

the substances separation without preventing the growth of the

minority substance (see Table I).

Our model assumes that the membrane remains continu-

ously closed through time, as it grows following equation

(14)1. In the model, the position of the characteristic points

determines the size and shape of the membrane. In or-

der to have a physically consistent simulation, the size of the

membrane calculated with (14) must be in agreement with the

size as determined by the spatial location of the characteris-

tic points. Figure 7(d-e) shows the dynamics of cell growth

1 Other parameters can be unable to keep the membrane growing or instead

make it grow too fast. In those cases, membrane breaking can occur.

and replication in terms of membrane size. In figure 7(e)

we can see the agreement between membrane size as calcu-

lated by (14) and the one derived from the characteristic point

locations, as determined by (22). In figure 7(d) we display

the membrane size evolution along three division cycles. The

small differences between the consecutive cycles are an arti-

fact of the model discretization.

TABLE I Parameters used in the simulations.

Parameter Symbol Value

Kinetic constant

”

”

Permeability

”

”

”

”

Hydraulic conductivity

Diffusion coefficient

”

”

”

”

Displacement proportionality

constant

Substance supply

”

Surface Tension Coefficient

Elastic bending coefficient

Spontaneous radius of curvature

Temperature

Degradation rate of

Degradation rate of

Degradation rate of



8

0,0 0,5 1,0 1,5

t/Td (s)

3,6

3,7

3,8

3,9

4,0

4,1

L
n

(A
re

a
)

0,0 0,1 0,2 0,3 0,4 0,5

t/Td (s)

3,6

3,7

3,8

3,9

4,0

L
n

 (
A

re
a

)

(d)
(e)

FIG. 7 (a-c) Evolution of the left daughter cell (starting from the final state shown in figure 5). The minority substance regenerates and a

new division cycle takes place. In (d-e) we show the dynamics of cell growth and replication in term of membrane size. In (e) we can see the

agreement between membrane size as calculated by (14) and one derived from the characteristic point locations, as determined by (22). In (d)

we display the membrane size evolution along three division cycles. After each division only one daughter cell is represented. Here is the

time necessary to duplicate the membrane size. Simulation parameters from Table I

VI. DISCUSSION

We have presented a mesoscopic, minimal cellular model

defined in terms of a closed membrane with a simple inter-

nal metabolism. These metabolic reactions are able to create

Turing-like instabilities. Specifically, a mechanism leading to

lateral inhibition associated to exclusive states has been used

(Meinhardt, 1982). These instabilities, coupled with mem-

brane growth, provide an active method for controlled mem-

brane deformation and have been shown to trigger cell repli-

cation. The basic mechanism is related with a non-uniform

osmotic pressure distribution along the membrane. Although

a specific mechanism has been presented here, we have found

other possible (more sophisticated) scenarios where this also

occurs (Macia and Solé, unpublished).

Since spatial instabilities play an important role in many

natural processes, the design of mechanisms based in these

instabilities could be relevant to the synthesis of artificial

protocells and even for understanding prebiotic scenarios of

cellular evolution, were the sophisticated division mecha-

nisms of the current cells were not present. In this con-

text, the set of metabolic reactions can be arbitrarily gen-

eralized, thus opening the door for many different types of

membrane-metabolism couplings. Future work should ex-

plore the possible paths towards the experimental synthesis

of these protocells from available molecular structures, their

potential evolvability and further extensions to more complex

metabolic networks (Kaneko and Yomo, 2002).
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Solé, R. V. and Bascompte, J. 2006. Selforganization in

complex ecosystems. Princeton U. Press. Princeton.

Suzuki, N., Hirata, M. and Kondo, S. 2003. Traveling stripes on

the skin of a mutant mouse. Proc. Natl. Acad. Sci. USA 100,

9680-9685.

Szostack, W., Bartel, D. P. and Luisi, P. L. 2001. Synthesiz-

ing life. Nature 409, 387-390

Takakura, K., Toyota, T. and Sugawara, T. 2003. A novel

system of self-reproducing giant vesicles. J. Am. Chem. Soc. 125,

8134-8140

Theraulaz, G., Bonabeau, E., Nicolis, S., Solé, R.V., Four-
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