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1 Introduction

In their first edition of Fluid Mechanics [41], Landau and Lifschitz proposed a
route to turbulence in fluid systems. Since then, much work in dynamical sys-
tems, experimental fluid dynamics and many other fields has been carried out
concerning the routes to turbulence. In the early stages of such work, the terms
turbulence and chaos were often used interchangeably. This usage has ceased
because the subsequent development of the definitions of both chaos (which
usually applies to a dynamical systems framework) and turbulence (which is
a similar phenomenon, usually in a partial differential equations construction,
yet with more implied structure [24]) have evolved and diverged. We will re-
frain from using the word turbulence since we will be studying discrete-time
maps and not partial differential equations such as the Navier-Stokes equa-
tion. In this paper, we present results from a statistical study of the route
to chaos in a class of high-dimensional, Cr dynamical systems on compacta.
Our results contain both some reassurances based on a wealth of previous re-
sults and some surprises. We conclude that, for high-dimensional discrete-time
maps, the most probable route to chaos (relative to the probability measure
we impose on the class of dynamical systems) from a fixed point is via at least
one Neimark-Sacker bifurcation, followed by persistent zero Lyapunov expo-
nents, and finally a bifurcation into chaos. We observe both the Ruelle-Takens
scheme as well as persistent n-tori, where n ≤ 3 before the onset of chaos for
state space dimensions up to and including 64.

The point of this report is two-fold. First, we propose a framework that consists
of a manageable set of functions that can yield an understanding of high-
dimensional routes to chaos in a practical sense. The goal of this portion
is to select a set of mappings that could form a bridge between real-world
examples (the set of mappings we propose can approximate a very large set of
real world examples) and rigorous mathematics. Second, we provide a survey
of the routes to chaos in this set of mappings.

1.1 Background

To discuss the background necessary, we will start with the simplest stan-
dard construction for discussing routes to chaos in dynamical systems. Begin
with an ordinary differential equation in Rk with a single real parameter µ,
dv
dt

= F (µ, v) where F is as smooth as we wish and v ∈ U where U ⊂ Rk is
compact. At µ0 there exists a fixed point, and at µc, µ0 < µc, F is chaotic. The
bifurcation sequence proposed by Landau [41] and Hopf [31] is the following: as
µ is increased from µ0 there will exist a bifurcation cascade of quasi-periodic
solutions existing on higher and higher dimensional tori until the onset of
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“turbulence.” In other words, the solutions would be of the following type,
xµ1

(t) = f(ω1, ω2), xµ2
(t) = f(ω1, ω2, ω3), ..., xµk−1

(t) = f(ω1, ω2, . . . , ωk) for
µi < µi+1, and where none of the frequencies are rationally related. However,
Landau and Hopf’s notion of turbulence was high-dimensional, quasi-periodic
flow. Ruelle and Takens proposed both an alternative notion of turbulence,
the strange attractor, and an alternative route to turbulence in their now
famous paper [56]. Ruelle and Takens claimed that the Landau path was
highly unlikely from a topological perspective. The basis for their claim orig-
inates in the work of Peixoto [50], who has shown that quasi-periodic motion
on T 2 (the 2-torus) is non-generic 1 in the set of Cr vector fields. However,
Peixoto’s theorem applies only to flows on T 2 and not T k for k > 2. There is
a third perspective that uses a measure theoretic notion of common instead of
a topological notion. This perspective is born from a careful consideration of
Poincare sections of vector fields on a torus — rotations of the circle map. For
diffeomorphisms of the circle, irrational rotations make up the full Lebesgue
measure set of rotations, and suspensions of such diffeomorphisms correspond
to quasi-periodic motion on T 2. Thus, it would seem that quasi-periodic mo-
tion of flows on T 2 would be high measure. However, there is not a one-to-one
correspondence between flows on T 2 and discrete-time maps of the circle (e.g.
the Reebs foliation or [49]). Moreover, quasi-periodic orbits of diffeomorphisms
on the circle are structurally unstable and yet occupy the full measure of the
dynamics. For flows on T 2, the structurally stable, hyperbolic periodic orbits
are topologically generic; however, it is likely that quasi-periodic orbits are
common in a measure theoretic sense on T 2. Beyond an understanding of
the most common dynamics is the more difficult issue of understanding the
bifurcations between the various dynamical types upon slight parameter varia-
tion (i.e. quasi-periodic orbits bifurcating to strong-resonance periodic orbits).
There remain many open questions regarding bifurcations of periodic orbits.
The codimension 1 bifurcations (bifurcations involving one parameter or a
single (pair of) real (complex) eigenvalue(s)) are well understood. However,
there are many remaining problems regarding codimension 2 (and higher) bi-
furcations (the status of such problems can be found at the end of section
(9.1), page 397 of [40]). How these many pieces will fit together in practice is
unclear and comprises a good portion of motivation for our study.

Ruelle and Takens proved two results for flows relevant to this report. The first
is a normal form theorem for the “second” Hopf bifurcation for vector fields,
or the “first” Hopf bifurcation for maps (often referred to as the Neimark-
Sacker bifurcation [57] [45]). This theorem gives a normal form analysis of the
bifurcation of an invariant circle of a flow, but it does not state the type of
dynamic that will exist upon the loss of stability of the invariant circle. The
second relevant result was that, given a quasi-periodic solution f(ω1, . . . , ωk)

1 A property is generic if it exists on subset E ⊂ B, where E contains a countable
intersection of open sets that are dense in the original set B.
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on T k, k ≥ 4, in every Ck−1 small neighborhood of f(ω1, . . . , ωk), there exists
an open set of vector fields with a strange attractor (prop. 9.2 [56]). These
results were extended by Newhouse, Ruelle and Takens [47], who proved that a
C2 perturbation of a quasi-periodic flow on T 3 can produce strange (axiom A)
attractors, thus reducing the dimension to three for tori with quasi-periodic
solutions for which an open set of C2 perturbations yield strange attractors.
The basic scheme used by Takens, Ruelle and Newhouse was first to prove a
normal form theorem from periodic orbits to 2-tori in vector fields and then to
prove something about how the 2-tori behave under perturbations — showing
that bifurcations of m-tori to (m + 1)-tori will yield chaos since 3-tori can be
perturbed away to axiom A chaotic attractors.

If the story were only as simple as a disagreement between topological and
measure theoretic viewpoints, and if codimension 1 bifurcations were the only
bifurcations observed, it is likely that no problem would remain. However, out
of the complexity of the dynamics and the difficulties posed by bifurcation
theory regarding what happens to bifurcations of resonant periodic orbits and
quasi-periodic orbits, the field of quasi-periodic bifurcation theory was born
[13] [10]. It is beyond the scope of this work to discuss the more recent and
detailed history; for those interested, see [11], [16], [34], [21], [12], [35], and
[33]. The question regarding the most common route to chaos is, in any but a
very select set of specific examples, still an open and poorly defined question.
Even analytically piecing together the types of bifurcations that exist en route
to chaos has been slow and difficult.

To achieve an understanding of routes to chaos in high-dimensional dynamical
systems, while circumventing current abstract mathematical difficulties, sev-
eral scientists have performed numerical experiments of a statistical nature.
One of the early experiments was performed by Sompolinksky et. al. [59], who
analyzed neural networks constructed as ordinary differential equations. The
primary goal of their construction was the creation of a mean field theory
for their networks from which they would deduce various relevant properties.
Their network architecture allowed them to make the so-called local chaos hy-
pothesis of Amari, which assumes that the inputs are sufficiently independent
of each other that they behave like random variables. In the limit of infinite
dimensions, they find regions with two types of dynamics, namely fixed points
and chaos with an abrupt transition to chaos. In other words, the length of the
parameter interval pertaining to the route to chaos decreases to zero as the size
of the network is increased. We have found that, while the Euclidean length
of the routes to chaos region decreases with increasing network dimension, the
number of decades of the parameter pertaining to the routes to chaos region
remains relatively constant. Doyon et. al. ([19] [20]) studied the route to chaos
in discrete-time neural networks with sparse connections. They found that the
most probable route to chaos was a quasi-periodic one regardless of the ini-
tial type of bifurcation. They justified their findings, which we will address in
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section (4), with results from random matrix theory. Cessac et. al. [15] came
to similar conclusions with slightly different networks. They provided a mean-
field analysis of their discrete-time neural networks in much the same manner
as Sompolinsky et. al. did for the continuous-time networks. It is important
to note that these studies use a network architecture that is quite different
from the architecture we will employ in this paper. We chose to use a time-
delayed network; we were motivated by both the relative ease of computation
for the derivative map and the approximations theorems of Hornik et. al [32].
What is reassuring is that many of the results for the different architectures
are qualitatively similar despite the networks being fundamentally different. 2

We contribute to the existing partial solution in the following ways: we will
provide a framework for numerical analysis that does not have a priori tori
built in — motivated by a marriage of the topological approximation results
of Takens [63] and neural network approximation results of Hornik et. al. [32];
and we will provide evidence that the most common route to chaos (relative to
the probability measure we utilize), as the dimension is increased, consists of
various bifurcations between periodic orbits of high-period and quasi-periodic
orbits. Moreover, flip and fold bifurcations (due to real eigenvalues) occur with
less and less frequency (relative to the measure we impose) as the dimension
of the dynamical system is increased.

There have, of course, been many fluid experiments; but since our work is
related more to the theoretical work of the aforementioned researchers, we
will refrain from a summary and instead encourage the reader to consider,
as a starting point, [21], [61], [28], and [62]. Establishing a relationship be-
tween experimental results in natural systems and a study such as the one
presented here must be done using measure-theoretic language and will be
briefly discussed in the section that follows.

1.2 The experiment

Ideally, we would study the Cr function space; however, in a computational
format this is not possible because Cr does not admit a measure which is
required for performing a numerical experiment. In lieu of this, we perform
a Monte Carlo survey of a space of mappings (neural networks) that can ap-
proximate mappings and their derivatives from the Cr function space. The
space of neural networks that we use here has been shown to be dense in
Cr on compacta (as well as most Sobolev spaces) and admits a (probability)
measure. However, for a function space to be truly dense in Cr on compacta,
the mappings need infinitely many parameters — in particular the number of

2 For instance, the local chaos hypothesis is not valid for time-delayed networks,
but many of the results of the aforementioned authors are similar.
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parameters must not have a dependence on the number of state-space vari-
ables. One of the motivations for choosing neural networks is the simplicity
of the parameter space — the parameter space of the neural networks is the
standard Euclidean space Rp where p ∈ N is unconstrained by the number of
state-space dimensions. Clearly an infinite parameter space is not achievable
in numerical experiments; we will study spaces with the number of parameters
ranging from 576 to 2113 (i.e. R576 to R2113), which are not infinite, but not
trivially small either. One of the key features is that each neural network can
be identified with a point in Rp — the density of the space of neural networks
in Cr is achieved as p → ∞. This all yields a convenient framework in which
to perform the numerical experiment — we impose a probability measure on
the entirety of the space of neural networks via a measure on Rp. Thus, all
mappings in the (finite-dimensional) space are represented measure theoret-
ically in the same way that all real numbers are represented by the normal
distribution on R1.

The experiment we perform is limited to an analysis of how the route to
chaos varies as the dimension and number of parameters of the class of dy-
namical systems we utilize is increased. The analysis begins with a careful
study of a particular example, followed by statistical results for an ensemble
of dynamical systems. Due to the diversity of dynamics and bifurcation se-
quences yielded by the measure we impose on function space (again via the
parameter space), we will analyze the example using bifurcation diagrams,
phase plots, the Lyapunov spectrum, and the largest Lyapunov exponent.
The example we will study is typical of the 500 cases (with the given num-
ber of parameters and dimensions) that we have observed in the sense that
between the first bifurcation and the onset of chaos, the only type of orbit
that exists is either quasi-periodic, or it is periodic with periods high enough
such that they are indiscernible from quasi-periodic orbits. The statistical re-
sults that follow reinforce this viewpoint. It is nearly impossible to specify
all the bifurcation sequences because the number of bifurcations between a
fixed point and chaos increases with dimension (the number of bifurcation
routes > 3number of bifurcations). Instead, we will study the fraction of different
bifurcations at each bifurcation. It is worth noting that there is a considerable
difference between the observed routes to chaos at low and high dimensions.

This construction raises certain questions that are central to the proper inter-
pretation of the results in this paper; of particular importance are questions
regarding the relationship between results subject to the framework we employ
and results subject to the frameworks of mathematics and science. It is not
surprising that connections and relevance of the various frameworks hinge on
statement in compatible languages — thus, it will be very useful to discuss the
interaction of the various language sets. Starting with mathematics, the most
obvious question is: how representative of Cr space is the finite dimensional
approximation we use? It is true that the entire (finite-dimensional) space of
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neural networks is included in our study via the probability measure on the
parameter space — thus in an approximate sense we are studying a discretized
representation of Cr space on compacta, but how can this be interpreted in
a concrete way? To start with, there are two relatively absolutist means of
comparing the results in this study with abstract mathematical results in a
mathematical sense, measure-theoretically and topologically. In the construct
used in this paper, both comparison methods are doomed; Cr does not yield
a measure so a comparison in measure is impossible; the spaces we are study-
ing are finite dimensional, and thus of infinite codimension (non-generic with
respect to Baire category) with respect to Cr. This does not mean that it is im-
possible to compare results for Cr with results in this study; it just means that
relationships with our results and the more abstract results of, say, structural
stability theory will not be built with traditional mathematics language sets
of commonality. Many of the fruitful mathematical dynamics results are with
respect to certain assumptions, and the likelihood of these assumptions being
met can be compared in measure with what is observed in the construction
we are using. For instance, if, in our study, hyperbolicity is always observed,
then the measure used is representative of systems that are likely structurally
stable (note, hyperbolicity is not the only requirement for a dynamical sys-
tem to be structurally stable, see [42] [54] [53]). Thus, the structure of the
comparison statements will be in terms of probability of certain properties
being met. From this, the applicability of the abstract mathematical results
can be deduced. Analogous scientific questions addressing how representative
this particular construction is of nature must also be carefully qualified, and
several issues must be circumvented. While is it hoped that buried in Cr are
representations of many natural phenomena (nearly every physical model is,
in practice, an element of Cr), the direct relationship between the function
space we are approximating to natural systems is yet unresolved. It goes with-
out saying that this question is difficult to answer — in large part because of
the lack of a measure theoretic structure on both Cr and nature. The key to
a comparison between the neural network construction and a specific natural
system is again a more carefully worded, precise question: how relevant is the
weight construction we employ to phenomenon X? This question, theoreti-
cally, is answerable. One could train an ensemble of the neural networks we
will introduce in section 3 on data from phenomenon X, and then compare the
measures on the parameters captured on the training set with the measures
we impose. From this a measure theoretic analysis can be performed. For ex-
ample, if the measures are singular with respect to each other, then there is
no observable link between phenomenon X and our construction. At the heart
of comparisons between studies such as the one in this paper and analysis of
natural or abstract mathematics systems is the ability to use the language
of measure-theoretic probability theory. In particular, the mathematical lan-
guage for studying the space of measures on, say, Rp, is information geometry
[6]. Before undertaking such a comparison we must first understand the ef-
fects of imposing a concrete measure on the space of neural networks, and

7



that is precisely the aim of this current work. For readers interested in a more
complete and mathematically precise description of this framework, see [2].

2 Lyapunov spectrum

A primary tool of analysis will be the Lyapunov characteristic exponents
(LCE) because they are a good measure of the tangent space of the mapping
along its orbit, and because they reveal the global geometry of the attractor.
For a d-dimensional system, the spectrum consists of d LCEs: χ1 ≥ χ2 ≥ . . . ≥
χd, where indexing is chosen to give a monotonic ordering. In a computational
setting, a positive largest Lyapunov exponent (LLE) is the hallmark of chaos.
Ruelle (as well as Katok and Pesin) proved that negative Lyapunov exponents
correspond to global stable manifolds or contracting directions, and positive
Lyapunov exponents correspond to global unstable manifolds or expanding di-
rections [55] [37] [51]. Situations with neutral directions are significantly more
difficult from a theoretical standpoint; yet, in general, a zero exponent cor-
responds to a neutral direction (see [14]). Computationally, when the largest
Lyapunov exponent for a discrete-time map is zero and all other exponents
are less than zero, there exists a neutral direction — a quasi-periodic orbit or
a drift ring.

2.1 Numerical methods

In general, there are two basic methods of calculating the LCEs, the derivative
method [9] and the “pull-back” method [64]. The derivative method requires
integrating or iterating the linear part of the derivative forward in time, thus
necessitating the integration or iteration of d2 equations to calculate all the
exponents. The “pull-back” method, on the other hand, requires integrating
or iterating a perturbed trajectory and its derivative matrix for each expo-
nent desired; this can become very computationally costly — on the order of
d3 to compute all the exponents (see [25] for a comparison between various
methods). Both methods require approximately the same numerical tools —
an algorithm used to determine the singular values of the derivative matrix
which are then renormalized. Efficient algorithms for doing such can be found
in [29] or [52], and the numerical accuracy of such algorithms can be found in
[30]. A thorough numerical analysis of these methods has only begun; (see [17],
[18], or [44]) however, these point toward the LCE algorithms as being highly
stable in the sense that each of the individual steps is numerically stable.
However, the sequence of these combined algorithms has not yet undergone
careful study. The computer code used to calculate the LCE spectrum for our
neural networks has been benchmarked with many known cases, performing
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well in each case. The program we use to calculate the LLE using the “pull-
back” method has been similarly benchmarked. For the dynamical systems we
consider, the LLE and LCE algorithms agree on the magnitude of the largest
exponent up to statistical errors.

3 Universal approximators

Scalar neural networks like the ones we will use in this paper are “universal
approximators,” meaning they can approximate any mapping from many very
general spaces of mappings if given enough neurons (e.g., any Cr mapping and
its derivatives on compacta, varieties of Sobolev spaces). That scalar neural
networks can approximate the mappings of interest is a topic addressed in
detail in a paper by Hornik et. al. [32]. Scalar neural networks such as those
discussed in Ref. [32] form a class of time-delay dynamical systems. The moti-
vation for the selection of these neural networks is two-fold. First, a combina-
tion of the approximation theorems of Hornik et. al. [32] and the time-series
embedding results in Takens’ embedding theorem [63], or the embedology of
Sauer et. al. [58], shows this type of network is equivalent 3 (here the notion
of equivalence is an embedding of Cr manifolds) to dynamical systems map-
ping compact sets in Rn to themselves and can yet accept a measure (for the
specific construction, see [2]). Second, neural networks are a practical space of
mappings used by time-series analysts to reconstruct unknown dynamics from
time-series data [26] [60] [36].

3.1 Neural networks

The discrete-time mappings we will consider are single-layer, feed-forward neu-
ral networks of the form

xt = β0 +
n

∑

i=1

βi tanh



sωi0 + s
d

∑

j=1

ωijxt−j



 (1)

which is a map from Rd to R; the class of neural networks is denoted Σ(tanh).
In eq.(1), n represents the number of hidden units or neurons, d is the input or
embedding dimension of the dynamical system which functions simply as the
number of time lags, and s is a scaling factor on the weights. The parameters
are chosen in the following way: βi, wij, xj, s ∈ R, where the βi’s and wij’s are
elements of weight matrices (which we hold fixed for each case), (x1, . . . , xd)

3 For a clear understanding of the restrictions specifying when time-delay dynamical
systems are equivalent to dynamical systems without a time-delay, see [58] [48]
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represents the initial condition, and (xt, xt+1, . . . , xt+d−1) represents the cur-
rent state of the system at time t. We assume that the β’s are iid uniform over
[0, 1] and then re-scaled to satisfy

∑n
i=1 β2

i = n. The wij’s are iid normal with
zero mean and unit variance (i.e. N(0, 1)). The s parameter is a real number
and can be interpreted as the standard deviation of the w matrix of weights.
The initial xj’s are chosen iid uniform on the interval [−1, 1].

For x very near 0, the tanh(x) function is nearly linear; for |x| ≫ 1, tanh(x) will
tend to behave much like a binary function (±1); for |x| at intermediate values
tanh(x) behaves as a highly nonlinear function. Thus, the scaling parameter
s provides a unique bifurcation parameter that sweeps from linear ranges to
highly non-linear ranges, to nearly binary ranges — fixed points to chaos to
(finite-state) periodic orbits. This paper addresses the s-interval solely between
the first bifurcation and the onset of chaos. The dynamics up to the first
bifurcation are presented in [1] and [5]; the dynamics after the onset of chaos
are discussed in [4], [2] and [3].

3.1.1 The measure on Σ(tanh)

We impose a measure on the space of neural networks via the probability dis-
tributions of the space of parameters, Rp where p = n(d + 2) + 1. Thus each
neural network can be identified with its parameter values and thus a point
in Rp — so the measure on the parameters is a measure on Σ(tanh). We will
denote the individual measures on the parameters with mωij

, mβi
, and mIC

for the ω’s, β’s, and the initial conditions respectively. As previously specified,
mωij

= N(0, s) for all i and j, and mβi
is uniform on [0, 1] for all i. This forms a

product measure on Rp. Understanding how this measure affects the observed
dynamics is a major point of this paper; however, it is worth making a few ini-
tial points here. First, all the mappings in the class of neural networks we are
studying are included (up to a renormalization factor) with the product mea-
sure we employ. However, because the measure determines what we observe,
not all phenomena will occur with equal likelihood. Second, viewed from the
perspective of reconstruction, the space Σ(tanh) includes delay-coordinates as
necessary to allow for the reconstruction of a dynamical system. Because all
of the time-delay coordinates are included via the same measures, the past
and present coordinates carry equal weight — thus all time and space scales
are evenly represented and mixed. This feature is fairly well represented in
the LCE spectrum after the onset of chaos. However, understanding how, and
in what ways, the uniformity of measures across past states affects the dy-
namics along the route to chaos will require comparisons with similar studies
having different imposed measures. Third, β0 defines the symmetry about zero
(β0 = 0 forces a symmetry about zero); and as n is increased, symmetry about
zero becomes less likely. However, aside from the particular bifurcations (e.g.
saddle node versus pitchfork), the symmetry about zero seems to have little
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effect on the conclusions of this work. Finally, endowing the ω matrix with
a distribution with significant non-zero mean forces the neurons to saturate,
allowing for only periodic dynamics and thus no route to chaos.

The weight structure we employ involves parameters that are uncorrelated;
this provides the simplest construction for our initial study. This choice implies
that space and time scales are being combined via uncorrelated parameters —
how this effects the observed dynamics is a major thrust of this work. Before
a full understanding of the implications of the construction can be made,
other similar studies must be conducted with different imposed measures. It is
likely—though not known—that other probability measures using iid weights
will generate similar results. The most exciting comparisons will likely lie with
correlated weight structures. Correlating parameters yields a joint probability
distributions on Rp instead of a product measure structure. Such situations
are present in neural networks that undergo training on a particular model;
the correspondence between various physical systems and neural networks
with uncorrelated versus correlated weight structures is an open question.
Moreover, despite the fact that product and joint probability distributions
are fundamentally different types of distributions, the effects of such on the
space of neural networks is completely unknown. As discussed in section 1.2,
it is hoped that notions allowing for comparison in measures will stimulate
a dialog between more abstract, computational dynamics and natural science
communities.

4 Random matrix theory and the route to chaos

Doyon et. al. [19] argued that, as the dimension of the dynamical system is in-
creased, the most likely route to chaos in their set of dynamical systems would
be via the Ruelle-Takens route to chaos. Their arguments were largely based
on the random matrix results of Girko [27] (for other useful versions of this
random matrix result, see Edelman [22] and Bai [8]). More precisely, the claim
is that as the dimension of a dynamical system is increased, any bifurcations
due to real eigenvalues (e.g. flip or fold bifurcations) will be vanishingly rare;
and the route to chaos from a fixed point in parameter space will consist of
periodic orbits with high-period (> 4) and quasi-periodic orbits. The largest
difference between the results of Doyon et. al. and the claims of Ruelle and
Takens is that there may be more than two or three bifurcations before the
onset of chaos.

A basic sketch of the matrix theory result of Girko [27], Edelman [22], and
Bai [8] that is relevant to the current scenario is the following: given a square
matrix whose elements are real random variables drawn from a distribution
with a finite sixth moment, in the limit of infinite dimensions, the normalized
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spectrum (or eigenvalues) of the matrix will converge to a uniform distribution
on the unit disk in the complex plane. It is worth noting that the convergence
in measure with increasing dimension is not absolutely continuous with re-
spect to Lebesgue measure. Nevertheless, if the Jacobian of the map at the
“first” bifurcation point (i.e. the bifurcation from the fixed point) is a high-
dimensional matrix whose elements are from a probability distribution with a
finite sixth moment, 4 it is reasonable that the bifurcation would be of type
Neimark-Sacker (via complex eigenvalue with irrational angle) instead of a flip
or fold (via a real eigenvalue), with probability approaching unity as the di-
mension goes to infinity. For dynamical systems whose linear part is generated
from a random distribution with finite sixth moment, it is not difficult to show
(c.f. [1]) that the probability of the first bifurcation (via a linear bifurcation
parameter) being of type Neimark-Sacker approaches unity. Extending this
analytically for the kth bifurcation before the onset of chaos, where k > 1, is
largely a matter of reducing the bifurcations of quasi-periodic orbits to bifur-
cations of fixed points. The general scheme for using random matrix theory to
prove probable routes to chaos begins using the linear portions of all the known
versal deformations (generalized normal forms [40] [7]) which will correspond
to a matrix, and then using random matrix results to show that the most
probable bifurcation will be to a quasi-periodic orbit or an orbit with period
q > 4. This research program is currently hindered by the fact that the normal
form and center manifold theory for quasi-periodic bifurcation theory is far
from complete (e.g. the codimension 2 situation is not complete yet, and the
codimension 3 case is even further from completion). However, assuming that,
in the end, most bifurcations of periodic and quasi-periodic orbits can be cap-
tured by some sort of Taylor series expansion (via a vector field approximation
or a suspension); then, even though the linear term of the Taylor expansion
will be degenerate and the outcome of the bifurcation will be determined by
contributions of higher-order terms, the degeneracies in the linear term of the
Taylor polynomial will nevertheless be due to complex eigenvalues — leading
to some sort of a bifurcation (yet to be understood) from quasi-periodic or
periodic orbits to other quasi-periodic or periodic orbits.

There are clearly portions of the above intuition that are not always correct
or do not apply in all circumstances. For instance, in [1] it is demonstrated
that for a random Gaussian matrix, the largest real eigenvalue scales with
the mean while the largest complex eigenvalue remains unchanged. Thus, if

4 Nearly all probability distributions have a finite sixth moment — the Levy proba-
bility distribution is a notable example for which the sixth moment is not finite. An
important probability distribution of this type is the Gaussian normal distribution
for which Girko first proved his now famous “circular law.” Bai generalized (as did
Girko) and clarified this result to include all probability distributions with a finite
sixth moment. Edelman arrived at similar conclusions via numerical analysis and
proved various convergence rates to the circular law.
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the Gaussian distribution has a large mean, complex bifurcations will never
be observed. Likewise, assuming the elements of the derivative are iid is not
always a sound assumption. However, as the point of this random matrix
discussion is merely as an intuitive framework, we will leave investigation of
these issues for other studies.

4.1 Random matrix theory and time-delay dynamical systems

Elements of the space of dynamical systems we will be employing, time-delay
neural networks, like all time-delay dynamical systems, have derivatives of a
special type. In particular, Df , the linear part of the derivative at a point,
is a companion matrix. Thus, for the first bifurcation, random polynomials
are of particular interest instead of general random matrix theory (the spec-
trum of random companion matrices can be identified with the spectrum of
polynomials with random coefficients). We have investigated the first bifurca-
tion beginning in [5] and in considerably greater detail in [1] using results of
Edelman et. al. [23]. Results linking distributions of the coefficients of random
polynomials to the distributions of the spectra of the respective polynomi-
als are considerably more diverse than the analogous results for (full) random
matrices. Thus, the first bifurcation results for networks such as ours are some-
what more complicated than for dynamical systems described in the previous
section. However, in this work, we are concerned with the route to chaos or
the sequence of bifurcations rather than the first bifurcation. In such a cir-
cumstance, the Jacobian is a product of the tangent map along the orbit, and
products of random companion matrices are often full random matrices. Show-
ing relationships between distributions of spectra of particular matrices and
the resulting spectra of products of matrices is well beyond the scope of this
paper. Using results from [23], it might be possible to calculate the distribution
of eigenvalues for neural networks at fixed points with the measures we have
imposed on the parameter space. We have not carried out this calculation;
instead we have calculated the spectrum for a particular example that will be
carefully analyzed in section 5 at an s value where the neural network is at a
fixed point. Considering Fig. 1 (the spectrum of the example neural network
before the first bifurcation), and the fact that increases in s will correspond
to linear increases in the modulus of the eigenvalues, one can see why bifurca-
tions from fixed points due to real eigenvalues for the dynamical systems we
study will be less likely as the dimension is increased (i.e., the fraction of the
eigenvalues that are real decreases monotonically with dimension). However,
because the normal form theory is yet incomplete, we are restricted to using
random matrix results as an intuitive framework and not a rigorous one when
discussing sequences of bifurcations.
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Fig. 1. The spectrum of the example network that will be analyzed in section 5 for
s = 0.01 — before the first bifurcation.

5 Numerical analysis: prototypical example

Due to the diversity of the specifics of the networks we have studied, we con-
sider networks individually with four types of figures: a standard bifurcation
diagram; the largest Lyapunov exponent computed independently of the full
spectrum; phase-space diagrams; and the full Lyapunov spectrum.

Our choice of the number of neurons and the number of dimensions is based
on Fig. 1 of [5] and the compromise required by computational time limits.
Considering Fig. 1 of [5], 32 neurons puts our networks deeply in the region of
the set of neural networks that correspond to highly complicated and chaotic
dynamics. The dimension of 64 was chosen because it was the lowest dimen-
sion that is highly representative of d > 64. The compute time increases as a
power of the dimension, and thus we are required to strike a balance between
computation time and the number of cases we could consider. The case we
will consider is typical of the 500 networks we studied with d = 64. We will
draw attention to one feature that is not common as n and d are increased.
We have included this feature to demonstrate the diversity of networks with
intermediate numbers of parameters and dimensions. Aside from this feature,
there is very little difference between the networks with n = 32 and d = 64
and most networks with much higher n and d values, provided the networks
are restricted to the parameter region that corresponds to the route to chaos.
Increasing d lowers the s value where this route occurs. Increasing the number
of neurons has little effect in this particular region aside from decreasing the
existence of low-period periodic orbits. The n dependence will be discussed
in detail in a later section where we address Monte Carlo results. Increasing
n does have a profound effect for higher s values in the chaotic portion of
parameter space because the number of neurons controls the entropy of the
network (see [43] or [3] for more details). Lowering the number of neurons can
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Fig. 2. Bifurcation diagram for a typical network with n = 32, d = 64. For each s

value the initial conditions were reset and 100, 000 time-steps were iterated before
plotting the data (which consists of 100 points per s value). The vertical lines are
s values of six bifurcation points and correspond to s values of 0.0135, 0.02755,
0.04667, 0.05124, 0.05183, and 0.05289 respectively.

also have a large effect in the sense that if d is increased and n is fixed, the
entropy appears to decrease to zero — thus, eventually there is no route to
chaos. However, these low-n networks are of little interest to our present direc-
tion of study because they afford a more crude representation of Cr function
space.

5.1 Bifurcation diagrams

Beginning with Fig. 2, the standard bifurcation diagram, there are four impor-
tant features to notice. The first feature is the first bifurcation which occurs
at s = 0.0135 from a fixed point to a drift ring (invariant circle). A secondary
bifurcation is clearly visible at s = 0.02755, the nature of this bifurcation is
unclear from the perspective of Fig. 2. Chaos seems to onset near s = 0.05,
and has surely onset at s = 0.06. However, the exact location of the onset of
chaos is difficult to discern from this figure. Lastly, all of the dynamics between
the fixed point and chaos consist of n-tori for n ≥ 0.

5.2 Largest Lyapunov exponent

Next, consider Fig. 3 — the largest Lyapunov exponent versus s. Again, as
expected, we see the first bifurcation at s = 0.0135, in agreement with the
bifurcation diagram. Figure 3, however, gives a clear picture of the onset of
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Fig. 3. The largest Lyapunov exponent for a typical network; n = 32, d = 64. For
each s value the initial conditions were reset and 105 time-steps were iterated before
calculating the LLE. The LLE was calculated over the following 50, 000 time-steps.
The vertical lines are s values of the first and last bifurcation points before chaos
and correspond to s values of 0.0135 and 0.05289 respectively.
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Fig. 4. The largest Lyapunov exponent at the onset of chaos. For each s value the
initial conditions were reset and 105 time-steps were iterated before calculating the
LLE. The LLE was calculated over the following 2 × 106 time-steps.

chaos which occurs at s = 0.05289. The largest exponent is near zero between
the first bifurcation and the onset of chaos providing evidence for the existence
of at least one persistent eigenvalue(s) with modulus one (assuming a Jacobian
can be constructed).

Considering Fig. 3, near the onset of chaos the exponent becomes negative over
a very short s interval. Ignoring all the intermediate bifurcations, consider the
onset of chaos via Fig. 4. In this figure there is evidence of the existence of an
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Fig. 5. Phase plots on either side of the 2nd bifurcation, s = 0.0275 and s = 0.029
respectively. The bifurcation occurs at s ∼ 0.02754. The network was iterated for
106 time-steps before the 30000 time-steps were kept for this plot.
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Fig. 6. Phase plots on either side of the 3rd bifurcation, s = 0.046 and s = 0.047
respectively. The bifurcation occurs at s ∼ 0.04667. The network was iterated for
106 time-steps before the 30000 time-steps were kept for this plot.

apparent periodic orbit followed by likely a period doubling bifurcation that is
in turn followed by a complicated bifurcation structure. Besides noting this for
general interest and completeness, we will refrain from a further discussion of
this small interval since this behavior seems to disappear for high-dimensional
networks and is not particularly related to the point of this paper. 5

5.3 Phase portraits

We will begin our presentation of phase-space figures at the second bifurcation.
Considering Fig. 2, the second bifurcation corresponds to the rapid rate of
change in the attractor size near s ∼ 0.0275. The nature of these bifurcations
cannot be fully determined by a consideration of the Lyapunov spectrum or
the largest Lyapunov exponent. This is why it is important to consider the
phase space diagrams. The second bifurcation appears to be from a 1-torus
(drift ring) to a 2-torus as shown in Fig. 5.

5 This is the slightly atypical behavior we eluded to in the beginning of section 5.
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Fig. 7. Phase plots on either side of the 4th bifurcation, s = 0.0512 and s = 0.0514
respectively. The bifurcation occurs at s ∼ 0.05124. The network was iterated for
106 time-steps before the 30000 time-steps were kept for this plot.

The phase-space plots on either side of the third bifurcation, which is not
clearly apparent in the bifurcation diagram, the LLE plot, or in the Lyapunov
spectrum (as we will see) is depicted in Fig. 6. Just before the third bifurcation
the smooth looking torus from Fig. 5 has become “kinked” significantly. At
the third bifurcation, the torus-like, two-dimensional object becomes a one-
dimensional object. Thus the third bifurcation is from a 2-torus to a 1-torus
and occurs at s ∼ 0.0466. The 1-torus is a severely “kinked” quasi-periodic
orbit.

Considering the phase-space plots on either side of the fourth bifurcation in
Fig. 7 one might conclude that our example has undergone a period doubling
of the quasi-periodic orbit. An analytical explanation of such a bifurcation
is yet an open problem, but it is likely that this bifurcation is of “Neimark-
Sacker-Flip” type. We will refrain from a further discussion of this bifurcation,
directing the interested reader to chapter 9 of [40] for more information.

We do not present figures for the fifth bifurcation, and simply note that it is a
bifurcation from a quasi-periodic orbit on the 1-torus to a high-period, cyclic
orbit. Figure 8 illustrates the sixth and final bifurcation into chaos. However,
in our particular example, considering Fig. 4, just before the onset of chaos,
there is likely a sequence of bifurcations. We will not belabor this further
because little insight is gained from further consideration, and the inclusion
of this case is only meant to serve as a demonstration of the diversity that is
encountered in the specific mappings that are presented in this paper. This
sequence of bifurcations involving a period-doubling just before the onset of
chaos is increasingly rare as the dimension increases.

5.4 Lyapunov spectrum

Using the LCE spectrum to locate bifurcation points prior to the appearance
of a positive LCE is achieved by considering the number of exponents that are
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Fig. 8. Phase space plot near the 6th bifurcation, s = 0.052 and s = 0.055 respec-
tively. The bifurcation occurs at s ∼ 0.05294. The network was iterated for 106

time-steps before the 30000 time-steps were kept for this plot.

zero — at points where the number of exponents equal to zero changes, there
was a bifurcation point. The first bifurcation in Fig. 9 occurs at s = 0.0135
and signals the Neimark-Sacker type first bifurcation, as expected. The second
bifurcation occurs at s = 0.02755 and consists of an exponent pair touching
zero. After the bifurcation point, one of these exponents remains zero and the
other decreases below zero, indicating a bifurcation to a 2-torus. The third
bifurcation can been observed to occur at s = 0.04667 where one of the two
zero exponents decreases below zero, indicating a bifurcation to a limit-cycle.
The remaining bifurcations up to and including the bifurcation to chaos are
identical to those seen in the section discussing the largest Lyapunov exponent.

The low-s portion of Fig. 9 is surprising because there are only about half as
many Lyapunov exponents as dimensions. This is because, on the s interval ∼
(0, 0.03), nearly all the exponents correspond to pairs of complex eigenvalues.
At s ∼ 0.03 the most negative exponents begin to separate into distinct values.
This cascade continues to occur from the most negative exponents to the
largest exponents, in that order, up to the onset of chaos. For s at the onset
of chaos, there exist 64 distinct exponents, one for each dimension. In fact,
by s ∼ 0.052, all the exponent pairs are observably split. After the onset
of chaos, in a very short s interval, the high-dimensional neural networks
undergo a transition to high-entropy systems [2]. Our interpretation of this
transition from fixed points to a high-entropy system in our (dissipative) set of
dynamical systems occurs by the gradual degeneration or the tearing apart of
the stable torus. Before the first bifurcation, all or nearly all of the directions
correspond to stable sinks with complex eigenvalues. Taking the Cartesian
product of these sinks yields a d

2
-torus (we are assuming all the exponents

are complex for simplicity) with a stable fixed point. This torus will only
be observed if the transient dynamics are observed. Once the transients die,
only a fixed point will remain. If the fixed points were not due to complex
eigenvalues, the transient dynamics would not occur on a torus but rather on
a collection of lines. When a Neimark-Sacker bifurcation occurs, one of the
dimensions on the d

2
-torus becomes a drift ring, one becomes a sink due to
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Fig. 9. Lyapunov spectrum of the typical network; n = 32, d = 64. The s parameter
was incremented by the factor 1.001. For each s value the initial conditions were
reset and 105 time-steps were iterated before calculating the LCEs; the LCEs were
then calculated over the following 40, 000 time-steps. The vertical lines are s values
of six bifurcation points and correspond to s values of 0.0135, 0.02754, 0.04667,
0.05124, 0.05183 and 0.05289 respectively. Both plots (top and bottom) are of the
same network — with different scales to depict different relevant features.

the real eigenvalue, and the rest remain sinks due to complex eigenvalues. As
the dynamical system makes the transition to chaos, the dimensions that are
nearly neutral undergo various bifurcations as we have observed. However,
starting with the more strongly contracting directions which are not easily
observed, the torus that corresponds to the transient dynamics begins to tear
apart. The stable rotating dimensions separate in pairs, tearing the contracting
directions of the torus apart. What is left just before the onset of chaos are
neutral and very nearly neutral directions that have rotation and strong stable
directions (sinks) with no coherent rotation — the d

2
-torus is gone, and all
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Table 1
Summary of the route to chaos for the prototypical network.

Bif.
number

s at the
1st

s at the
2nd

s at the
3rd

s at the
4th

s at the
5th

s at the
6th

Largest
Lya-
punov
exponent

0.0135 — — — 0.05183 0.05289

Bif. dia-
gram

0.0135 0.02755 — — — 0.0525

Phase
space
diagram

0.0135 0.02754 0.04667 0.05124 0.05183 0.05289

Lyapunov
spec-
trum

0.0135 0.02755 0.04667 0.05124 0.05183 0.053

Transition
to:

T 1 T 2 T 1 T 1 T 0 Chaos

that remains is the observable m-torus with m ≤ 3. Then, the neutrally stable
directions tear apart, corresponding to the breakup of the observable limit-
cycle or torus and the onset of chaos. This is a geometric interpretation of
the transition to chaos in the high-dimensional dynamical systems we study
in this paper in accordance with the Lyapunov spectrum.

Once the onset of chaos has occurred, we can observe the contrast between the
Ruelle-Takens version of chaos, which consists of strange attractors, and the
Landau and Hopf model, which consists of interacting quasi-periodic orbits.
Strange attractors are not a collection of interacting quasi-periodic orbits or
a rotating soup, but rather, distinct directions of expansion, contraction a

la axiom A, and a little bit of rotation (neutral directions). The existence
of a distinct exponent for each direction in the chaotic region displays this
difference nicely. The cascade from all commensurate frequencies before the
onset of chaos is observed to all incommensurate Lyapunov exponents after
chaos is observed was unexpected.

5.5 Summary of the prototypical case

Table 1 contains a summary of the information that can be gleaned from the
bifurcation diagram, the LLE, the phase plots and the LCE spectrum; this
is information regarding the location of the bifurcations and the dynamics
between the first bifurcation from a fixed point to the appearance of chaos for
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Fig. 10. The percentage of attractor type following each bifurcation for ensembles
of neural networks with n = 64 and d = 8, n = 8 and d = 64, and n = 64 and
d = 64. For each n and d pair at least 200 networks were considered. Once networks
became chaotic, further bifurcations were no longer counted.

this neural network. Table 1 distills the combination of this information into
a unified picture.

6 Monte Carlo analysis

Summarizing the likelihoods of bifurcation sequences for the dynamical sys-
tems becomes computationally unmanageable as the dimension of the dynam-
ical system increases because the number of bifurcations along the route to
chaos increases with increasing dimension. Even with bifurcations between
only five attractor types and as many as 11 bifurcations per mapping, the
number of possible sequences is in the hundreds of thousands; a proper statis-
tical study of bifurcation sequence frequency could require considering millions
of networks and hundreds of thousands sequences of bifurcations. Instead of
considering all bifurcation sequences explicitly, we will consider, for a variety
of n and d values, the single most likely bifurcation sequence to chaos and the
percentage of attractor types after each bifurcation.

The most common sequence of bifurcations for the ensembles of networks
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used to generate Fig. 10 are, coincidentally, the same sequences that could
be deduced by a consideration of the percentages given in Fig. 10. These
sequences are:

n = 64, d = 8: T 1 → T 0 → T 0 → T 0 → Chaos

n = 8, d = 64: T 1 → T 2 → T 1 → T 0 → Chaos

n = 64, d = 64: T 1 → T 2 → T 1 → T 2 → T 1 → Chaos

In general one must be careful about what is inferred about probable bifur-
cation sequences from Fig. 10. In the case where d = 64 and n = 8, the
second most common first bifurcation was to a T 2 attractor. From the data in
Fig. 10, given a first bifurcation to T 2, it is not possible to deduce what the
most probable second bifurcation and subsequent attractor type will be. Nev-
ertheless, Fig. 10 can provide significant information regarding the sequence
of bifurcations en route to a chaotic attractor.

Increases in n and d have some similar effects on the dynamics and bifur-
cations, as well as, on some non-overlapping effects. In the high-dimensional
networks, increasing n increases the likelihood of T 3 attractors. Moreover, in-
creasing n simultaneously decreases the likelihood of bifurcations to T 0 attrac-
tors while increasing the existence of T 1 and T 2 attractors. In low-dimensional
networks, increases in n increase the meager likelihood of observation of T 2

attractors. Increases in d have more profound effects. Increases in d greatly
increase the probability of observing T 2 attractors while greatly reducing the
probability of observing T 0 attractors. In low-dimensional networks, T 3 at-
tractors are never observed; thus, increases in the dimension allow for the
existence of stable, observable T 3 attractors. The high-d, low-n networks have
the most complicated bifurcation sequences as they have the most diverse at-
tractor types. The effect of increasing n and d is most concisely summarized
by recalling that the most common sequence of bifurcations for the n = 64,
d = 64 ensemble of networks is a sequence of T 1 and T 2 attractors leading to
a chaotic attractor. All of these results lead to the conclusion that for the con-
struction we use in this paper, increasing n and d will lead to a route to chaos
that consists of bifurcations between T 1 and T 2 attractors. It is important to
note that increasing the dimension by four octaves produced no observed T 4

attractors. This does not mean T 4 attractors do not exist in our construction
(clearly for some measures on the parameter space they must), or even that
they will not be observed when d is much larger than we consider in this
work. However, since T 3 attractors are observable for d ≥ 16 (with differing
likelihoods), whereas T 4 attractors are not, it is possible that observing T k

attractors for k > 3, is unlikely in our construction for any d. Nevertheless,
we are not willing to claim that there exists an N such that as d → ∞, k < N

for T k, let alone N = 4. Finally, even if there does exist an upper bound on
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the dimension of the observable tori in our experiment, one of the key features
of the framework we are employing is the ability to quantify, relative to a
measure, observable dynamics. Certainly other measures exist such that T d

attractors exist; however, it is likely that this measure is not very representa-
tive of many observable phenomena in nature. Addressing this last issue is a
source of future study.

7 Summary

The example we presented gives the flavor both of the commonality and di-
versity that exists along the route to chaos in the ensemble of networks we
studied. For the high-d, high-n networks with which we are most concerned in
this paper, the predominant route to chaos consisted of bifurcations between
T 1 and T 2 attractors. However, there is a lot of variation both in the specific
sequences of bifurcations and in the number of bifurcations between the first
bifurcation and the onset of chaos. Period-doubling cascades and such routes
are exceedingly rare — we did not observe a period-doubling route to chaos
in the 2500+ 6 high-d networks we considered for this report. Furthermore, in
any of the 10000+ networks we studied, we did not observe a period-doubling
sequence leading to chaos akin to what is observed in the 1-dimensional logistic
map. While there do exist sequences of bifurcations between periodic orbits in
low-dimensions, we never observed long sequences of real bifurcations in high-
dimensional cases. Moreover, in the low-dimensional cases, many of the bifur-
cations from between periodic orbits were not period doubling bifurcations,
but rather bifurcations between high-period, periodic orbits. Nevertheless, we
did observe a substantial number of sequences of period doubling bifurcations
in low-d networks. This is largely in agreement with the work of Doyon et.
al., Cessac et. al., and Sompolinsky et. al. despite the fact that they study a
considerably different space of dynamical systems. We do find differences of
course — the routes to chaos interval in parameter space occupies roughly two
(ever decreasing) octaves — but the differences are often superficial. In fact,
considering the Euclidean length (in parameter space) of the route to chaos
for the neural networks we study is somewhat deceptive because increasing
the number of terms (e.g. the number of neurons) in the argument of tanh
effectively increases the magnitude of the argument of tanh, which lowers the
threshold where the linear regime is breached, where the onset of chaos oc-
curs, and where the onset of finite-state dynamics begins. Consideration of the
length of the routes to chaos region is better done in terms of decades of the
parameter, largely because sfirst bifurcation ∼ nadb < schaos onset ∼ nãdb̃ where
|a| < |ã| and |b| < |b̃| at respective n and d values. Moreover, the quantity

6 The high-d data set includes the 1000 d = 64 networks, 700 d = 128 networks, 700
d = 256 networks and networks of other miscellaneous dimensions up to d = 1024.
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Fig. 11. The spectrum of the example network analyzed in section 5 for s = 0.02
(left) — at a stable drift ring, and s = 0.05 (right) — just before the onset of chaos.
This represents the spectrum along the orbit and not at a fixed point.

| log(schaos onset)−log(sfirst bifurcation)| increases when n and d are simultaneously
increased. There is likely a deep explanation related to random matrix theory
for the similarity between the results in this paper and the results of Doyon
et. al., Cessac et. al., and Sompolinsky et. al.; however, the details are yet un-
resolved. Finally, we rarely observe 3-tori. Thus, the results in this paper are
consistent with the prediction of Newhouse, Ruelle and Takens [46] that would
claim that 3-tori would be uncommon because they are easily perturbed to
strange attractors. However, often when we did observe 3-tori, they persisted
for relatively long s-intervals.

The primary focus of this paper is the bifurcation sequences along the route to
chaos. However, there is a feature of the evolution of the attractors along the
route to chaos that, while not being appearing in the portion of the attractor
with positive measure, is still highly relevant to the transition to chaos. Before
the first bifurcation, many of the strongly contracting directions consist of
simple sinks with rotation due to complex eigenvalues coupling pairs of state-
space dimensions. Leading up to the onset of chaos, the strongly contracting
directions with rotation begin to decouple, beginning with the most strongly
contracting directions. We believe that represents the following phenomena:
the original fixed point lies on a torus; the decoupling of the stable directions
corresponds to the tearing apart of this torus. Just before the onset of chaos,
what remains is a T 0, T 1 or T 2 attractor where the rest of the stable directions
correspond to sinks with no simple or coherent rotation. This “dissipative
KAM theory” scenario is similar to what can be observed at the onset of
chaos in Hamiltonian dynamical systems where the tori, as predicted by KAM
theory, break up [38] [39] [7]. Figure 11 shows the super-imposed spectrum of
the example neural network along the orbit at s = 0.02 where the attractor is
T 1 with many stable “rotating” sinks and at s = 0.05 — just before the torus
is torn apart and the onset of chaos occurs (yet only one LCE is zero). The
attractor has become much more complex — the isolated sinks have decoupled
but little can be said beyond this without a fixed point style analysis of the
torus. This phenomena is far from being well understood.
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One of the key reasons we chose the relatively complicated framework pro-
vided by the space of neural networks is the number of future pathways that
are opened and the obstructions that are removed. The class of neural networks
allows not only a practical (measure-theoretic) means of analyzing topologi-
cal results, but it contains, in a manageable way, the supposed pathological
examples. Due to the mappings that neural networks can approximate, if the
spectrum of Lyapunov exponents of a d-dimensional network is contained in
[χ1, χd], then likely there exists at least one path through parameter space
such that any network can be transformed into a T d torus with all Lyapunov
exponents being zero. At this time we can only say this is likely because such a
result has not been proven. If one were to stratify the networks by their spec-
tra, the aforementioned torus would be but a point along the interval [χ1, χd],
and thus, in this sense, unusual. Aside from the stratification of the space of
neural networks with the LCE’s, there exists the more standard stratifications
of the networks, such as the map φ : Rn(d+2) → Σ(tanh()), where Σ(tanh())
is the set of neural networks with tanh() as the squashing function. Such a
stratification allows for analysis akin to more standard bifurcation theory and
the language of real varieties. Because of these available constructions, several
problems are tempered by the neural network framework. For instance, the
severe limitations of dynamical behaviors that exist in particular equations
with few parameters can be solved by adding parameters without apprecia-
bly altering the model. Moreover, problems establishing measures or concrete
spaces of parameters that exist with the study of Cr dynamical systems can
be circumvented due to the existence of a flexible, concrete parameter space.
Neural networks with few parameters behave like many of the concrete dy-
namical systems considered by scientists, and, as parameters are added, the
neural networks become more free to behave like general Cr mappings that
many mathematicians study. The neural network construction utilized here is
a bridge between the more practical world of computational dynamical sys-
tems and the world of abstract dynamical systems.
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