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Abstract

Many natural systems� as social insects� perform complex computations collec�
tively� In these groups� large numbers of individuals communicate in a local way
and send information to its nearest neighbors� Interestingly� a general observation
of these societies reveals that the computational capabilities of individuals are fairly
limited� suggesting that the observed complex dynamics observed inside the col�
lective is induced by the interactions among elements� and it is not de�ned at the
individual level� In this paper we use globally coupled maps �GCM�� as a generic
theoretical model of a distributed system� and Crutch�eld�s statistical complexity�
as our theoretical de�nition of complexity� to study the relation between the com�
putational capabilities the collective is able to induce on the individual� and the
complexity of the latter� It is conjectured that the observed patterns could be a
generic property of complex dynamical nonlinear networks�
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� Introduction

The topic this paper wants to address is easy to state� the more complex a society� the

more simple the individual ���� This sentence� of course� concerns to social insects� among

which we will take ants as a main example� It is a well known fact that all living species

of ants are eusocial 	i�e� all species have the following properties� cooperation in caring

for the young� overlap of at least two generations capable of contributing to colony labor

and reproductive division of labor ���
� nevertheless there exist large di�erences among

species� with respect to the number of ants that compose the colony� their collective capa�

bilities and the cognitive skills of individuals� A specic example is that of recruitement

strategies� there is a clear correlation between the size of the colony and the behavioral

sophistication of individual members ���� In one extreme we nd the more advanced evo�

lutionary grade� mass communication 	information that can be transmitted only from

one group of individuals to another group of individuals� according to ���� p� ���
� Mass

communication is the recruitement strategy used by Army Ants 	e�g� Eciton burchelli
�

whose colonies are composed by a huge number of individuals� who are� nevertheless�

almost blind and extremely simple in behaviour when isolated� The other extreme is oc�

cupied by those ants using individual foraging strategies 	e�g� the desert ant Cataglyphis

bicolor
� who displays very complex solitary behaviour�

Our interest here is not so much to study this remarkable feature of eusocial insects�

as to see if this could be a general trait of collectives of agents� That is� is there a trade�

o� between individual complexity and collective behaviour� in such a way that complex

emergent properties cannot appear if individuals are too much complex�

In order to go on with our work� let�s start looking thoughtfully at the concept of

emergence� According to Hermann Haken ���� the emergent properties of a system can

be studied with the notion of order parameter and its associated slaving principle� As

we can see in g��� we can look for an answer in two directions� from the individual

to the collective and vice versa� Immediately we can discard the former� because the

simplest individuals are those who display collectively the most complex behaviour� So�

we can ask now a more concrete question� what kind of behaviour the collective induces

on the otherwise simple individual to attain emergent functional capabilities� Of course

we can answer it from an evolutionary point of view� arguing that adaptation to the

environment is the ultimate reason of those diverse features of ant colonies� This is not

the unique answer we can provide ���� because we can also look for relations between
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the order parameter and the individuals in such a way that� perhaps� complex solitary

behaviour imposes severe constraints on the behaviour that a collective would induce on

individuals� This would be a structural solution of our problem� and it will be the answer

we are seeking�

Although we will not provide a complete solution� we will make the rst 	as far as

we know
 moves towards a theoretical account of the problem� First of all we review

in the next two sections the theoretical framework we use� Kaneko�s Globally Coupled

Maps 	GCM
 ��� and Crutcheld�s statistical complexity and ��machine reconstruction

���� Furthermore� in section � we characterize the phase space of GCM with information�

theoretic measures� In section � we detail our work with ��machine reconstruction� and

we see how the computational capabilities of a theoretical individual can be an obstacle

to the collective in order to modify its behaviour� Finally we discuss our results and their

possible implications�

We think we have also to say what this paper is not about� This paper does NOT

want to analyze completely GCM using statistical complexity� Of course this research

deserves to be done� but the objectives of this paper are far more modest� We simply use

those theoretical constructs to show a theoretical property that resembles a natural one�

� GCM� phases and Information

Globally coupled maps are usually dened by a set of nonlinear discrete equations�

xn��	i
 � 	�� �
f�	xn	i

 �
�

N

NX
j��

f�	xn	j

 	�


where n is a discrete time step and i � �� ���� N � The function f�	x
 is assumed to have a

bifurcation scenario leading to chaos� Here we use the logistic map

f�	x
 � �� �x� 	�


which is known to have a period�doubling route to chaos� GCM are in fact the simplest

approach to a wide class of nonlinear networks� from neural networks to the immune

system ���� They have been shown to have remarkably rich behavior� partly similar to

the mean�eld model for the spin glass by Sherrington and Kirpatrick� Their behavior in

phase space is very rich� showing clustering among maps� These clusters are formed by

sets of elements with the same phase�
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The phase space of GCM exhibits several transitions among coherent� ordered� in�

termittent and turbulent phases� These phases are well characterized in terms of the so

called cluster distribution function Q	k
 ��� and can also be well characterized� as shown

in this section� by means of information�theoretic measures ����

In each phase� a given number of clusters Nr involving r maps will be observed�

Specically a cluster is dened by the set of maps such that xn	i
 � xn	j
� for all maps

belonging to the cluster� We can calculate the number of clusters of size r� and for a

given phase we have a set fN�� N�� ���� Nkg of integer numbers� Then the Q	k
 function is

dened as the fraction of initial conditions which collapse into a given k�cluster attractor

	i� e� the volume of the attraction basin
� An additional useful measure will be the mean

number of clusters� R�� dened as R� �
P

k kQ	k
�

Here we also consider an information�based characterization of the di�erent phases by

means of the Markov partition�

� � fxn � ���� �
� Sj
i � �� xn � ��� ��� Sj

i � �g 	�


where Si
�S

i
�S

i
���� will be the sequence of bits Sj

i � � � f�� �g generated through the

dynamics of the i�th map� under the partition �� We can compute the Boltzmann entropy

for each map�

H i	�
 � �
X

Sj
i
����

P 	Sj
i 
 logP 	Sj

i 


and the joint entropy for each pair of maps�

H il	�
 � �
X

Sj
i
����

X
Sr
l
����

P 	Sj
i � S

r
l 
 logP 	Sj

i � S
r
l 


�From the previous quantities� we can compute the information transfer between two

given units� It will be given by�

M il	�
 � H i	�
 �H l	�
�H il	�


These quantities have been widely used in the characterization of macroscopic prop�

erties of complex systems modelled by cellular automata and �uid neural networks �������

As a way of quantifying complexity� it has been shown that information transfer is an

appropiate measure of correlations ���� and in this context it is maximum near critical

points ����� Because our interest is in the computational structure behind the observed
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dynamics� we expect to have some well dened relations between computational com�

plexity and information transfer� Using these measures 	see g��
� the four basic phases

exhibited by GCM are�

	�
Coherent phase� the system is totally synchronous� i� e� x	i
 � x	j
 for all i� j�

The motion is then described by a single map xn�� � f�	xn
 and the stability of this

single attractor can be analyticaly characterized ���� If �� is the Lyapunov exponent for

the single map� the Jacobi matrix is simply given by

J� � �f���xn
h
	�� �
 I�

�

N
D
i

where I and D are the identity matrix and a matrix of ones� respectively� From the Jacobi

matrix we can get the following stability condition�

�� � log	�� �
 � �

Here almost all basins of attraction are occupied by the coherent attractor and Q	�
 � ��

so we have R� � ��

In terms of information transfer under the Markov partition� we will have H i	�
 �

H l	�
 	both maps are visiting the same points
 and P 	Sj
i � S

r
l 
 � 	jr�� so it is easy to

see that in this phase we have H il	�
 � H i	�
 and the mutual information is given by

M il � H i� The information is totally dened by the entropy of the single maps� as far as

the correlations are trivial�

	�
Turbulent phase� this corresponds to the other extreme in the dynamical phases of

GCM� Here we have that the number of clusters are such that R� � N � A rst look at the

dynamics of single maps seem to suggest that they behave independently� Under this hy�

pothesys� the entropies can be easily estimated� If the maps are independent� then we have

againH i	�
 � H l	�
 but the joint probabilities will be such that P 	Sj
i � S

r
l 
 � P 	Sj

i 
P 	Sr
l 


and so we have H il	�
 � �H i	�
 and as a consequence the mutual information will be

zero� A close inspection of the numerical values for the mutual information shows� how�

ever� that � � M il 
 �� so some amount of correlation is still present� Specically� we

found that typically ���� � M il � ����� This result was obtained by Kaneko ���� in a

remarkable work where it was shown that GCM violate the law of large numbers 	LLM
�

This hidden order is shown to exist by means of the analysis of the local elds� dened as

hn � N��
P

j f�	xn	j

� The study of the mean square deviation 	MSD
 of this quantity�
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which is expected to decay as O	��N
 if the units are really independent� was shown to

saturate for a given N � Nc	�
 ����� The analysis of the density distribution for two

maps gives a pair of continuous functions Pi	x
 and Pj	y
 	i� e�
R
Pi	s
ds � �
 and a

joint distribution Pi�j	x� y
 	with
R R

Pi�j	x� y
dxdy � �
 which makes possible to dene a

continuous mutual information

Mi�j � �
Z Z

log

�
Pi�j	x� y


Pi	x
Pj	y


�
dxdy

and� after averaging over space and time it also shows a saturation when N gets large�

Numerical experiments gave Mi�j	N � 	
 � O	����
� consistently with our bounds for

the binary partition� Such remaining nite correlation is the origin of the breakdown of

the LLN and will be relevant in our discussion about computation in GCM�

	�
 Ordered phase� here we have a small number of clusters with many units� Speci�

cally� we have Q	k
 � � for k 
 kc 	where kc does not depend on N
 and

QL	k
 �
X

k�N��

Q	k
 � �

and Q	�
 
� �� We also get R� � b� N � Again� a large number of elements will share the

same state� and we can easily estimate the entropies and information transfer� Given two

maps� they could belong to the same cluster or to two di�erent clusters� In the rst case�

we get the same result than in the coherent phase� and the same occurs if they belong to

clusters which are in phase� If the maps belong to two clusters which are not in phase� we

have H i	�
 � H l	�
 � log	�
 and now P 	Sj
i � S

r
l 
 � 	�� 	jr
�� so again we get M il � H i�

as in the coherent phase 	see g� �
�

	�
 Glassy phase� also called intermittent phase� in this domain of parameter space we

have many clusters� but they have a wide distribution of sizes� We have
P

k�N��Q	k
 
 �

and also
P

k�N��Q	k
 
 �� So R� � rN with r � �� Here the competition of some attrac�

tors with di�erent cluster size leads to frustration ���� Following our previous arguments

it is not di�cult to show that � � M il	�
 � log	�
� So in this phase the joint entropy has

a nite 	but not large
 value� as expected from the existence of a decaying distribution of

cluster sizes�

So we have shown that the use of information�based measures involving the previously

dened Markov partition provides an accurate characterization of the GCM phases� As
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we can see� some phases have a high information transfer while others have a nearly zero

correlation among units� The basic qualitative observation of this phase space is that

the greater the nonlinearity 	the parameter �
 the more widespread is the disorder and

that the greater the averaging e�ect 	parametrized by �
 the more the overall coherence�

So each unit in the GCM is subject to two competing forces� the individual tendency to

chaos and the tendency to conformity arising from the averaging e�ect of the system as

a whole�

This con�ict between order and disorder changes suddenly at the boundaries between

the di�erent phases� In recent studies� it has been suggested that such phase transitions

can be very important in sustaining higher computational capabilities ��������� Usually the

transition is dened as involving the maximum information transfer 	and the higher cor�

relations
� being information lower in both phases� Here� however� each phase is roughly

characterized by rather constant entropies and information so we could ask whether or

not intrinsic computation will reach higher values at the transitions� In a next section we

explore this problem by means of the ��machine reconstruction algorithm�

� Statistical Complexity

Statistical Complexity is a recent measure of complexity based on a computational view of

what an orbit of a dynamical system is ���� Chaotic dynamical systems 	with a period dou�

bling or a quasiperiodic route to chaos
�������� and ��D Spin systems 	J�P� Crutcheld�

personal communication
 have been adequately characterized using statistical complexity�

Associated to it� there is the ��machine reconstruction algorithm 	��MRA�
� This algo�

rithm has been the basis of much work relating dynamical systems and computation� It

has been succesfully applied to characterize computationally the above mentioned onset

of chaos� to the characterization of cellular automata in terms of domains� attractors and

basins of attraction ����� and to nding out the mechanisms by which an evolved cellular

automata can compute 	particle based computation ����
�

Here we will use the ��MRA to ascertain the intrinsic computational capabilities ����

of the individual logistic maps in the GCM� In general� in order to apply ��MRA� we

need to know the orbit of a dynamical system � � � � xt��� xt��� xt� xt��� xt��� � � � 	which we

assume to be stationary
 and we need also to specify an instrument to observe the above

�Do not confuse the � of the ��MRA with the GCM parameter �� It is clear from context which one

we are using
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mentioned orbit� This instrument will have some resolution �� The instrument used in

this paper is precisely the Markov partition � 	�
�

� will dene a generating partition 	i�e� where there is a nite to one correspondence

between innite bit strings and initial conditions
 for the logistic map 	�
� so it is clearly

the best choice for a logistic map in a GCM� Applying the instrument to the orbit will

provide us with a bit string� which in practice will have nite length M � that will be used

to construct a deterministic nite automaton 	DFA� see ����
 with probabilistic labels�

This automaton� if found� will be a minimal model describing the intrinsic computational

capability of the observed process 	dynamical system plus instrument
� The ��MRA

proceeds� very brie�y� as follows�

f� � � ��������� � � �g �� Tree	L
 �� ��machine	D


where L will be used to scan the entire bit string extracting bit strings of length L

to build a parse tree� and D 	the �morph depth�� in practice bL��c
 will be used to

construct the states of the ��machine� Here we will not go into the details of the ��MRA

	see ��������� �� 	chap� �
�
� Just to say that if the stationarity assumption is violated�

the ��MRA will fail in reconstructing any DFA� This will be the case when we have GCM�s

with supertransients or when a high dimensional attractor is reached� Once we have the

��machine� the Statistical Complexity will be dened as the logarithm of the number of

	recurrent
 ��machine states �����

Measuring intrinsic computation provides us with an upper bound to usable computa�

tion ����� Of course it does not have many sense to talk about the usable computation of a

logistic map� but� in real systems� it would be quite interesting to have a good description

of their intrinsic computation� in order to be compared with the intrinsic computation of

the dynamical systems modelling them� Furthermore� if we could nd out the intrinsic

computation of� say� a real ant� we could know what the maximum computational capa�

bility of that ant would be� This would allow to a deeper understanding of the problem

stated in the introduction�

� Collective Induced Computation

In this paper� the collective system we are working on is a Globally Coupled Map� i�e� N

logistic maps 	�
 interacting as has been described in section �� and our individual will be

a randomly chosen logistic map of the system� This approach has a clear advantage� the
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statistical complexity of the logistic map is well known ������� so our individuals have a

well dened intrinsic computation� Our purpose is to see how the collective is 	or is not


able to induce more complex behaviour than that the individual is able to show�

��� Complex Individuals

Given a logistic map 	our individual
 a high statistical complexity is observed for � close

to ��� i�e� the onset of chaos� There we need a large number of states to model the high

periodicity of the orbits� We have chosen � � ��� whose statistical complexity is C��� � ��

As we can see in g�� �a�� this automaton has a large number of states�

The next step is to dene a GCM� such as that of 	�
� with � � ���� and look at the

statistical complexity of an individual 	all are in principle equal
 chosen at random� say�

i� as the degree of interaction increases� i�e� we examine Ci
��� as the parameter � goes from

� to ����

The result is simply that there are no changes 	as can be seen in g��
� The intrinsic

computation of the individual remains to be the same� Ci
��� � �� no matter how large

is the interaction with the rest of the system� So� the collective has not been able to

induce any kind of added capability to the individual� In this case there is no emergent

behaviour� The collective behavior can be reduced to that of the individuals�

��� Simple Individuals

If we take � � � the logistic map has completely chaotic dynamics� It is� in statistical

complexity terms� the same as a fair coin toss� So� its automaton has C� � � with just

one state 	g�� �b�
� Now� we can apply the ��MRA to the symbolic dynamics 	i�e� the

bit string of length M
 of an individual chosen at random among the N that compose the

GCM� The ��MRA failed to reconstruct any automaton in the turbulent phase 	neither for

� � � nor for � � ����� in the next subsection
� This could be because of high dimensional

chaos and the existence of supertransients 	K� Kaneko� personal communication
� In

any case� it seems that the stationarity assumption were not fullled causing the non

convergence of the ��MRA 	see ���� chap� �
� There are also some values of � in the

ordered and the glassy phase where no nite automaton was obtained� The reason here

is the ne structure of those phases 	K� Kaneko� personal communication
�

Our result is somewhat surprising 	g��
� If we exclude the automaton at � � ���� and

the gaps at � � ���� and � � ���� 	which indicates some kind of irregular behaviour in the
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regions� although according to the phase space of g�� we should have ordered behaviour


our individual reaches high complexity� Ci
� � �� near the boundary of the turbulent phase�

Beyond this point we nd the same automaton around � � ������ perhaps pointing out

another boundary 	that of the above mentioned irregular behaviour
� After that the

complexity decreases with � while going deeply into the ordered phase� rst Ci
� � � at

� � ����� then it goes down to Ci
� � � at � � ����� � � ����� and � � ���� to end up in

Ci
� � � at � � ���� and � � ����� Complexity increases slightly again at the glassy phase�

Ci
� � ����� at � � ����� and � � ����� The more complex behaviour is displayed near

phase boundaries� as has been observed also in other systems �����

If we compare this case with the previous one� we see that simple individual behaviour

allows the interaction to create more sophisticated behaviour in the individual� inducing

a certain amount of statistical complexity that was not present at the individual level�

So� a coordinated behaviour� which the individual is unable to show� emerges from the

collective through interactions�

��� Intermediate Individuals

Here we have � � ���� with an individual of complexity C��	
 � ����� 	g�� �c�
 and

we take a logistic map randomly from a GCM with the same � value� In this case� as

in the previous one� we nd maximum intrinsic computation at the boundary between

the turbulent phase and the ordered phase� In fact� the automaton in this boundary is

the same one we found at the same boundary for � � �� Although the individual is

more complex than that of � � � we can observe the same behaviour of the automata

with growing �� at � � ��� we get a statistical complexity of Ci
��	
 � �� at � � ����

� � ����� � � ����� � � ���� and � � ���� statistical complexity decreases to Ci
��	
 � ��

then statistical complexity keeps decreasing down to a value of Ci
��	
 � � 	� � ����

and � � ����
 and nally it reaches the zero value at the boundary of the glassy phase�

However� this picture fails at � � ���� perhaps due to a small window located in the

region of that �� Again� at the glassy phase� there is a slight increase of complexity� i�e�

Ci
��	
 � ������ that is precisely its individual value� The individual keeps this complexity

value until � � ���� although there is another boundary� separating glassy and coherent

phases�

It is clear that now the individual is enough complex to have non zero statistical com�

plexity and it is enough simple to let the collective to induce some amount of complexity�
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Of course the complexity growth is not as large as was in the previous case� because here

the maximum complexity reached at the boundaries is the same that was reached with

individuals of zero complexity� Furthermore� we have not detected any similar growth

of complexity for any other � value� To sum up� what has been observed is an interme�

diate behaviour between the two cases previously studied� There is induced complexity�

although smaller than the � � � case� Smaller because of the di�erence between the

individual complexity and the induced complexity� and smaller because complexity is not

high except at the boundary between turbulent and ordered phases

� Discussion

In this paper we have analysed some computational properties of GCM� Our interest was

to explore the existence of collective�induced computation in some natural systems 	as

ant colonies
 where the single units behave very simply in isolation and in a complex way

when forming part of the entire system� More precisely� we should ask how ant colonies

formed by rather simple individuals 	when isolated
 can be able to induce them to perform

complex computation� as observed�

The information�theoretic characterization of the phase space has shown that the

Markov partition dened on the logistic map provides an adequate characterization� In�

formation transfer� in particular� shows three di�erent types of behavior� it is high at the

coherent and ordered phases� close to zero at the turbulent regime and it takes interme�

diate values for glassy dynamics�

These quantities change rather sharply at the boundaries between di�erent phases�

This makes some di�erence in relation with previous studies� where information transfer

becomes maximum at the phase transition 	where correlations diverge
 ����� GCM do not

show this type of maximum because of the globally coupled nature of the interactions�

But for the same reason we expect to nd some generic� common properties 	in terms

both of computation and dynamical properties
 at each phase�

The ��machine reconstruction of single maps close to the onset of chaos gives us a

nite automaton with many states 	here ��
� So at this point we have a complex object

in terms of computation� Interestingly� the coupling with other units via GCM do not

modify this complexity� So entities which are computationally complex in isolation do

not change in the presence of coupling� nothing new is induced by the collective� This

observation matches the behavior of weakly evolved� primitive ants� where individuals
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are enough complex to work in isolation and the interactions among them are rather

irrelevant�

However� if we start with random� computationally trivial maps and then couple them�

the situation turns up to be very di�erent� At � � ��� a fully chaotic map is obtained�

The Markov partition of this chaotic 	nonfractal
 attractor denes a Bernouilli sequence

and so we have a C � � complexity� Starting from low couplings� at the turbulent domain�

the reconstruction algorithm does not converge� as expected given the disordered� high�

dimensional nature of the attractors� In spite of the remaining coherence 	as discussed in

section �
 no nite machines are obtained�

But as we reach the boundary between the turbulent and the ordered phases� the

situation changes radically� Now the coherent motion and the spontaneous emergence of

clustering also gives birth to well dened ��machines� Suddenly� the coupling starts to

control the dynamics of individuals and they behave in a computationally complex way�

Nothing except the coupling has been introduced� but it is enough to generate complexity�

As in the real ant colonies discussed in the introduction� simple isolated individuals can

behave in a complex way inside the collective� This is precisely what we have observed�

A very important suggestion emerging from this result is that in insect societies complex

behavior is only dened at the level of individuals inside the colony and not as isolated

entities� In this sense� the observed behavior is the result of an emergent property� An

interesting observation is that the ��machine reconstruction captures the ne scale implicit

in each phase 	these phases have internal� ne�scale structure
�

Several extensions of this work can be made� One observation in our study was that

there is some dependence on the system�s size� For some parameter combinations� we

found that the automata reconstructed were di�erent as a function of N � This is also

interesting as far as it is well known that social insect colonies use di�erent ways of

communicate as a function of the number of individuals engaged� Our preliminary results

suggest that these transitions could be also present in the GCMmodels� Another extension

is the ner�scale analysis of the transition points in terms of statistical complexity� is there

a systematic trend � A third extension could be the e�ects of noise in the reconstruction�

As far as noise is an intrinsic part of real systems� we should ask how noise can modify

the present results� Finally� one of the remarkable results of Kaneko�s study was the

presence of coding by means of attractors� The present results inmediatly suggest a

possible connection between such coding mechanism and the underlying nite automaton�
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� Figure Captions

�

�� Emergence in collective behaviour� Individual ants interact either by physical con�

tact or by laying pheromones� Coordinated collective actions emerge from these patterns

of interaction that in its turn a�ects individual behaviour� This causal circularity pervades

complex systems�

�� Information�Theoretic measures are able to discriminate among the di�erent phases

of GCM dynamical behaviour� Right� Joint Entropy for �  �  ���� ���  �  ��� and

N � ���� Left� GCM phase space 	after ���
� The joint entropy is largest at the turbulent

phase when all the binary pairs are equally explored� It is log	�
 for the ordered and

coherent phase and it takes intermediate values at the glassy phase�

�� DFA with probabilistic labelings resulting from the ��MRA applied to �a� logistic

map 	�
 with � � ���� �b� logistic map 	�
 with � � �� �c� logistic map 	�
 with � � �����

These are the individuals over which we will check if the collective can induce more

complex behaviour� As is obvious from the automata� �a� is much more complex than

�b� and �c� 	see text
� In both cases the ��MRA parameters are M � ��	� L � �� and

D � ��� In �a�� �b� and �c� the state � is the initial state� all other states are accepting

states�

�� If we have a complex individual� no matter how much interaction it receives� its

behaviour will not change� The collective cannot induce on the individual any kind of

added behaviour� In the gure� the individual possesses the same statistical complexity�

for all �� Parameters of the ��MRA� M � ��	� L � �� and D � ��� All the automata

have � as initial state� and all other states are accepting states�


� With a simple individual like that of � � � 	in this gure
� the collective is able

to impose additional behaviour on the individual� We have a decreasing complexity from

turbulent phase boundary onwards with increasing �� except in the region of ���� 	see text
�

We can observe also a slight increase in complexity at the Glassy phase� Parameters of

the ��MRA� M � ��	� L � �� and D � ��� All the automata have � as initial state� and

all other states are accepting states�
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�� Here we see intermediate behaviour between the cases shown in g�� and g�� Just

for � � ���� we found much greater complexity than that of the individual� and we have

also bear in mind that the individual complexity is C��	
 � ������ so that the increment is

not as large as in the � � � case 	see text
� Parameters of the ��MRA� M � ��	� L � ��

and D � ��� All the automata have � as initial state� and all other states are accepting

states�
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