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Abstract show that global complexity in the finitary process soup is

due to the emergence of successively higher levels of orga-

Current analyses of genomes from numerous species show s . .
that the diversity of organism’s functional and behavioral nization. Importantly, hierarchical structure appeaxsia-

characters is not proportional to the number of genes thaten- ~ N€ously and is facilitated by the discovery and maintenance
code the organism. We investigate the hypothesis that the  Of relatively noncomplex, but general individuals in a pop-
diversity of organismal character is due to hierarchical orga-  ulation. These results, in concert with the minimal assump-
nization. We do this with the recently introduced model of  tions and simplicity of the finitary process soup, strongly
thefinitary process soupwhich allows for a detailed mathe- suggest that an evolving system's sophistication, complex

matical and quantitative analysis of the population dynamics ) . . . . . . .
of structural complexity. Here we show that global complex- ity, and functional diversity derive from its hierarchicat

ity in the finitary process soup is due to the emergence of ganization.
successively higher levels of organization, that the hierarchi-
cal structure appears spontaneously, and that the process of M odeling Pre-Biology
structural innovation is facilitated by the discovery and main- pyioy 15 the existence of highly sophisticated entitiesdct
tenance of relatively noncomplex, but general individuals in - S - .
a population. on by evqlutlonary forces, repll_catlve objects relied on fa
more basic mechanisms for maintenance and growth. How-
. ever, these objects managed to transform, not only them-
Introduction selves, but also indirectly the very transformations byaluhi
Recent estimates have shown that the genomes of manythey changed (Bssler, 1979) in order to eventually support
species consist of a surprisingly similar number of genes de the mechanisms of natural selection. How did the transition
spite some being markedly more sophisticated and diverse from raw interaction to evolutionary change take place® Is i
in their behaviors. Humans have only 30% more genes that possible to pinpoint generic properties, however basat, th
the wormCaenorhabditis elegandiumans, mice, and rats ~ would have enabled a system of simple interacting objects
have nearly the same number (Lynch and Conery, 2003; Rat to take the first few steps towards biotic organization?
Genome Sequencing Project Consortium, 2004). Moreover,  To explore these questions in terms of structural complex-
many of those genes serve to maintain elementary processesty we developed a theoretical model borrowing from com-
and are shared across species, which greatly reduces theputation theory (Hopcroft and Ullman, 1979) and computa-
number of genes available to account for diversity. One con- tional mechanics (Crutchfield and Young, 1989; Crutchfield,
cludes that individual genes cannot directly code for thle fu  1994). In this system—tHnitary process soufCrutchfield
array of individual functional and morphological charaste =~ and Grnerup, 2006)—elementary objects, as represented
of a species, as genetic determinism would have it. From by e-machines, interact and generate new objects in a well
what, then, do the sophistication and diversity of orgamism  stirred flow reactor.
form and behavior arise? Choosinge-machines as the interacting, replicating ob-
Here we investigate the hypothesis that these arise from jects, it turns out, brings a number of advantages. Most par-
a hierarchy of interactions between genes and between in- ticularly, there is a well developed theory of their struatu
teracting gene complexes. A hierarchy of gene interactions properties found in the framework of computational me-
being comprised of subsets of available genes, allows for an chanics. In contrast with individuals in previous, relapee-
exponentially larger range of functions and behaviors than biotic models—such as machine language programs (Ras-
direct gene-to-function coding. We will use a recentlyantr mussen et al., 1990; Rasmussen et al., 1992; Ray, 1991;
duced pre-biotic evolutionary model—ttimitary process Adami and Brown, 1994), tags (Farmer et al., 1986; Bagley
soup—of the population dynamics of structural complex- etal., 1989)\-expressions (Fontana, 1991), and cellular au-
ity (Crutchfield and @rnerup, 2006). Specifically, we will tomata (Crutchfield and Mitchell, 199%}machines have a



well defined (and calculable) notion of structural complex-
ity. For the cases of machine language ancalculus, in
contrast, it is known that algorithms do not even exist te cal

culate such properties since these representations are com

putation universal (Brookshear, 1989). Another important
distinction with prior pre-biotic models is that the indivi

A@D c—t-—l

Figure 1: Example-machines:Ty has a single causal state

uals in the finitary process soup do not have two separate ang, according to its transition labels, is the identitycun
modes of operation—one of representation or storage and tjon, T consists of causal statésandB and two transitions.

one for functioning and transformation. The individuals ar
simply objects whose internal structure determines how the
interact. The benefit of this when modeling prebiotic evo-

Tg accepts two input strings, either 10100r 0101. ., and
flips Os to 1s and vice versa as it produces an output string.
Note that the function’s domain and range are the sape.

lution is that there is no assumed distinction between gene has the same domain and rang@gsut does not exchange

and protein (Sclidinger, 1967; von Neumann, 1966) or
between data and program (Rasmussen et al.,
mussen et al., 1992; Ray, 1991; Adami and Brown, 1994).

e-Machines
Individuals in the finitary process soup are objects thatsto
and transform information. In the vocabulary of informa-
tion theory they arecommunication channel@Cover and
Thomas, 1991). Here we focus on a type of finite-memory
channel, called a finitarg-machine, as our preferred rep-
resentation of an evolving information-processing indhvi

ual. To understand what this choice captures we can think

of these individuals in terms of how they compactly describe
stochastic processes.

A processis a discrete-valued, discrete-time stationary
stochastic information source (Cover and Thomas, 1991). A
process is most directly described by the bi-infinite seqaen
it produces of random variabl& over an alphabet :

=..§18S1. ()
and the distribution Eg) over those sequences. At each mo-
mentt, we think of the bi infinite sequence as consisting of

- — —

a hlstory& and a futureSt subsequences=S5; S;.
A process stores information in its sef causal states

Os and 1s.

1990; Ras-

A process’s-machines the ordered paifs,7 }. Finitary
e-machines are stochastic finite-state machines with the fol
lowing properties (Crutchfield and Young, 1989): (i) All re-
current states form a single strongly connected component.
(i) All transitions are deterministic in the specific setisat
a causal state together with the next symbol determine a
unique next state. (iii) The set of causal states is finite and
minimal.

In the finitary process soup we use the alphabet
{0]0,0|1,1|0,1|1} consisting of pairsn | out of input and
output symbols over a binary alphabet= {0,1}. When
used in this wag-machines read in strings overand emit
strings overs. Accordlngly, they should be viewed as map-

pings from one procesS.nput to anOtherSoutput They are, in
fact, simply functions, each with a domain (the set of ssing
that can be read) and with a range (the set of strings that can
be produced). In this way, we considemachines as mod-
els of objects that store and transform information. In the
following we will take the transitions from each causal stat
to have equal probabilities. Figure 1 shows several example
of simples-machines.

Given thate-machines are transformations, one can ask

Mathematlcally, these are the members of the range of the how much processing they do—how much structure do they

mape : S — 2S from histories to sets of histories
— —/
e(s) = s)},

where 2 is the power set of histories. That is, the causal
states of a historyE is the set of histories that all have
the same probability distribution of futures. The trarmsiti
from one causal statg to anothers; while emitting the
symbolse€ 4 is given by a set of labeled transition matrices:

T = {T”(s) :se a4}, inwhich

(/Jl

{(S|P(S|'s=s)=P(S|S=s @

1

T =P(s' =5}, 8 =sls =) , 3)

—1

wheres is the current casual statg) its successor, ang
the next symbol in the sequence.

add to the inputs when producing an output? Due to the
properties mentioned above, one can answer this question
precisely. Ignoring input and output symbols, the state-
to-state transition probabilities are given bysamachine’s
stochastic connection matrix = 3, T®®. The causal-
state probability distributiorp; is given by the left eigen-
vector of T associated with eigenvalue 1 and normalized in
probability. If M is ane-machine, then the amount of in-
formation storage it has, and can add to an input process, is
given byM’s structural complexity

= —Z ps (V
ves

e-Machine Interaction

e-machines interact by functional composition. Two ma-
chinesTp and Tg that act on each other result in a third

)10g, ps (V) . 4)



Figure 2: Interaction network for themachines of Fig. 1.
Itis a meta-machine.

Tc = Tgo Ta, WhereTc (i) has the domain ofa and the range

of Tg and (ii) is minimized. IfTa andTg are incompatible,
e.g., the domain ofg does not overlap with the range of
Ta, the interaction produces nothing—it is considered elas-
tic. During composition the size of the resultiegnachine
can grow very rapidly (geometrically)Tc| < |Tg| x |Ta|-

I nteraction Network

We monitor the interactions of objects in the soup via the
interaction networks . This is represented as a graph whose
nodes correspond ®@machines and whose transitions cor-
respond to interactions. M = Tj o T; occurs in the soup,
then the edge frord; to Ty is labeledT;. One can represent
G with the binary matrices:

1 ifTg=TjoT

(k)
0 otherwise

Gij’ = )
For the set ok-machines in Fig. 1, for example, we have
the interaction graph shown in Fig. 2 that is given by the
matrices:

100 010
¢AW=10 0 0l ,¢®=1|1 0 1| ,and
0 00 010
0 01
¢9=10 1 0
10 1

To measure the diversity of interactions in a population
we define thenteraction network complexity

vE ok
Cug)=— > koG - (6)
fi,fj,fk>0
where
| fifj, Tk=T;oT has occurred
Vh' o { 0, otherwise, )
VK =37, W, is a normalizing factor, and is the fraction

of e-machine type in the soup. In order to emphasize our
interest in actual reproduction pathways, we consider only
those that have occurred in the soup.

(B D

Figure 3: The meta-machine to which that in Fig. 2 decays
under the population dynamics of Eq. (8).

M eta-M achines

Given a populationr of e-machines, we define meta-
machineQ C » to be a connected set efmachines that is
invariant under composition. That 8,is a meta-machine if
andonly if (i) TjoTi e Qforall T, T; € Q, (i) for all Ty € Q,
there existsT;, Tj € Q such thafly = Tj o T;, and (iii) there
is a nondirected path between every pair of node®'in-
teraction networksq. The interactions in Fig. 2 describe a
meta-machine of Fig. 1’'ssmachines.

The meta-machine captures the notion of a self-
replicating and autonomous entity and is consistent with
Maturana and Varela'autopoietic setVarela et al., 1974),
Eigen and Schustersqypercycle (Schuster, 1977) and
Fontana and Bussrganization(Fontana and Buss, 1996).

Population Dynamics
We employ a continuously stirred flow reactor with an influx
rate @y, that consists of a population of N e-machines.
The dynamics of the population is iteratively ruled by com-
positions and replacements as follows:

1. e-machineGeneration

(a) With probability®;, generate a randogrmachineTr
(influx).
(b) With probability 1— @;, (reaction:
. SelectTy andTg randomly.
. Form the compositiofic = Tg o Ta.

2. s-machlneOuthux

(a) Select ar-machineTp randomly from the population.
(b) Replacelp with eitherTc or Tg.

Below, Tr will be uniformly sampled from the set of all
two-statee-machines. This set is also used when initializing
the population. The insertion dk corresponds to the influx
while the removal ofip corresponds to the outflux. The lat-
ter keeps the population size constant. Note that there is no
spatial dependence in this modeinachines are picked uni-
formly from the population for each replication. The finitar
process soup here is a well stirred gas of reacting objects.

When there is no influxd;,=0) and the population is
closed with respect to composition, the population dynamic
is described by a finite-dimensional set of equations:

i ®)

= ftfl : gi(jk) . f;lllz_lv

whereft“‘) is the frequency of-machine type at timet and
Z~1lis a normalization factor.



Figure 4: (a) Population-averagedmachine complexity
(Cu(T)) and (b) run-averaged interaction network complex-
ity (Cu(g)) as a function of time and influx rate®;, for a
population ofN = 100 objects. (Reprinted with permission
from (Crutchfield and @rnerup, 2006).)

In addition to capturing the notion of self-replicating en-
tities, meta-machines also describe an important type-of in
variant set of the population dynamics. Formally, we have

Q=60Q. 9)

These invariant sets can be stable or unstable under the pop-

ulation dynamics. Note that the meta-machine of Fig. 2
is unstable: onlyTa producesTas. As such, over time
the population dynamics will decay to the meta-machine of
Fig. 3, which describes a soup consisting onlyTgé and

C.(@)
W b~ 00 O N

N

N " \ T ‘ ,
0 50 100 150 200 250 300 350 400 450 500
t/N

O =

Figure 5. Meta-machine decomposition in a closed soup: 15
separate runs withl = 500. While the minimal 4-element
meta-machineQ, (shown) dominates the soufy(g) is
bounded by 4 bits. Once outflux removes one oféeits
machines, rapidlyQ, decays toQ,, a 2-element meta-
machine (shown).C§4 does not contain a sub-meta-machine
of 3 e-machines.) At this pointC,(g ) is bounded by 2 bits.
After some period of timeQ, decays taQ;, a single self-
reproducing-machine (shown), anG,(g ) is fixed at 0.

shaped by the selective pressure coming from outflux and
by geometric growth due to composition. The turn-over is

Tcs. This example also happens to illustrate that copying— due to the dominance of nonreproducggachines in the

implemented here by the identity objéat—need not dom-

initial population. (C,(T)) subsequently declines since it is

inate the population and so does not have to be removed by favorable to be simple as it takes a more extensive stochas-

hand, as done in several prior pre-biotic models. It canyleca
away due to the intrinsic population dynamics.

Simulations

tic search to find reproductive interactions that includeeno
complexe-machines.

Note (Fig. 4(b),®i, ~ 0) that the run-averaged interac-
tion complexity(C,(g )) reaches a significantly higher value

A system constrained by closure forms one useful base casethan(C,(T)), implying that the population’s structural com-

that allows for a straightforward analysis of the populatio
dynamics. It does not permit, however, for the innovation of
structural novelties in the soup on either the level of ifdtv
ual objects §-machines) or on the level of their interactions.
What we are interested in is the possibility of open-ended
evolution of e-machines and their meta-machines. When

plexity derives from its network of interactions rathernha
the complexity of its constituent individual$Cy (G )) con-
tinues to grow while compositional paths are discovered
and created. A maximum is eventually reached after which
(Cu(g)) declines and settles down to zero when one sin-
gle type of self-reproducingrmachine takes over the whole

enabled as an open system, both with respect to composi- population.

tion and influx, the soup constitutes a constructive dynam-
ical system and the population dynamics of Eq. (8) do
not strictly apply. (The open-ended population dynamics of
epochal evolution is required (Crutchfield and van Nimwe-
gen, 2000).)

We first set the influx rate to zero in order to study dy-
namics that is ruled only by compositional transformations
One important first observation is that almost the complete

set of machine types that are represented in the soup’s ini-

tial random population is replaced over time. Thus, even

By monitoring the individual run values @,(g) rather
than the ensemble average, one sees that they form plateaus
as shown in Fig. 5. The plateaus—@t(G ) = 4 bits and,
most notably, aC,(g ) = 2 bits and 0 bits—are determined
by the largest meta-machine that is present at a given time.
Being a closed set, the meta-machine does not allow any
novele-machines to survive and this gives the upper bound
onCy(g ). As ones-machine type is removed frof by the
outflux, the meta-machine decomposes and the upper bound
onC,(g ) lowers. This produces a stepwise and irreversible

at the earliest times, the soup generates genuine novelty. succession of meta-machine decompositions.

The population-averaged individual complex{G(T)) in-
creases initially, as Fig. 4(a¥, ~ 0) from (Crutchfield and
Gornerup, 2006) shows. Theemachines are to some extent

Thus, in the case of zero influx, one sees that the soup
moves from one extreme to another. It is completely dis-
ordered initially, generates structural complexity iniitdi-



@i, ~ 0.1. For higher influx rates, individual novelty has
a deleterious effect on the sophistication of a populasion’
interaction network. Existing reproductive paths do nat pe
sist due to the low rate of successful compositions of highly
structured (and so specialized) individuals. We found that
the maximum network complexi@\p(g) grows slowly and
linearly over time ate 7.6- 10~ bits/replication.
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Summary and Conclusions

@ To understand the basic mechanisms driving the evolution-
. = ary emergence of structural complexity in a quantitativeé an
o % R tractable pre-biotic setting, we investigated a well stirr
YAN

soup ofe-machines (finite-memory communication chan-
nels) that react with each other by composition and so gen-
erate newe-machines. When the soup is open with respect
to composition and influx, it spontaneously builds strugtur
1L . complexity on the level of transformative relations among
the e-machines rather than in themachine individuals
Figure 6: Meta-machine hierarchy of dynamical composi- themselves. This growth is facilitated by the use of reddiv
tion and decomposition. Dots denatenachines. An iso- non-complex individuals that represent general and elemen
lated dot denotes a self-replicatisgmachine. Solid lines  tary local functions rather than highly specialized indiw
denoteTy T, Te transitions. Dashed lines dend@i T fals._ The soup th_us ma|r_1ta|ns Ipcal simplicity and general-
transitions. Although all possible transitions are use¢higy %Y In order to build up hierarchical structures that suppor

meta-machines shown, they are represented in a simplified 9/0Pal complexity. Novel computational representatiores a
way according t&y; cf. Fig. 5 intrinsically introduced in the form of meta-machines that

in turn, are interrelated in a hierarchy of composition and
decomposition. Computationally powerful local repreaent
tions are thus not necessary (nor effective) in order for the

viduals and in its interaction network, runs out of resoarce €mergence and growth of complex replicative processes in

(poorly reproducing-machines that are consumed by out- the finitary process soup. Meta-machines in closed soups

flux), and decomposes down to a single type of simple self- €ventually decay. Fdg,(g) to maintain and grow the soup
reproducinge-machine. must be fed with novel material in the form of randam

Although Fig. 5 shows only three plateaus, there is in Machines. Otherwise, any spontaneously generated meta-
principle one plateau for every meta-machine that at some machines are decomposed (due to finite-population sam-
point is the largest one generated by the soup. The diagram Pling) and the population eventually consists of a singbety
in Fig. 6 summarizes our results from a more extensive and Of trivially self-reproducinge-machine. At an intermediate
systematic survey of meta-machine hierarchies from aserie influx rate, however, the interaction network complexity is
of runs withN = 500. It gives one illuminating example of ~ notonly maintained but grows linearly with time. This, then
how the soup spontaneously generates hierarchies of meta-Suggests the possibility of open-ended evolution of inerea

2+ —

machines. ingly sophisticated organizations.
Leaving closed soups behind, we now investigate the ef-
fects of i_nflux. Recall the population-averggednaphine Acknowledgments
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