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Abstract

As well known, the standard central limit theorem plays a fundamental role in Boltzmann-
Gibbs (BG) statistical mechanics. This important physical theory has been generalized by one

of us (CT) in 1988 by using the entropy Sq =
1−
∑

i
pq

i

q−1 (with q ∈ R) instead of its particular

case S1 = SBG = −∑i pi ln pi. The theory which emerges is usually referred to as nonextensive
statistical mechanics and recovers the standard theory for q = 1. During the last two decades,
this q-generalized statistical mechanics has been successfully applied to a considerable amount of
physically interesting complex phenomena. Conjectures and numerical indications available in
the literature were since a few years suggesting the possibility of q-generalizations of the standard
central limit theorem by allowing the random variables that are being summed to be correlated
in some special manner, the case q = 1 corresponding to standard probabilistic independence.
This is precisely what we prove in the present paper for some range of q which extends from
below to above q = 1. The attractor, in the usual sense of a central limit theorem, is given by a
distribution of the form p(x) ∝ [1−(1−q)βx2]1/(1−q) with β > 0. These distributions, sometimes
referred to as q-Gaussians, are known to make, under appropriate constraints, extremal the
functional Sq. Their q = 1 and q = 2 particular cases recover respectively Gaussian and Cauchy
distributions.

1 INTRODUCTION

Limit theorems, in particular, the central limit theorems (CLT), surely are among the most impor-
tant theorems in probability theory and statistics. They play an essential role in various applied
sciences as well, including statistical mechanics. Historically A. de Moivre, P.S. de Laplace, S.D.
Poisson and C.F. Gauss have first shown that Gaussian is the attractor of independent systems with
a finite second variance. Chebyshev, Markov, Liapounov, Feller, Lindeberg, Levy have contributed
essentially to the development of the central limit theorem. Various aspects of this theorem and
its links to statistical mechanics and diffusion have been discussed during recent decades as well
[1, 2, 3, 4].

It is well known in classical Boltzmann-Gibbs (BG) statistical mechanics that the Gaussian
maximizes, under appropriate constraints, the Boltzmann-Gibbs entropy SBG = −∑i pi ln pi. The
q-generalization of the classic entropy introduced in [1] as the basis for generalizing the BG theory,
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and denoted by Sq =
1−
∑

i
pq

i

q−1 (q ∈ R; S1 = SBG) reaches its maximum at the distributions usually
referred to as q-Gaussian (see [2]). This fact, and a number of conjectures [5] and numerical
indications [6] suggest that there should be a q-analog of the CLT as well.

In this paper we prove a generalization of the classical central limit theorem consistent with
nonextensive statistical mechanics. Speaking on one particular element of this theorem we note
that there is a dual index, q∗ connected with q. The first index q defines the region of convergence,
while the dual index q∗ exhibits existence of q∗-Gaussians corresponding to the limits of sums. The
arisen duality, in contrary with the classic CLT, is a specific feature of the q-theory, which comes
from the specific definition of q-exponential.

In the general case the suggested generalization of the central limit theorem is represented
as a series of theorems, depending on type of correlations. For k, integer, there is a triplet
(qk−1, qk, qk+1) (determined by a given q ∈ (1/2, 2)), which has an important role in descrip-
tion of the system. As we see in Section 3 for systems having correlation identifyed by qk, the index
qk−1 determines the q-Gaussian, while the index qk+1 indicates the scaling rate. Note if q = 1, then
all family of theorems reduce to one recovering the classic central limit theorem.

Our analysis is based on the q-mathematics [7, 8, 9, 10]. Recall briefly the basics of q-
mathematics. By definition, the q-sum of two numbers is defined as x ⊕q y = x + y + (1 − q)xy.
The q-sum is commutative, associative, recovers the usual summing operation if q = 1 (i.e.
x ⊕1 y = x + y), and preserves 0 as the neutral element (i.e. x ⊕q 0 = x). By inversion, we
can define the q-subtraction as x ⊖q y = x−y

1+(1−q)y . The q-product for x, y is defined by the binary

relation x⊗q y = [x1−q + y1−q − 1]
1

1−q . This operation also commutative, associative, recovers the
usual product when q = 1, and preserves 1 as the unity. It is defined only when x1−q + y1−q ≥ 1.

Again by inversion, it can be defined the q-division: x ⊘q y = (x1−q − y1−q + 1)
1

1−q . Note, that
x⊗q 0 6= 0, and for q 6= 1 division by zero is allowed.

The paper is organized as follows. Section 2 we start recalling the definitions of q-exponential
and q-logarithm. Then we introduce the notion of the q-Fourier transform Fq and study its basic
properties. Note, that Fq coincides with the classic Fourier transform if q = 1. For q 6= 1 Fq

is not a linear operator. Lemma 2.5 says that Fq is invertible at least in the class of densities.
An important property of Fq is that it maps q-Gaussian to q∗-Gaussian, where q∗ 6= q if q 6= 1.
In Section 3 we prove the main result of this paper, q-version of the central limit theorem. It
considers q-independent random variables, which recovers the classic notion of independence of
random variables only in the case q = 1. For q 6= 1 the class of q-independent random variables
contains globally [2] correlated random variables as well.

2 q-FOURIER TRANSFORM AND ITS PROPERTIES

2.1 q-exponential and q-logarithm

The q-analysis relies essentially on the analogs of exponential and logarithmic functions, which are
called q-exponential and q-logarithm [7]. In this paper we introduce and essentially use a new analog
of the Fourier transform, which we call q-Fourier transform. The q-Fourier transform is defined
based on the q-product and the q-exponential, and, in contrast to the usual Fourier transform, is a
nonlinear transform.

Now we recall briefly definitions and some properties of the q-exponential and q-logarithm.

These functions are denoted by ex
q and lnqx and respectively defined as ex

q = [1 + (1− q)x]
1

1−q

+ and

lnq x = x1−q−1
1−q , (x > 0). The symbol [x]+ means that [x]+ = x, if x ≥ 0, and [x]+ = 0, if x < 0. We

mention the main properties of these functions, which we will use essentially in this paper. For q-
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exponential the relations e
x⊕qy
q = ex

q ey
q and ex+y

q = ex
q⊗qe

y
q hold true. These relations can be written

equivalently lnq(x⊗q y) = lnq x+lnq y 1 and lnq(xy) = lnq x⊕q lnq y. q-exponential and q-logarithm
have asymptotics ex

q = 1+x+ q
2x2 +o(x2), x→ 0 and lnq(1+x) = x− q

2x2 +o(x2), x→ 0. If q < 1,

then for x reals, |eix
q | ≥ 1 and |eix

q | ∼ (1 + x2)
1

2(1−q) , x → ∞. Similarly, q > 1, then 0 < |eix
q | ≤ 1

and |eix
q | → 0 if |x| → ∞.

2.2 q-Gaussian

Let β be a positive number. We call the function

Gq(β;x) =

√
β

Cq
e−βx2

q , (1)

a q-Gaussian. The constant Cq is the normalizing constant, namely Cq =
∫∞
−∞ e−x2

q dx. It is not
difficult to verify that

Cq =























2√
1−q

∫ π/2
0 (cos t)

3−q
1−q dt =

2
√

πΓ( 1
1−q

)

(3−q)
√

1−qΓ( 3−q

2(1−q)
)
, −∞ < q < 1,

√
π, q = 1,

2√
q−1

∫∞
0 (1 + y2)

−1
q−1 =

√
πΓ( 3−q

2(q−1)
)

√
q−1Γ( 1

q−1
)
, 1 < q < 3 .

(2)

For q < 1, the support of Gq(β;x) is compact since this density vanishes for |x| > 1/
√

(1− q)β.
Notice also that, for q < 5/3 (5/3 ≤ q < 3), the variance is finite (diverges). Finally, we can easily

check that there are relationships between different values of q. For example, e−x2

q =
[

e−qx2

2− 1
q

]
1
q
.

The following lemma establishes a general relationship (which contains the previous one as a
particular case) between different q-Gaussians.

Lemma 2.1. For any real q1, β1 > 0 and δ > 0 there exist uniquely determined q2 = q2(q1, δ)
and β2 = β2(δ, β1), such that

(e−β1x2

q1
)δ = e−β2x2

q2
.

Moreover, q2 = δ−1(δ − 1 + q1), β2 = δβ1.
Proof. Let q1 ∈ R1, β1 > 0 and δ > 0 be any fixed real numbers. For the equation,

(1− (1− q1)β1x
2)

δ
1−q1 = (1− (1− q2)β2x

2)
1

1−q2

to be an identity it is needed (1 − q1)β1 = (1 − q2)β2, 1 − q1 = δ(1 − q2). These equations have a
unique solution q2 = δ−1(δ − 1 + q1), β2 = δβ1.

The set of all q-Gaussians will be denoted by Gq , i.e.,

Gq = {bGq(β, x) : b > 0, β > 0}.

2.3 q-Fourier transform and q-characteristic function

Introduce the q-Fourier transform for a given function f(x) by the formal formula 2

Fq[f ](ξ) =

∫ ∞

−∞
eixξ
q ⊗q f(x)dx . (3)

1This property reflects the possible extensivity of Sq in the presence of special correlations [12, 13, 14, 15].
2Note, if f has compact support, then integration should be taken over this support, otherwise the integral does

not converge.
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For discrete functions fk, k = 0,±1, ..., this definition takes the form

Fq[f ](ξ) =
∞
∑

k=−∞
eikξ
q ⊗q f(k) . (4)

In the future we use the same notation in both cases. We also call (3) or (4) the q-characteristic
function of a given random variable X with an associated density f(x), using the notations Fq(X)
or Fq(f) equivalently. The following lemma establishes the relation of the q-Fourier transform
without using the q-product.

Lemma 2.2. The q-Fourier transform can be written in the form

Fq[f ](ξ) =

∫ ∞

−∞
f(x)e

ixξ

(f(x))1−q

q dx. (5)

Proof. We have

eixξ
q ⊗ f(x) = [1 + (1− q)ixξ + f(x)1−q − 1]

1
1−q

+ =

f(x)[1 + (1− q)ixξf(x)q−1]
1

1−q

+ . (6)

Integrating both sides of Eq. (6) we obtain (5).
Remark 2.3. It should be noted that if the q-Fourier transform of a given function f(x) defined

by the formal definition in (3) exists, then it coincides with the expression in (5). The q-Fourier
transform determined by the formula (5) has an advantage to compare to the formal definition: it
does not use the q-product, which is, in general, restrictive in use. From now on we refer to (5)
when we speak about the q-Fourier transform.

Corollary 2.4. The q-Fourier transform exists for any f ∈ L1(R) if q ≥ 1. For q < 1 the
q-Fourier transform exists if f additionally satisfies the condition |f | ∼ 1

|x|γ , γ > 2−q
1−q . Moreover,

|Fq[f ](ξ)| ≤ ‖f‖L1
3, for q ≥ 1, and |Fq[f ](ξ)| ≤ ‖f(x)(1 + |x|)

1
1−q ‖L1 for q < 1.

Proof. This is a simple implication of Lemma 2.2 and of the asymptotics of eix
q for large |x|

mentioned above.
Lemma 2.5. Assume f1(x) ≥ 0, f2(x) ≥ 0, x ∈ R and Fq[f1](ξ) = Fq[f2] for all ξ ∈ R. Then

f1(x) = f2(x) for almost all x ∈ R.
Proof. Denote F(ρ, x, ξ; f) = f(x)(1 + ρixξfρ(x))1/ρ and H(ρ, x, ξ; f) = ρ−1 tan(ρxξfρ). Then

the equation Fq[f1](ξ) = Fq[f2] can be written in the form

∫ ∞

−∞
(F(q − 1, x, ξ; f1)−F(q − 1, x, ξ; f2)e

iH(1−q,x,ξ;f1)dx+

∫ ∞

−∞
F(q − 1, x, ξ; f2)(e

iH(1−q,x,ξ;f1) − eiH(1−q,x,ξ;f2))dx = 0, (7)

for all ξ ∈ R. The fact that the system {eiρ−1 tan(ρxξfρ)}ξ∈R can be approximated by the system
{eixξfρ}ξ∈R with any desired accuracy, yields the completeness of the first system. Hence Eq. (7)
is equivalent to

F(q − 1, x, ξ; f1)−F(q − 1, x, ξ; f2) = 0,

eiH(1−q,x,ξ;f1) − eiH(1−q,x,ξ;f2) = 0,

for all ξ. The first equation and positiveness of f1 and f2 yields f1(x) = f2(x) for almost all x ∈ R.

3Here, and elsewhere, ‖f‖L1
=
∫

R
f(x)dx, and L1 is the space of absolutely integrable functions.
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Remark 2.6. Taking f2 = 0 in Lemma 2.5 we get the statement: if f ≥ 0 and Fq[f ](ξ) = 0
for all ξ ∈ R, then f(x) = 0 a.e.

Lemma 2.7. Let q < 3. For the q-Fourier transform of the q-Gaussian the following formula
holds:

Fq[Gq(β;x)](ξ) =
(

e

− ξ2

4β2−qC
2(q−1)
q

q

)
3−q
2 . (8)

Proof. Denote a =

√
β

Cq
and write

Fq[a e−βx2

q ](ξ) =

∫ ∞

−∞
(a e−βx2

q )⊗q (eixξ
q )dx

using the property ex+y
q = ex

q ⊗q ey
q of the q-exponential, in the form

Fq[ae−βx2

q ](ξ) = a

∫ ∞

−∞
e−βx2+iaq−1xξ
q dx = a

∫ ∞

−∞
e
−(
√

βx− iaq−1ξ

2
√

β
)2− a2(q−1)ξ2

4β

q dx =

a

∫ ∞

−∞
e
−(
√

βx− iaq−1ξ

2
√

β
)2

q ⊗q e
− a2(q−1)ξ2

4β
q dx.

The substitution y =
√

βx− iaq−1ξ

2
√

β
yields the equation

Fq[ae−βx2

q ](ξ) =
a√
β

∫ ∞+iη

−∞+iη
e−y2

q ⊗q e
− a2(q−1)ξ2

4β
q dy ,

where η = ξaq−1

2
√

β
. Further using the Cauchy theorem on integrals over closed curves, which is

applicable because of a power law decay of q-exponential for any q < 3, we can transfer the
integration from R + iη to R. Hence, applying again Lemma 2.2, we have

Fq[Gq(β;x)](ξ) =
ae

− a2(q−1)

4β
ξ2

q √
β

∫ ∞

−∞
e
−y2

(

e
−

a2(q−1)

4β
ξ2

q

)q−1

q dy =

aCq√
β

(

e
− a2(q−1)ξ2

4β
q

)1− q−1
2 .

Simplifying the last expression, we arrive at (8). Introduce the function z(s) = 1+s
3−s for s ∈ (−∞, 3),

and denote its inverse z−1(t), t ∈ (−1,∞). It can be easily verified that z( 1
z(s)) = 1

s and z(1
s ) =

1
z−1(s)

. Let q1 = z(q) and q−1 = z−1(q) . It follows from the mentioned properties of z(q) that

z(
1

q1
) =

1

q
and z(

1

q
) =

1

q−1
. (9)

The function z(s) also possess the following two important properties

z(s) z(2 − s) = 1 and z(2− s) + z−1(s) = 2. (10)

It follows from these properties that q−1 + 1
q1

= 2 .
Corollary 2.8. For q-Gaussians the following q-Fourier transforms hold

Fq[Gq(β;x)](ξ) = e−β∗(q)ξ2

q1
, q1 = z(q), q < 3; (11)
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Fq−1[Gq−1(β;x)](ξ) = e−β∗(q−1)ξ2

q , q−1 = z−1(q), q > −1, (12)

where β∗(s) = 3−s

8β2−sC
2(s−1)
s

.

Remark 2.9. Note that β∗(s) > 0 if s < 3 .
Corollary 2.10. The following mappings

Fq : Gq → Gq1 , q1 = z(q), q < 3,

Fq−1 : Gq−1 → Gq, q−1 = z−1(q), q > −1,

hold and they are injective.
Corollary 2.11. There exist the following inverse q-Fourier transforms

F−1
q : Gq1 → Gq, q1 = z(q), q < 3,

F−1
q−1

: Gq → Gq−1 , q−1 = z−1(q), q > −1.

Lemma 2.12. The following mappings

F 1
q1

: G 1
q1

→ G 1
q
, q1 = z(q), q < 3,

F 1
q

: G 1
q
→ G 1

q−1

, q−1 = z−1(q), q > −1.

hold.
Proof. The assertion of this lemma follows from Corollary 2.10 if we take into account the

properties (9).
Introduce the sequence qn = zn(q) = z(zn−1(q)), n = 1, 2, ..., with a given q = z0(q), q < 3. We

can extend the sequence qn for negative integers n = −1,−2, ... as well putting q−n = z−n(q) =
z−1(z1−n(q)), n = 1, 2, ... . It is not hard to verify that 4

qn =
2q + n(1− q)

2 + n(1− q)
, n = 0,±1,±2, ... (13)

In Equation (13) we require q < 1 + 2
n for n > 0 and q > 1 + 2

n for n < 0. Note qn ≡ 1 for all
n = 0,±1,±2, ..., if q = 1 and limn→±∞zn(q) = 1 for all q 6= 1. Let us note also that the definition
of the sequence qn can be given through the series of mappings

Definition 2.13.

z : →q−2→q−1→q0 = q→q1→q2→... (14)

z−1 : ←q−2←q−1←q0 = q←q1←q2←... (15)

Further, let Fn
q (f) = Fq[F

n−1
q [f ]], n = 1, 2, ..., F 0

q (f) = f. Summarizing the above mentioned
relationships related to zn(q), we obtain the following assertions.

Lemma 2.14. There holds the following duality relations

qn−1 +
1

qn+1
= 2, n = 0,±1,±2, ... (16)

4Essentially the same mathematical structure has already appeared in a quite different, though possibly related,
context: see Footnote of page 15378 of [12].
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Proof. Making use the properties (10), we obtain

qn−1 = z−1(qn) = 2− z(2− qn) = 2− 1

z(qn)
= 2− 1

qn+1
.

Lemma 2.15. The following mappings hold:

F k
q : Gqn → Gqk+n

, k, n = 0,±1,±2, ...

lim
k→±∞

F k
q Gq = G

where G is the set of classic Gaussians.
Lemma 2.16. The series of mappings hold:

Fq : →Gq−2→Gq−1→Gq→Gq1→Gq2→... (17)

F−1
q : ←Gq−2←Gq−1←Gq←Gq1←Gq2←... (18)

3 MAIN RESULTS

3.1 q-independent random variables

In this section we establish a q-generalization of the classical CLT. First we introduce some notions
necessary to formulate the corresponding results. Let X be a random variable and f(x) be an
associated density. Denote

fq(x) =
[f(x)]q

νq(f)
,

where νq(f) =
∫∞
−∞[f(x)]q dx. The density fq(x) is commonly referred to as escort density [11].

Further, introduce for X the notions q-mean, µq = µq(X) =
∫∞
−∞ xfq(x) dx, and q-variance σ2

q =

σ2
q (X −µq) =

∫∞
−∞(x−µq)

2fq(x) dx, and q-moment of order k, Mq,k = Mq,k(X) =
∫∞
−∞ xkfq(x) dx,

subject to all integrals used in these definitions to converge. Analogously, for N random variables
X1,X2, ...,XN with joint density f(x1, ..., xN ) we introduce the corresponding escort joint density

fq(x1, ..., xN ) =
[f(x1, ..., xN )]q

∫

RN [f(x1, ..., xN )]q dx1...dxN
.

and

µq(g(X1, ...,XN )) =

∫

RN
g(x1, ..., xN )fq(x1, ..., xN )dx1...dxN .

Analogously to the case of one random variable, we can introduce the q-mean of the sum X1+...+XN

and q-moments of X1, ...,XN . We also use the notation νq,k =
∫

ωN
(x1+...+xN )kfq(x1, ..., xN )dx1...dxN ,

where ωN is the support, i.e., ωN = supp fq(x1, ..., xN ).
Lemma 3.1. The following formulas hold true

1. µq(aX) = aµq(X);

2. µq(X − µq(X)) = 0;

3. σ2
q(aX) = a2σ2

q (X);

7



4. µq(X1 + ... + XN ) =
∑N

i=1 µq(Xi);

Further, we introduce the notions of q-independence, q-convergence and q-normality.
Definition 3.2. Two random variables X and Y are called to be q-independent, if

Fq[X + Y ](ξ) = Fq[X](ξ) ⊗q Fq[Y ](ξ). (19)

Note that, for q = 1, this coincides with the classical independence of random variables. The
relation (19) can be rewritten as follows. Let f and g be densities of X and Y respectively, and
H(x, y) be their joint density. Then

∫

R2
ei(x+y)ξ
q ⊗q H(x, y)dxdy = Fq[f ](ξ)⊗q Fq[g](ξ). (20)

Definition 3.3. A sequence of random variables XN is said to be q-convergent if limN→∞ Fq[XN ](ξ) ∈
Gq locally uniformly by ξ for some q < 3. Further, we will say that q-limit of the sequence XN is
q∗-normal, if there are some q∗ < 3 and β > 0 such that limN→∞ Fq(XN ) = Fq∗(Gq∗(β;x)).

Remark 3.4. In other words the q-limit of a sequence XN is q∗-normal, if for some q∗ < 3
and β > 0, limN→∞ XN ∈ F−1

q ◦ Fq∗ (Gq∗(β;x)) .
We will study limits of sums

ZN =
1

DN (q)
(X1 + ... + XN −Nµq), N = 1, 2, ...

where DN (q), N = 1, 2, ..., are some reals (scaling parameter), in the sense of Definition 3.3, when
N → ∞. Namely, the question we are interested in: Is there a q-normal distribution that attracts
the sequence ZN? If yes, what is the admissible range of values of q? For q = 1 the answer is well
known and it is the content of the classical central limit theorem.

The q-generalization of the central limit theorem, we are suggesting in the present paper, is
formulated as follows.

Theorem 1. Assume a sequence {..., q−2, q−1, q0, q1, q2, ...} is given as (14) with q0 = q ∈
(1/2, 2). Let X1, ...,XN , ... be a sequence of qk-independent for some k ∈ Z and identically dis-
tributed random variables with a finite qk-mean µqk

and a finite second (2qk − 1)-moment σ2
2qk−1.

Then ZN =
X1+...+XN−Nµqk

DN (q) , with DN (q) =
√

Nσ2qk−1ν2qk−1, is qk-convergent to a qk−1-normal
distribution as N →∞.

Remark 3.5. Note the corresponding attractor is Gqk−1
(βk;x), where

βk =
( 3− qk−1

4qkC
2qk−1−2
qk−1

)
1

2−qk−1 . (21)

The proof of this theorem follows from Theorem 2 proved below and Lemma 2.16. Theorem 2
represents one element (k = 0) in the series of assertions contained in Theorem 1.

Theorem 2. Assume 1/2 < q ≤ 2, or equivalently 1/3 < q∗ < 5/3, q∗ = z−1(q). Let
X1, ...,XN , ... be a sequence of q-independent and identically distributed random variables with a
finite q-mean µq and a finite second (2q − 1)-moment σ2

2q−1.

Then ZN =
X1+...+XN−Nµ2q−1

DN (q) , with DN (q) =
√

Nσ2q−1ν2q−1, is q-convergent to a q−1-normal

distribution as N →∞. The corresponding q−1-Gaussian is Gq−1(β;x), with β =
(

3−q−1

4qC
2q−1−2
q−1

)
1

2−q−1 .
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Proof. Let f be the density associated with X1−µq. First we evaluate Fq(X1−µq) = Fq(f(x)).
Using Lemma 2.2 we have

Fq[f ](ξ) =

∫ ∞

−∞
(eixξ

q )⊗q f(x)dx =

∫ ∞

−∞
f(x)e

ixξ

[f(x)]1−q

q dx. (22)

Making use of the asymptotic expansion ex
q = 1 + x + q

2x2 + o(x2), x→ 0, we can rewrite the right
hand side of (22) in the form

Fq[f ](ξ) =

∫ ∞

−∞
f(x)

(

1 +
ixξ

[f(x)]1−q
− q/2

x2ξ2

[f(x)]2(1−q)
+ o(

x2ξ2

[f(x)]2(1−q)
)

)

dx =

1 + iξµqνq − (q/2)ξ2σ2
2q−1ν2q−1 + o(ξ2), ξ → 0. (23)

In accordance with the condition of the theorem and Lemma 3.1, µq = µq(X1 − µq) = 0. Denote
Yj = DN (q)−1(Xj − µq), j = 1, 2, .... Then ZN = Y1 + ... + YN . Further, it is readily seen that,
for a given random variable X and real a > 0, there holds Fq[aX](ξ) = Fq[X](aξ). It follows from

this relation that Fq(Y1) = Fq[f ]( ξ√
Nσ2q−1ν2q−1

). Moreover, it follows from the q-independence of

Y1, Y2, ... (which is an obvious consequence of the q-independence of X1,X2, ...) and the associativity
of the q-product that

Fq[ZN ](ξ) = Fq[f ](
ξ√

Nσ2q−1ν2q−1

)⊗q...⊗qFq[f ](
ξ√

Nσ2q−1ν2q−1

) (N factors). (24)

Hence, making use of properties of the q-logarithm, from (24) we obtain

lnq Fq[ZN ](ξ) = N lnq Fq[f ](
ξ√

Nσ2q−1ν2q−1

) = N lnq(1−
q

2

ξ2

N
+ o(

ξ2

N
)) =

− q

2
ξ2 + o(1), N →∞, (25)

locally uniformly by ξ.
Consequently, locally uniformly by ξ,

lim
N→∞

Fq(ZN ) = e−(q/2)ξ2

q ∈ Gq. (26)

Thus, ZN is q-convergent.

In accordance with Corollary 2.8 for q−1 and some β we have Fq−1(Gq−1(β;x)) = e
−(q/2)ξ2

q . Now
we find β. It follows from Corollary 2.8 (see (12)) that β∗(q−1) = q/2. Solving this equation with
respect to β we obtain

β =

(

3− q−1

4qC
2(q−1−1)
q−1

)
1

2−q−1

, (27)

where q = z(q−1). The explicit form of the corresponding q−1-Gaussian reads as

Gq−1(β;x) = C−1
q−1

(

3− q−1

2C
q−1−1
q−1

√
1 + q−1

)
1

2−q−1

e

−

(

(3−q−1)2

4(1+q−1)C
2(q−1−1)
q−1

) 1
2−q−1

x2

q−1 .
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3.2 Generalization of the previous theorem

Obviously, Theorem 1 is true if a sequence X1,X2, ...,XN is asymptotically q-independent, i.e, if
they are mutually q-independent for all N > N0 starting from a number N0 > 1 5. We shall
now extend the domain of validity of Theorem 1 by showing that, although the hypothesis used in
Theorem 1 are sufficient, they are not necessary. We can somewhat relax them and the attractors
still remain the same. In what follows, the particular case ρ = 0 (see definition just below) of
Theorem 3 recovers Theorem 1. Note that in this section we use q∗ = z−1(q) instead of q−1.

Theorem 3. Assume 1/2 < q ≤ 2 or equivalently 1/3 < q∗ < 5/3, q∗ = z−1(q). Let
X1, ...,XN , ... be a sequence of identically distributed and totally correlated random variables satis-
fying the conditions

1. µq = 0 and ν2q−1,2 ∼ N1+ρ, 0 ≤ ρ < 1;

2. ν3q−2,3 ∼ Nγ , where γ < 3(1+ρ)
2 .

Then ZN = X1+...+XN

DN (q) , with a scaling parameter DN (q) ∼ N
1+ρ
2 , is q-convergent to a q∗-normal

distribution as n→∞. The corresponding q∗-Gaussian is Gq∗(β;x), with β =
(

3−q∗

4qC2q∗−2
q∗

)
1

2−q∗ .

Proof. Let fN (x1, ..., xN ) and gN (x1, ..., xN ) be the joint ’escort’ density functions of the sums
X1 + ... + XN , and Y1 + ... + YN , where again Yj = DN (q)−1(Xj − µq), j = 1, ...N , respectively.
Evaluate Fq[gN ]. Using Lemma 2.2 we have

Fq[gN ](ξ) =

∫

RN
(ei(x1+...+xN)ξ

q )⊗q gN (x1, ..., xN )dx =

∫

RN
gN (x1, ..., xN )e

i(x1+...+xN )ξ

(gN (x1,...,xN ))1−q

q dx1...dxN . (28)

Again using the asymptotic expansion ex
q = 1 + x + q

2x2 + o(x2), x→ 0, we obtain

Fq[gN ](ξ) =

∫

RN
gN (x1, ..., xN ){1 +

i(x1 + ... + xN )ξ

(gN )1−q
−

q/2
(x1 + ... + xN )2ξ2

(gN )2(1−q)
+ O(

(x1 + ...xN )3ξ3

(gN )2(1−q)
)}dx1...xN =

= 1− (q/2)ξ2 ν2q−1,2(gN ) + O(ν3q−2,3(gN )), N →∞. (29)

Taking into account the relationship between Xj and Yj, we have

Fq[ZN ](ξ) = 1− (q/2)ξ2 +
O(ν3q−2,3)

N3/2(ρ+1)
, N →∞. (30)

It follows from (30) and the condition of the Theorem, that

Fq[ZN ](ξ) = 1− (q/2)ξ2 + o(1), N →∞, (31)

locally uniformly by ξ. Further, taking q-logarithm of both sides of (31), we have

lim
N→∞

lnq(Fq(ZN )) = −(q/2)ξ2. (32)

5Such a strong cutoff might be relaxed into a softer one.
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Consequently, locally uniformly by ξ,

lim
N→∞

Fq(ZN ) = e−(q/2)ξ2

q ∈ Gq. (33)

Thus, ZN is q-convergent.
The rest of the proof follows in exactly the same way as in Theorem 1.
Remark 3.6. Let us note that the conditions ρ < 1 and γ < 3(1+ρ)

2 are necessary to guarantee
that the appropriately scaled escort third moment of the sum X1 + ...+ XN vanishes in the N →∞
limit.

Corollary 3.7. Let X1, ...,XN , ... be a given sequence of q-independent and identically dis-
tributed random variables with a q-mean µq and a finite second moment σ2

2q−1. Then ZN =

D−1
N (q) (X1 + ... + XN − Nµq) is q-convergent to a q-normal distribution if and only if q = 1,

that is, in the classic case.

4 CONCLUSION

We studied here a possible q-generalization of the classic central limit theorem. As is known, q-
Gaussians extremize, under appropriate constraints, the entropy Sq. The classic analog of this fact
is that the usual Gaussian maximizes the classic Boltzmann-Gibbs-Shannon entropy. Following this
correspondence, it is expected that there exists an entire class of q- central limit theorems. In other
words, normalized sums of sequences of identically distributed random variables with a finite q-
variance must converge to q-Gaussians. Theorem 1 represents one of the possible generalizations of
the classic central limit theorem for a sequence of q-independent random variables. The notion of q-
independence coincides with the classic notion of independence if q = 1, and characterizes a specific
type of global correlations otherwise. Theorem 3 considers more general sequences of correlated
random variables, which are nevertheless attracted by the same q-Gaussians. The conditions of this
theorem indicate that the escort joint density of random variables has to have a specific support
(e.g., an hierarchical structure with zero Lebesgue measure).

Figure 1: Schematic representation of the q-CLT: ZN represents the set of rescaled sums of all qk-independent random
variables. The qk-Fourier transforms of these sums belong to Gqk

, which in turn is the Fqk−1
image of Gqk−1

. The process
described in this scheme reflects the qk-convergence of ZN to a qk−1-Gaussian. These transformations admit only one fixed
point, namely qk = 1, corresponding to the classical CLT (represented here as a horizontal straight line).
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At the same time the corresponding q-normal distribution is described exactly by the z−1(q)-
Gaussian, see Figure 1. In the classic case q- or z−1(q)-Gaussians do not differ. So, Corollary 3.7
says that such duality is a specific feature of the statistical q-theory, which comes from the specific
definition of q-exponential.

We conclude the papr by making an important remark. The classical CLT may in principle
be generalized in various manners, each of them referring to global correlations of specific kinds.
A first example is the model numerically discussed in [6]. The correlations were introduced, in
a scale-invariant manner, through a q-product in the space of the joint probabilities of N binary
variables, with 0 ≤ q ≤ 1. It was numerically shown that the attractors are (double-branched)
Q-Gaussians, with Q = 2 − 1

q ∈ (−∞, 1], and that the model is superdiffusive [15] (i.e., space x

scales with time t, for large values of t, as x ∝ tδ/2, with 1 ≤ δ ≤ 2). The relation Q = 2 − 1
q

corresponds to the particular case k = −1 of the present Theorem 1. It comes from Lemma 2.14,
with q−2 = 2− 1

q0
= 2− 1

q , which holds when k=-1. Notice, however, that these two models differ

in other aspects. Indeed, although they share the relation Q = 2 − 1
q , there δ’s are different. In

the model introduced in [6] only superdiffusion occurs, with δ monotonically decreasing from 2 to 1
when Q increases from −∞ to 1 [15] . In contrast, in the k = −1 model associated with the present
Theorem 1, we have δ = q = 1

2−Q , with q ∈ (1/2, 2), hence δ ∈ (1/2, 2).
A second example is suggested by the exact stable solutions of a nonlinear Fokker-Planck equa-

tion [4]. The correlations are introduced through a q = 2 − Q exponent in the spatial member of
the equation (the second derivative term). The solutions are Q-Gaussians with Q ∈ (−∞, 3), and
δ = 2/(3−Q) ∈ [0,∞], hence both superdiffusion and subdiffusion can exist in addition to normal
diffusion. This model is particularly interesting because the scaling δ = 2/(3−Q) was conjectured
in [16], and it was verified in various experimental and computational studies [17, 18, 19].

A third example is the family of models presented here. The correlations are introduced through
qk-products of qk-Fourier transforms, where qk = 2q+k(1−q)

2+k(1−q) , q ∈ (1/2, 2). The attractors are qk−1-

Gaussians and δ = 1/(2 − qk−1) , as can be seen from Eq. (21). Applying Lemma 2.14 we obtain
2 − qk−1 = 1/qk+1, henceforce δ = qk+1. Thus the triplet (qk−1, qk, qk+1) characterises features of
the system under study identifying the type of correlation, the corresponding attractor, and the
scaling rate.

In the particular case, k = 1, we have δ = 1/(2− q). This coincides with the nonlinear Fokker-
Planck equation mentioned above. Indeed, in our theorem we required the finitness of (2q − 1)-
variance. Denoting 2q − 1 = Q, we get δ = 1/(2 − q) = 2/(3 − Q). Notice, however, that this
example differs from the nonlinear Fokker-Planck above. Indeed, although we do obtain, from the
finiteness of the second momentum, the same expression for δ, the attractor is not a Q-Gaussian,
but rather a q-Gaussian, with q = (Q + 1)/2 .

Summarizing, the present Theorems 1 and 3 suggest a quite general and rich structure at the
basis of nonextensive statistical mechanics. Moreover, they recover, as particular instances, central
relations emerging in the above first and second examples. The structure we have presently shown
might pave a deep understanding of the so-called q-triplet (qs, qr, qss), where qs means q-sensitivity,
qr - q-relaxation and qss - q-stationary state, [20, 21] in nonextensive statistics, but this remains as
a challenge at the present stage.
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