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To satisfy the minimal requirements for life, an information carrying molecular structure must be
able to convert resources into building block and also be able to adapt to or modify its environment
to enhance its own proliferation. Furthermore, new copies of itself must have variable fitness
such that evolution is possible. In practical terms a minimal protocell should be characterised
by a strong coupling between its metabolism and genetic subsystem which is made possible by
the container. There is still no general agreement on how such a complex system might have
been naturally selected for in a prebiotic environment. However, the historical details are not
important for our investigations as they are related to assembling and evolution of protocells in the
laboratory. Here we study three different, minimal protocell models of increasing complexity, all of
them incorporating the coupling between a “genetic template”, a container, and eventually a toy
metabolism. We show that, for any local growth law associated with template self-replication, the
overall temporal evolution of all protocell’s components follows an exponential growth (efficient or
uninhibited autocatalysis). Thus, such a system attains exponential growth through coordinated
catalytic growth of its component subsystems, independent of the replication efficiency of the
involved subsystems. As exponential growth implies the survival of the fittest in a competitive
environment, these results suggest that protocell assemblies could be efficient vehicles in terms of
evolving through Darwinian selection.

Keywords: protocell, replicator dynamics, catalytic coupling, prebiotic evolution

I. INTRODUCTION

Cells are the basic structural and functional units of
all known life, performing the vital functions of an organ-
ism and containing the hereditary information necessary
for self-regulation and self-replication. The complexity of
modern cells and life itself is a consequence of open-ended
evolution whose beginnings are associated with the origin
of life on Earth. Even though many of the main issues as-
sociated to the emergence of life remain to be established,
significant progress has been made since Oparin’s origi-
nal vision of the origin of life (Oparin 1957) and Gánti’s
model of a minimal cell (Gánti 1975).

These advances have steadily pushed the experimental
implementation as well as the understanding of proto-
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cells ever closer to reality (Kaneko & Yomo 2000; Luisi
et al. 2006; Monnard et al. 2002; Paul & Joyce 2004; Ras-
mussen et al. 2004; Segré et al. 2001; Stadler & Stadler
2003; Szostak et al. 2001; Takakura et al. 2003). For a
protocell to function properly, it must contain both genes
and a metabolism, which are integrated by a container.
The interdependence and cross-regulation of these sub-
systems is a major issue. Regardless of which of the
protocellular subsystems a work centres on, templates,
energetics, or container, the concept of self-replication is
central, be it an experimental scenario or a theoretical
model.

One important problem is the overall kinetic behaviour
of template replication. Information in biological systems
is stored in, and is propagated by template molecules ca-
pable of making copies of themselves. Due to the prod-
uct inhibition by the new complementary templates in
a naked gene replication process, the kinetics has been
shown to be parabolic (Bag & von Kiedrowski 1996), i.e.
sub-exponential, and prevent Darwinian selection. Since
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exponential growth is known to be a key feature of Dar-
winian selection, where the fittest variants win over the
less-fit ones, the lack of exponential growth for repro-
ducers would be an obstacle to their success. In spite
of our intuition, which might suggest that selection at
the cellular level should become slower than parabolic
when based on parabolic template dynamics, here we
show quite the opposite: the selection process in cat-
alytically coupled assemblies of protocells is Darwinian,
with coordinated exponential growth of all involved com-
ponents and thus survival of the fittest, independent of
the template growth law. The present work investigates
a class of minimal catalytically coupled protocell models
and is centred on the relation between internal dynamics
and the global population-level dynamics of protocells.

II. BASIC GROWTH DYNAMICS

From simple models of prebiotic evolution, a few basic
growth laws resulted as being fundamental for replica-
tors dynamics. These in turn have remarkable implica-
tions for the selection among competing processes (Eigen
& Schuster 1979; Szathmáry 1991). The primary replica-
tion process, the fission of the progenitor, gives rise to ex-
ponential growth in the absence of ecological constraints
(Malthusian growth). Here, the growth rate of the popu-
lation is proportional to the population itself, i.e. ẋ = kx,
where “·”implies a time derivative. When two exponen-
tially growing populations compete, the one with the
greater growth rate completely excludes its competitor, a
case referred to as “the survival of the fittest”. Addition-
ally, two other simple non-Malthusian processes are often
considered in the literature: a faster and a slower growth,
respectively, than the exponential one (Table I). While
the former, generally referred to as hyperbolic growth
(ẋ = kxp, p > 1), is associated with models of mutu-
alistic replicators (hypercycles: Eigen 1971), the latter
(parabolic growth: ẋ = kxp, p < 1) is typical for ex-
perimental template-directed replication (p = 0.5) (von
Kiedrowski 1986). Note that constant growth is also pos-
sible in this framework (p = 0).

TABLE I Growth laws

Growth Law ẋ = kxp, p > 0

General
x(t) =

(

[x1−p
0 + (1 − p)kt]1/(1−p) for p 6= 1

x(t) = x0 ekt for p = 1Solution

p = 0 : constant

p = 1/2 : pure parabolic

p = 1 : exponential

p = 2 : pure hyperbolic

Particular

Cases

One can notice that for two coexistent parabolically-
growing populations1, “the survival of everybody” is
guaranteed, while for two hyperbolically2 growing pop-
ulations, the one with the highest initial concentration
times the growth rate (i.e. x0k) will outgrow the other
(Eigen & Schuster 1979; Szathmáry & Maynard-Smith
1997). While referred to as “the survival of the common”
case, it is not guaranteed that the most common hy-
perbolically growing population will always invade when
rare. Which one wins is determined by the ratio between
initial populations (initial conditions), on one hand, and
the fitness constants (reaction constants), on the other
hand (consider the case p = 2 in Table I). Although
Darwinian evolution, i.e. survival of the fittest, is possi-
ble for the hyperbolic case, the clearest example of Dar-
winian evolution is provided by exponential growth.

III. TEMPLATE DIRECTED REPLICATION

Among all systems with auto-catalytic synthesis of
their constituent molecules, the most relevant to the ori-
gin of life is the one based on non-enzymatic template di-
rected replication (Orgel 1992). In the last two decades,
various experimental works have been dedicated to the
in-depth study of such simple systems with emphasis on
artificial “self-replication” (Robertson et al. 2000). Sev-
eral research groups were able to experimentally demon-
strate a sigmoidal time evolution of template concentra-
tion (Lee et al. 1996; von Kiedrowski et al. 1991). Such
behaviour is a consequence of the exponential growth of
the product (i.e. template) in the presence of a limited
number of available building blocks (limited resources).
Von Kiedrowski and coworkers were the first to obtain
self-complementary artificial replication (von Kiedrowski
1986) and showed a growth order p = 1/2 (parabolic
growth) instead of p = 1 (exponential growth) as ex-
pected from a true auto-catalytic replication. Parabolic
growth has been proved to be the result of product inhi-
bition which decreases the efficiency of the auto-catalytic
cycle (Bag & von Kiedrowski 1996).

As described in the previous section, the auto-catalytic
growth order is of great importance in establishing the
long-term evolution of the system through selection pro-
cesses. Interestingly enough, Rocheleau et al. (2006)
proved that in spite of an internal parabolic growth of
template concentration in a simple model of template-
container coupling, the total template concentration con-
sidered over the entire population of protocells turns
out to be exponential. More surprisingly, the catalyti-
cally coupled protocells containers follow an exponential

1 Populations characterised by the same growing exponent.
2 For the cases 1 − p < 0, there exists a time value t∞ at which

the bracket term in the general solution from Table I becomes
zero and due to the negative (1 − p) exponent, x(t∞) is infinite.
Thus, the range of applicability is 0 ≤ t ≤ t∞.
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FIG. 1 A simple model of protocell replication involving template-catalysed formation of lipid molecules. This is the simplest
scenario of coupled template-container organisation. The circular features representing the individual protocells consist of a
micellar container built of lipid molecules (L) among which are embedded the templates (T: s=single-,d=double-stranded), the
lipid precursors (pL) and the resource template oligomers (O). The “k’s” are the rate constants.

growth with the same exponent as the templates’ growth.
This result is significant as a proof of regulated template-
container interdependence, ensuring a correlated growth
of the system’s parts. This work thus demonstrates that
a stoichiometric coupling between the protocell’s subsys-
tems is not compulsory, as suggested by others (Gánti
2003) and that cross-regulation of the subsystems occurs
naturally as a consequence of catalysis. In the present
work, we shall demonstrate that this result holds for any
type of local growth dynamics of templates in the model
of Rocheleau et al. (2006), as well as in extended and
more realistic versions which include metabolic reaction
steps.

IV. TEMPLATE-CONTAINER COUPLING

In Rocheleau et al. (2006), the template-container sys-
tem was effectively defined by the chemical reactions

α O + Ts
kT−−→ Td (1a)

Td
Kt←→ 2Ts (1b)

pL + Td
kL−→ Td + L , (1c)

where Ts, Td and L represent the single-strand template,
the double-strand template and the lipid molecules, re-
spectively, while O and pL are respectively the single-
stranded template and lipid precursors whose concen-
trations are kept constant, with α denoting the neces-
sary stoichiometry for the template directed replication.

The graphical representation of the chemical reactions
appears in Fig. 1. The hybridisation and the dehybridi-
sation are considered in equilibrium [reaction (1b)] as
long as the template replication [reaction (1a)] is a sig-
nificantly slower process in comparison. The former con-
dition leads to the equilibrium constant Kt = [Ts]

2/[Td],
where the brackets denote concentration (molarity). As
expected from experimental work, when dehybridisation
is much slower than hybridisation (i. e. product inhibi-
tion), one has Kt � 1 since [Td]� [Ts].

Rocheleau et al. define the total single-strand concen-
tration as [Tl] ≡ 2[Td] + [Ts] and consider that the pro-
tocells grow by intake of nutrients (i.e. precursors) and
divide when a predefined critical size is reached. The
existence of a critical size for micellar structures is sup-
ported by both experiments and theory (Bachman et al.
1992; Mavelli 2004), even if the growth-division process
still lacks a complete experimental and theoretical proof.
Additionally, the aggregates are envisioned as composed
mainly of lipids, with the other molecules existing at very
low concentrations diluted in the local lipid solution.

A. Constant Volume

By applying the standard chemical kinetics to the re-
actions (1a)-(1c), one finds that the local total template
and lipid concentrations evolve according to



4

˙[Tl] = CT [Tl]
p with p = 1/2 (2a)

˙[L] = CL[Tl] , (2b)

where CT ≡ kT f([O])
√

Kt/2 for p = 1/2, and CL ≡
kL[pL]/2 are constants 3 and “·”implies a time derivative
(see Appendix A). The term f([O]) is a function depend-
ing on oligomer stoichiometry (the number of oligomers)
needed for each template replication. As we consider
that the oligomers are present in abundance and thus
the oligomer concentration can be approximated to con-
stant, this function term is also a constant. Local refers
to the concentration within the container itself. Consid-
ering a general case of eq. (2a), the local dynamics of the
templates is parabolic if p < 1, exponential, if p = 1,
and hyperbolic if p > 1, while by eq. (2b), the lipid local
concentration rate remains proportional to the template
concentration. We shall demonstrate in this section that
independent of the value of p, the global dynamics will
be exponential in form, although the doubling time or
the cycle period will depend on the value of p.

Eqs. (2) implicitly assume that the concentration dilu-
tion due to the increase of an individual protocell’s vol-
ume in the growth–division process is negligible. In other
words, the protocell’s volume (Vl) can be approximated
as a constant and equal to a time-averaged protocell’s
volume (VA, a true constant). In the first approxima-
tion, the concentrations are calculated with respect to
the latter volume ( i.e. [X ] = NX/VA, where NX is the
number of molecules of type X).

B. Growing-Dividing Protocells

In a second approximation, Rocheleau et al. (2006)
consider that the local lipid aggregate volume Vl grows
only from the addition of lipid molecules to the aggre-
gate, i.e. the contribution of templates, precursors, and
fluid to the aggregate volume was neglected. Note that in
the case of a micelle, as considered here, both the volume
and the surface area (S) of the protocell are proportional
to the number of lipids (Vl ∝ S ∝ NL). That is, as the
micelles have no hollow interior, the protocell’s volume
equals the number of lipids multiplying the volume of a
lipid. In this case, the surface equals the number of lipids
multiplying πR2, with R being the radius of a lipid, and
thus the surface too is proportional with the number of
lipids. In the case of a vesicle, the hollow spherical form

3 The value of CT clearly depends on the value of p. As concen-
trations have a dimension of 1/V , V =volume, from eq. (2a), CT

must have dimensions of 1/(V p−1t). As Kt has dimensions of
1/V and kT has dimensions of (1/V t), we note that the defini-
tion of CT following eq. (2a) is correct only for p = 1/2 case, but
needs to be modified for p 6= 1/2.

introduces a nonlinear dependence between volume and
surface (Vl ∝ S3/2; S ∝ NL) 4.

In the Rocheleau approach, once the dilution effect is
taken into account, the concentration of the metabolites
must be referred to the time-dependent volume, Vl in-
stead of VA and thus eq. (2a) must be replaced by

d[Tl]

dt
=

d[Tl]

dt

∣

∣

∣

∣

Vl

− [Tl]

Vl

dVl

dt

∣

∣

∣

∣

NT

= CT [Tl]
p − [Tl]

Vl

dVl

dt
, (3)

where the first term on the r.h.s is calculated at con-
stant volume (Vl = VA), while the second, at a constant
number of template molecules (see Appendix B). As the
lipid aggregates have a characteristic scale, there exists
an average number m0 of lipids per aggregate volume
VA. Theoretically and experimentally, the protocells are
expected to grow and become unstable when reaching a
critical size, with the instability being resolved by the
subsequent division into two daughters.

C. Global Concentrations

In the context of growing-dividing protocells in a tank
reactor, the global concentration of metabolites denotes
their concentration calculated using the volume of the
tank containing the aggregates (l.h.s. of Fig. 1). The
global concentration of templates, [Tg] is thus obtained
in Rocheleau et al. (2006) as being

[Tg] = [Tl][A]Vl ≈ [Tl][A]VA, (4)

where [A] is the concentration of aggregates or protocells
(number of aggregates per total tank volume), with the
local concentration still referring to the intra-aggregate
metabolite concentration.

The growth rate of the aggregate concentration,
d[A]/dt, depends both on the aggregate concentration,
[A], and on the growth of the local volume of the aggre-
gates, dVl/dt. The former is a consequence of the division
process, since the greater the number of aggregates that
exist, the more will be produced in a finite time interval,
while the latter term is an indicator of the doubling time
as it illustrates how fast a single aggregate (and implicitly
the number of aggregates) grows through the addition of
lipids (see also Appendix B):

d[A]

dt
= [A]

d(NL/m0)

dt
= [A]

1

VA

dVl

dt
(5)

4 If all the vesicular protocell’s chemistry takes place within the
container bilayer itself, then one would still have Vl ∝ S ∝ NL
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Taking the derivative of eq. (4) and using
eqs. (4), (5), (B5) and Vl ≈ VA, the global dynam-
ics is given by

d[Tg]

dt
= γT [Tg]

(

[Tg]

[A]

)p−1

(6)

d[A]

dt
= γA[Tg], (7)

where γT ≡ CT /V p−1
A and γA ≡ CL/m0. See Appendix

B for the detailed derivation of these equations.
Dividing eq. (6) by eq. (7), one finds that

d[Tg]

d[A]
=

γT

γA

(

[Tg]

[A]

)p−1

, (8)

which when solved leads to:

[A] =











[

γA

γT
[Tg]

2−p + C0

]
1

2−p

; p 6= 2 (9a)

C1 [Tg]
γA
γT ; p = 2 (9b)

The constants C0 and C1 are defined as C0 ≡ [A]2−p
0 −

γA

γT
[Tg]

2−p
0 and C1 ≡ [A]0/[Tg]

γA
γT
0 , where [A]0 and [Tg]0

denote respectively the aggregate and the template con-
centrations at t = 0. From its definition, γA > 0 and
as [Tg] must be positive, thus d[A]/dt is always positive
(see eq. [7]). Therefore, the concentration [A] increases in
time, independent of the sign of constant C0. However,
the general condition for C0 > 0 is

(2− p)ln

(

VA
[Tg]0
[A]0

)

< ln α (10)

with α ≡ CT m0

CLVA
.

Eq. (6) can now be rewritten as:

d[Tg]

dt
=



































γT

(

γA

γT

)

1−p
2−p

[Tg]

[

1 +
γT

γA

C0

[Tg]2−p

]

1−p
2−p

; p < 2 (11a)

c [Tg]
2−

γA
γT ; p = 2 (11b)

γT C
1−p
2−p

0 [Tg]
p

[

1 +
γA

γT

1

C0[Tg]p−2

]

1−p
2−p

; p > 2 (11c)

where c ≡ γT /C1. The complex form of these equations
does not allow a direct integration and thus requires the
consideration of an approximated solution.

Let us remember that for any exponent β and any real
number x satisfying |x| < 1, one can use the approxima-
tion:

(1 + x)β = 1 + βx +
β(β − 1)

2!
x2 + ...

≈ 1 + βx, (12)

with the last approximation being valid for |x| � 1.
As [Tg] increases with time, one can consider that after

a sufficiently long time, the second term in the brackets
of eqs. (11a) and (11c) reaches values much smaller than
unity and thus the expansion (12) can be applied, leading
to

d[Tg]

dt
≈
{

a[Tg] + b[Tg]
p−1 ; p < 2 (13a)

g[Tg]
2 + h[Tg]

p ; p > 2 (13b)

where a ≡ γT (γA/γT )
1−p
2−p , b ≡ γT C0

1−p
2−p

(

γA

γT

)
−1

2−p

, g ≡

γAC
−1

2−p

0
1−p
2−p and h ≡ γT C

1−p
2−p

0 . We note that if C0 > 0 for

any p, then the constants a, g and h are always positive,
with the exception of b which is negative for p ∈ (1, 2).

Before proceeding, we remark that there is no known
real replication process that achieves a growth order p >
2. The most efficient replication process known so far
involves the hypercycles dynamics and thus p = 2. For
this reason, we shall concentrate in the following on the
cases p < 2.

One can recognise eq. (13a) as being a Bernoulli Equa-
tion, whose general solution is known and thus the global
concentration of templates for p ≤ 2 is found to be:
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[Tg]t =























{exp[(2− p)at + D0]− b}
1

2−p

a
1

2−p

; p < 2 (14a)

(D1t + D2)
1

γA/γT −1 ; γA 6= γT ; p = 2 (14b)

[Tg] (0) ect ; γA = γT ; p = 2 (14c)

where D0 = ln[b+a[Tg]
2−p
0 ], D1 ≡ c(γA/γT−1) and D2 ≡

[Tg]
γA
γT

−1

0 . It can be seen that the case p = 1/2 coincides
with eq. 30 from Rocheleau et al. (2006). Also, similar to
the reasoning from Rocheleau et al. (2006), for the case
p < 2, the global template concentration evolves at large
times as [Tg]t ≈ exp(at) [see also their eq. (21)], with the
subscript t denoting the time dependence of the global
concentrations. Thus, for p < 2 and for p = 2, γT = γA,
the functional forms of [A]t and [Tg]t after sufficiently
long time differ by a constant [eq. (9)], implying that,
to a leading order, the coupled template and aggregate
growths are both exponential with the same exponent.

More exactly, considering that the constant C0 be-
comes neglectable when time and concentration get to
be large, the ratio of the templates and aggregates con-
centration [from eqs. (9a)] behaves as:

[Tg]t
[A]t

t→∞−−−→
(

γT

γA

)
1

2−p

, (15)

namely the template to aggregate ratio becomes a con-
stant. Next, we remark that as [Tl] ≡ 2[Td] + [Ts] with
[Td] � [Ts], a viable aggregate must have at least one
single template or, in a looser version, one double tem-
plate, otherwise its replication is impossible. Hence, an
implicit requirement for a viable system is [Tg]/[A] ≥ 1
or

γA ≤ γT , (16)

for any system characterised by p < 2. An exam-
ple of a simulation that follows eqs. (6) and (7)
is given in Fig. 2. We have considered the follow-
ing values: m0 = 1000, kL = 25 (Ms)

−1
, kT =

10 (Ms)
−1

, [pL] = 10−3 M, VA = 5×10−19 litres, KtVA =
1 × 10−3 molecules, f(O) = α[O] = 2 × 10−4 M, with
α = 2 being the number of oligomers necessary in the
replication of Ts. The initial conditions are [Tg]0 = 10−6

M and [A]0 = 10−8 M.

However, the case p = 2, γT 6= γA does not present co-
ordinated growth, but instead the aggregate concentra-
tion grows faster than the template concentration. For
this case, using eqs. (9a) and 14b, one obtains

[Tg]t
[A]t

=
1

C1

[

(D1t + D2)
1/(γA/γT −1)

]1−γA/γT

(17)

=
1

C1(D1t + D2)

t→∞−−−→ 0, (18)

confirming a faster growth of the aggregate concentration
with respect to the template concentration. The physical
interpretation of this result is that, eventually, there will
exist many aggregates that contain no templates at all.

Finally, for the case p > 2, one notes that at large
global template concentrations, eq. (13b) can be approx-
imated further as

d[Tg]

dt
≈ h[Tg]

p (19)

and thus the global template concentration follows the
local intra-aggregate growth law, with order p. As such,
the global growth law is no longer exponential. Nonethe-
less, as previously discussed, after a sufficiently long time,
eq. (9a) reveals that [A]t and [Tg]t differ by a constant.
Thus for the cases p > 2, the resultant coordinated
growth of the population of protocells is characterised by
the same exponent as the local intra-aggregate template
growth.

Once again, we stress the fact that no known real
growth process has an order p > 2 and in fact, all the-
oretical and experimental replication processes present
growth orders inferior to the pure hyperbolic case (p = 2).
We consider as our most important result the derivation
that for the real world (p < 2), the coupling of the tem-
plate with the container in a protocellular ensemble re-
sults in a coordinated global exponential growth at large
times.

V. THREE-ELEMENTS DYNAMICS

A higher level of chemical complexity can be intro-
duced by considering additional reactions for the tem-
plate replication. This seems a reasonable assumption
since experimental template replication requires the ac-
tivation of the precursors subsequently employed in the
replication process. In this sense, we shall consider the in-
troduction of oligomer precursors, pO into the dynamics
of the two-elements system presented above. The chem-
ical reactions considered are:
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FIG. 2 A simulation of eqs. (6) and (7) for the parabolic case
p = 1/2: [A] – solid line and [Tg] – dashed line (upper panel);
the ratio [Tg ]/[A] satisfies eq. (15) (lower panel). See text for
details.

pO + Td
kO−−→ O + Td (20a)

αO + Ts
kT−−→ Td (20b)

Td
Kt←→ 2Ts (20c)

pL + Td
kL−→ L + Td , (20d)

where the notations from Rocheleau et al. (2006) have
been used: Ts – single-stranded template; Td – double-
stranded template; pO and pL – the oligomer and lipid
precursors, respectively. A graphical representation of
this protocell’s chemistry is shown in Fig. 3. The steady
state is considered, that is the precursors’ concentra-
tion is taken as constant. In this case, one can no-
tice that the double-stranded template catalyses both

k
T

Ts

sT

Td

Td

L

pL

L

O

O

k
O

kL

L

pL

k t

L

L

L

pO

pO

FIG. 3 Protocell reaction network for the three-element sce-
nario. In this case, the container is coupled to the template
through an additional reaction structure where precursors of
templates need to be transformed, the transformation being
catalysed by templates.

lipid and oligomer formation. As in the previous sec-
tion, we use the total local template concentration [Tl] ≡
2[Td] + [Ts] ≈ 2[Td] as the template variable and take
into account the effect of volume change with time. Con-
sidering the kinetics of this system, the concentration of
templates and oligomers can be respectively written as

˙[Tl] = αkT [Ol]

√

Kt[Tl]

2
− d[A]

dt

[Tl]

[A]
(21a)

˙[Ol] = kO[pO]
[Tl]

2
− kT [Ol]

√

Kt[Tl]

2
− d[A]

dt

[Ol]

[A]
(21b)

As in the previous section, the transition from local
to global is based on the expressions [Tg] = [Tl] [A] VA

and [Og] = [Ol] [A] VA. Thus the final system of coupled
equations is:

˙[Tg] = γT [Og]

√

[Tg]

[A]
(22a)

˙[Og] = γO [Tg]− γT [Og]

√

[Tg]

[A]
(22b)

˙[A] = γA [Tg], (22c)

with

γO ≡
kO [pO]

2
; γT ≡ αkT

√

Kt

2VA
; γA ≡

kL [pL]

2m0
, (23)

where m0 is again the average number of lipid molecules
per aggregate and Kt = [Ts]

2/[Td] resulting from the
equilibrium condition of reaction 20c. Fig. 4 illustrates
an example of a solution of eqs. (22). The behaviour
appears to be representative of the generic dynamics of
the entire range of parameters investigated. Below, we
shall demonstrate that this case is also characterised by
coordinated exponential growth after a sufficiently long
time, with the same exponent for the oligomer, template
and aggregate concentration.

A. Linear stability analysis

The nonlinear system from eqs. (22) has
([Og], [Tg], [A]) = ([Og]0, 0, [A]0) as a unique fixed
point that results to be unstable under perturbation,
implying that these variables tend to infinity when
time tends to infinity. In other words, a protocell
whose chemistry is given by eqs. (20), but containing
no template molecules, will not grow. On the contrary,
a protocell containing template molecules will grow
and replicate, producing the increase in the global
metabolites’ concentrations. Employing a change of
variables, we shall prove below that the global variables
follow an exponential growth.
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As we start with at least one aggregate and proto-
cells’ death is not contemplated, we conclude that the
following variables can be well defined: x ≡ [Tg]/[A] and
y ≡ [Og]/[A]. Using these variables, eqs. (22) reduce to:

dx

dt
=

˙[Tg][A]− [Tg] ˙[A]

[A]2
= γT yx1/2 − γAx2 (24a)

dy

dt
=

˙[Og][A]− [Og] ˙[A]

[A]2
= γOx− γT yx1/2 − γAxy (24b)

We are interested in studying the dynamics of eqs. (24)
in order to infer the long-term behaviour of eqs. (20). In
particular, we are interested in whether the ratios x and
y stabilise. For this purpose, we note that the former
system has two fixed points resulting from the conditions
ẋ = 0 and ẏ = 0: the trivial one, (x1, y1) = (0, y0) and a
second one, (x2, y2) which is the solution of the equations:

γT y − γA x3/2 = 0; γO − γA x− γ2
A x3/2

γT
= 0 (25)

The trivial fixed point illustrates the fact that no evo-
lution is possible in the absence of templates. Thus, we
are only interested in the nontrivial case when the initial
template concentration is non-zero, that is we shall con-
centrate on the characteristics of the fixed point (x2, y2).
In order to determine its stability, the Jacobi matrix has
to be calculated and evaluated at the fixed point:

J2 ≡
(

∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

)

(x2,y2)

=

(

− 3
2γAx2 γT x

1/2
2

1
2γAx2 −γT x

1/2
2 − γAx2

)

where eq. (25) has been employed to simplify the Jacobi

matrix, that is we used y2 = x
3/2
2 γA/γT . The eigenval-

ues λ, which provide the stability information of (x2, y2),
result from the characteristic equation det(J2 − λI) = 0,
where I is the identity matrix:

λ2 + aλ + b = 0 (26)

a ≡ γT x
1/2
2 + 5

2γAx2; b ≡ γT γAx
3/2
2 + 3

2γ2
Ax2

2 (27)

∆ ≡ a2 − 4b = γ2
T x2 +

γ2

Ax2

2

4 + γT γAx
3/2
2 > 0 (28)

It can be seen that since a, b > 0 and ∆ > 0, the eigen-
values are real and negative (Routh-Hurwitz criterion),
leading to the conclusion that the fixed point (x2, y2) is
stable, and implicitly that (x1, y1) is unstable.

Returning to eqs. (22) and to the definition of x and
y, one can now see that after a sufficiently long time, the
following approximations hold:

[Tg]

[A]

t→∞−−−→ x2 (29a)

[Og]

[A]

t→∞−−−→ y2 , (29b)
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FIG. 4 A simulation of eq. (22) with kO = 5 (Ms)−1,
kT = 15 (Ms)−1 and the rest of parameters having the values
employed in Fig. 2. The values of the final constants are
γO = 2.5 × 10−4, γT = 2.2 × 10−6 and γA = 1.25 × 10−5. [A]
– solid line, [Tg ] – dashed line and [Og ] – dotted line (upper
panel); the ratio [Tg ]/[A] – dashed line and [Og ]/[A] – dotted
line.

which translate into ˙[A] ≈ γAx2[A] with the use of
eq. (22c), and thus into an exponential increase of the
aggregate concentration. Since [A] grows exponentially,
and after a sufficiently long time, [Tg], [Og] and [A] differ
by a constant, all the variables grow exponentially with
the same exponent. We emphasise once more that this
behaviour is satisfied only after a sufficiently long time.

Additionally, one can employ eqs. (25) to show that the
second fixed point satisfies the relation: x2 + y2 = γ0/γA

(Fig. 4).

VI. FOUR-ELEMENTS DYNAMICS

Here we consider a more complete and realistic pro-
tocellular system incorporating and explicit metabolism
driven by a light-activated sensitiser molecule (Ras-
mussen et al. 2003). The set of reactions is:

Z + pO + Td
kO−−→ O + Td + Z (30a)

αO + Ts
kT−−→ Td (30b)

Td
Kt←→ 2Ts (30c)

Z + pL + Td
kL−→ Td + L + Z (30d)

Z + pZ + Td
kZ−→ 2Z + Td , (30e)

where the added components are the sensitiser and its
precursor, Z and pZ, respectively. The sensitiser ab-
sorbs light energy to drive the conversion of the precursor
molecules to their products. See Fig. 5.

Again, the standard kinetic differential equations asso-
ciated with the global variables of this chemical network
are easily recovered:
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d[Tg]

dt
= γT [Og]

√

[Tg]

[A]
(31a)

d[Og]

dt
= γO[Zg]

[Tg]

[A]
− γT [Og]

√

[Tg]

[A]
(31b)

d[Zg]

dt
= γZ [Zg]

[Tg]

[A]
(31c)

d[A]

dt
= γA[Zg]

[Tg]

[A]
, (31d)

where the constants are defined as:

γO ≡
kO[pO]

2VA
; γT ≡ αkT

√

Kt

2VA

γZ ≡
kZ [pZ]

2VA
; γA ≡

kL[pL]

2m0VA

The system from eqs. (31) can be simplified through
the change of variable: x ≡ [Tg]/[A], y ≡ [Og]/[A], z ≡
[Zg]/[A], variables that are well defined as [A] 6= 0 fol-
lowing the reasoning employed in the previous section.
With this change of variables, the system becomes:

dx

dt
= γT y

√
x− γAx2z (32a)

dy

dt
= γ0xz − γT y

√
x− γAxyz (32b)

dz

dt
= γZxz − γAxz2. (32c)

Similar to the study of the three-elements system,
we are interested again in the nontrivial fixed point of

sT

Td

k
T

Ts

Td

pL

O

O

Ok

L

pL

L

L

pO

pZ

Z

Z

Z

Z

pL

Z

pZ

pO

pO

FIG. 5 A full protocell model with an explicit metabolism,
container, and informational molecules. All transformations
are coupled through template replication. The molecule Z
indicates a sensitiser which is able to take energy from an
external (not indicated) source of energy ( e.g. light).

eqs. (32), considering that the variables x, y and z can
take only positive values. The trivial dynamics (no
growth) is characterised by x0 = 0 and/or z0 = 0.
The non trivial fixed point of eqs. (32) results from
ẋ = ẏ = ż = 0 with x 6= 0 and z 6= 0 and it is:

(x2, y2, z2) = (x̃,
γZ

γT
x̃
√

x̃,
γZ

γA
) (33)

with x̃
√

x̃ +
γT

γZ
x̃− γOγT

γAγZ
= 0, (34)

with the subscript 0 denoting again the initial conditions,
while x̃ is the only positive root of eq. (34), a conclu-
sion drawn from applying the Routh-Hurwitz criterion
to this third order equation in

√
x. We are not inter-

ested in the exact form of x̃, but rather in pointing out
its existence and uniqueness in the positive-values do-
main, both features resulting from the Routh-Hurwitz
criterion. Through eq. (31c), this existence leads to

˙[Zg]
t→∞−−−→ γZ x̃[Zg], implying an exponential growth of

the sensitiser concentration after a sufficiently long time.
This result allows us to conclude, with the use of eq. (33),
that the temporal evolution of all metabolites’ concentra-
tion is exponential, of the type ∝ exp(at), with a = γZ x̃.

VII. DISCUSSION

There is ongoing debate in the scientific community on
the issue of stoichiometric versus catalytic coupling as a
necessary dynamics to ensure balanced parallel growth
and correct replication of the constituent systems of such
a protocell: metabolism, genome and membrane. In the
past 20 years, significant experimental efforts have been
dedicated to the optimisation of self-replicating molecules
in order to achieve efficient copying (Paul & Joyce 2004).
More precisely, several chemical subsystems must be op-
timised in order to provide an overall self-replicating sys-
tem that exhibits efficient auto-catalytic behaviour. The
efficiency is directly reflected in the degree of catalysis
or the order of reaction, where a value of 1 (exponential
growth, recall Table I) is believed to provide the appro-
priate basis of Darwinian selection: survival of the fittest
(Szathmáry & Maynard-Smith 1997).

From the modelling point of view, Gánti’s chemoton
model (Gánti 1975) is a protocell model incorporating
all three necessary subsystems in a very tightly coupled
and synchronised interdependence (THIS ISSUE Mavelli
& Ruiz-Miranzo 2006). This model is the basic example
of cyclic stoichimetric coupling as the main coordinating
factor. In the present work, we extend a catalytically cou-
pled protocell model (Rocheleau et al. 2006) and demon-
strate that the catalytic coupling of the subsystems is suf-
ficient to lead the whole system into balanced exponen-
tial growth. In other words, the metabolism-template-
container feedback by itself ensures an overall exponen-
tial growth of the system in spite of subexponential or
supraexponential local growth of its component subsys-
tems. We believe that this result may have implications
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for prebiotic and origin of life scenarios, as it is a robust
means of providing exponential growth of protocells and
thus early Darwinian selection.

In tight connection with the present work, we men-
tion the work of (Serra et al. 2006 (In press). It is also
inspired by the Los Alamos Bug and the results of the
detailed analytic study therein totally support the coor-
dinated growth of a general class of catalytically coupled
protocellular systems.
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APPENDIX A

The derivation of eqs. (2) is detailed in Rocheleau et al.
(2006) and described in brief below. The standard chem-
ical kinetics applied to the reactions (1) yields the fol-
lowing differential equations characterising the temporal
evolution of the metabolites’ concentration:

˙[Ts] = 2Kt[Td]− kT [pO][Ts] (A1a)

˙[Td] = −KT [Td] + kT [pO][Ts] (A1b)

˙[L] = kL[pL][Td], (A1c)

where the chemical equilibrium of reaction (1b) has been
used through its equilibrium constant Kt. Considering
that the total concentration of (single-)template can be
written as [Tl] ≡ 2[Td] + [Ts], one can rewrite eqs. (A1)
in terms of [Tl] as

˙[Tl] = kT [pO][Ts] (A2a)

˙[L] = kL[pL][Td]. (A2b)
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In addition, as the equilibrium constant satisfies Kt =
[Ts]

2/[Td], the following equation holds:

2[Ts]
2 + Kt[Ts]−Kt[Tl] = 0,

implying that

[Ts] =
−Kt +

√

K2
t + 8Kt[Tl]

4
≈
√

Kt[Tl]2

[Td] =
[Tl]

2
+
−Kt +

√

K2
t + 8Kt[Tl]

4
≈ [Tl]

2
,

where the product inhibition has been taken into account
as [Ts] � [Td]. With the help of these approximations,
eqs. (A2) can finally be rewritten as eqs. (2).

APPENDIX B

Eqs. (2) implicitly assume that the protocell’s volume
can be approximated as being a constant. Thus one can
also write eq. (2b) as

1

VA

dNL

dt
= CL[Tl]. (B1)

If instead, the volume Vl is considered proportional to
the number of lipid molecules, i.e., Vl = Q × NL, with
Q being the proportionality constant, then the volume
must be considered as time-varying:

dVl

dt
= Q× dNL

dt
(B2)

Thus, in the changing volume approach, the time
derivative of the template concentration [Tl] ≡ NT /Vl

is given by:

d[Tl]

dt
=

1

Vl

dNT

dt

∣

∣

∣

∣

Vl

− NT

V 2
l

dVl

dt

∣

∣

∣

∣

NT

(B3)

The first term on the r.h.s of eq. (B3) is considered at
constant volume and thus one must have:

d[Tl]

dt

∣

∣

∣

∣

Vl

=
1

Vl

dNT

dt

∣

∣

∣

∣

Vl

(B4)

By using the definition of [Tl] and eqs. (B4) and (2a),
both of which apply at constant volume, eq. (B3) can be
rewritten as

d[Tl]

dt
= CT [Tl]

p − [Tl]

Vl

dVl

dt
(B5)

Next, we consider the dividing protocells and their con-
centration, [A] in the entire experimental volume. As the
lipid aggregates have a characteristic scale, there exists
and average number m0 of lipids per average aggregate
volume VA. Thus, the growth rate of [A] is given by:

d[A]

dt
= [A]

d

dt
(NL/m0)

=
[A]

m0

dNL

dt

=
[A]

Qm0

dVl

dt
(B6)

=
CL

m0
[Tg] (B7)

where [Tg] = [A]Va[Tl] and eq. (B1) have been used. One
can recognise eq. (B7) as being eq. (7) with γA ≡ CL/m0.
Applying eq. (B2), one can rewrite eq. (B6) as

dA

dt
=

[A]

Qm0

dVl

dt

=
[A]

VA

dVl

dt
(B8)

where we have used the definition of the average aggre-
gate volume (VA = Qm0). One can recognise the last
equation as being eq. (5).

Finally, let us recover the evolution of the global con-
centration of templates. Taking the derivative of [Tg] =
[A]VA[Tl] yields

d[Tg]

dt
= [Tl]VA

d[A]

dt

∣

∣

∣

∣

[Tl]

+ [A]VA
d[Tl]

dt

∣

∣

∣

∣

[A]

(B9)

Using eqs. (B8) and (B5) to substitute into the first and
second terms on the r.h.s of eq. (B9), we have

d[Tg]

dt
= [Tl]

[A]

Qm0

dVl

dt
+ [A]VA

(

CT [Tl]
p − [Tl]

Vl

dVl

dt

)

= [A]VACT [Tl]
p − [A][Tl]

dVl

dt

[

1

Vl
− 1

Qm0

]

(B10)

Considering again the approximation Vl ≈ VA, the brack-
eted r.h.s of eq. (B10) becomes zero. Then using the
relation between [Tg] and [Tl], one obtains

d[Tg]

dt
= CT [Tg]

(

[Tg]

VA[A]

)p−1

= γT [Tg]

(

[Tg]

[A]

)p−1

with γT ≡ CT /V p−1
A , which is eq. (6).


