
Stochastic Resonance in
Models of Neuronal Ensembles
Revisited
Dante   Chialvo
André   Longtin
Johannes   Müller-Gerking

SFI WORKING PAPER:  1996-08-052

SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent theviews of the Santa Fe Institute.  We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print.  Except for papers by our externalfaculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, orfunded by an SFI grant.©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensuretimely distribution of the scholarly and technical work on a non-commercial basis.   Copyright and all rightstherein are maintained by the author(s). It is understood that all persons copying this information willadhere to the terms and constraints invoked by each author's copyright. These works  may  be reposted onlywith the explicit permission of the copyright holder.www.santafe.edu

SANTA FE INSTITUTE

 



Stochastic Resonance in Models of Neuronal Ensembles Revisited

Dante R� Chialvo���� Andr�e Longtin�� and Johannes M�uller�Gerking�
�Division of Neural Systems� Memory and Aging� University of Arizona� Tucson� AZ ������USA�

�D	epartement de Physique� Universit	e d
Ottawa� ��� Louis Pasteur� Ottawa� Ontario� Canada K�N 
N��
� Santa Fe Institute� ���� Hyde Park Rd�� Santa Fe� NM ������

�

Two recently suggested mechanisms for the neuronal encoding of sensory information involving the
e�ect of stochastic resonance with aperiodic time�varying inputs are considered� It is shown� using
theoretical arguments and numerical simulations� that the non�monotonic behavior with increasing
noise of the correlation measures used for the so�called aperiodic stochastic resonance �ASR� sce�
nario does not rely on the cooperative e�ect typical of stochastic resonance in bistable and excitable
systems� Rather� ASR with slowly varying signals is more properly interpreted as linearization by
noise� Consequently� the broadening of the �resonance curve� in the multineuron stochastic res�

onance without tuning scenario can also be explained by this linearization� Computation of the
input�output correlation as a function of both signal frequency and noise for the model system fur�
ther reveals conditions where noise�induced �ring with aperiodic inputs will bene�t from stochastic
resonance rather than linearization by noise� Thus� our study clari�es the tuning requirements for
the optimal transduction of subthreshold aperiodic signals� It also shows that a single deterministic
neuron can perform as well as a network when biased into a suprathreshold regime� Finally� we show
that the inclusion of a refractory period in the spike�detection scheme produces a better correlation
between instantaneous �ring rate and input signal�

I� INTRODUCTION

�Stochastic resonance �SR	 is a term which describes the coincidence of two time scales in a periodically modulated
multistable� stochastic system� One time scale is established by the period of the external stimulus and the other by
the well�to�well switching rate induced by the stochastic process or noise 
 ��
� By this e�ect� the synchronization of a
nonlinear system to a weak periodic signal can be enhanced by the presence of random �uctuations� A weak periodic
signal is one which can not by itself produce switchings between wells� The optimum enhancement is obtained at a
level of noise which produces a maximum cooperative �i�e���resonance
	 e�ect between the noise�induced transitions
between wells and the frequency of the deterministic periodic signal ��
� Thus� the noise level producing the optimum
synchronization always depends to some extent on the frequency of the periodic signal�

It is well known that biological sensory receptors transform analog quantities such us pressure� temperature� electric
�eld etc� into trains of action potentials or �spikes
� The information about the physical stimuli is encoded in the
time intervals between spikes� All the features of systems exhibiting SR were found to be present in sensory neurons
��
� which are intrinsically noisy� nonlinear threshold systems� In such systems the essence of the signal enhancing
e�ect of SR can be simply grasped� In the absence of stimuli� there are random threshold crossings� each of which
results in a spike� The mean time between crossings decreases as the noise intensity increases� A weak subthreshold
deterministic modulation will then be best expressed in the output spike train if its dominant frequency is close to
the noise�induced mean spiking rate in the absence of signal�
Further theoretical and experimental work on single and multineuron systems ��
 has provided additional examples

of circumstances in which neuronal synchronization is enhanced by some level of random �uctuations� In the context
of harmonically�forced neurons� the signal�to�noise ratio �SNR	 has typically been used to quantify the noise�induced
synchronization of the neuron �rings to the subthreshold signal� The precise resonant behavior of this SNR as a
function of noise intensity depends on signal characteristics such as bias� frequency� amplitude� as well as on parameters
governing the autonomous neural dynamics and the noise� This implies that an optimal response to a signal of varying
characteristics could be maintained if the sensory neuron somehow �tunes
 or adapts itself accordingly ��
�
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In a recent paper� Collins et al� ��
 showed that a single noisy neuron can also optimally transduce a subthreshold
slowly�varying aperiodic signal� such as lowpass �ltered noise �see below	� Their study proposed SR measures appro�
priate for characterizing this so�called �aperiodic stochastic resonance
 e�ect �ASR	� The proposed power norm C�

and normalized power norm C� measure the quality of the transduction by the correlation between input signal and
output instantaneous �ring rate� In this setting� a �resonance curve
 of correlation versus noise intensity was obtained
which resembled those for SR� with increasing noise� the correlation rose sharply to a peak� and dropped thereafter
�Fig� �� cf� ��
� Fig� �	� These authors also recognized that for ASR� while restrictions on frequency are relaxed due
to the use of slowly�varying signals� it would still be necessary to modulate or actively �tune
 the noise intensity �or
other parameters	 in order to optimally transduce a signal whose characteristics �such as mean level� variance� etc�	
change with time�
Another recent report ��
 analyzed the extension of the single neuron ASR property to a population of noisy

neurons acting in parallel on the same aperiodic input signal� The aforementioned C� was then computed using the
signal and the average instantaneous �ring rate of these neurons� It was shown that this measure asymptotically
approach one with increasing number of neurons� whenever the noise level is above a certain minimum �Fig� �� cf� ��
�
Fig� �	� This stochastic resonance without tuning e�ect suggested that populations of neurons acting in parallel could�
apparently� use SR and still overcome the tuning problem� In a restricted sense� the connection to tuning relates to
the �time�scale matching
 notion of SR� in which one noise intensity optimally transduces a given frequency� hence�
high correlation over a wide range of noise intensities could transduce a wideband input signal� In a larger sense�
tuning refers to adjusting all system and noise parameters to optimally detect a signal� their results would then imply
that the noise�averaging property of the summing network makes this tuning less critical�

These two reports suggest that neurons could use SR to optimize their output coherence with weak input signals�
regardless of frequency in the case of a single neuron� and of frequency and noise intensity in the case of summing
networks� Being the essence of SR the coincidence of two time scales ����
� achieving enhancement of the signal by the
noise for a wide range of frequencies �i�e�� �aperiodic stochastic resonance
	 and�or noise intensities �i�e�� �stochastic
resonance without tuning
	 implies either a paradox or a misinterpretation�

The aim of this paper is to show� through a simple analysis� that the non� monotonic correlation�versus�noise re�
lationship associated with aperiodic stochastic resonance and stochastic resonance without tuning does not rely on
the cooperative e�ect typical of SR� Rather� it is a consequence of linearization�by�noise of the transfer function that
relates �mean �ring rate
 to �activation level
� The match between our theory and the simulations shows that the
role of the noise in ASR with slowly�varying inputs is to produce a positive linear gain for the non�linear threshold
element in a region of otherwise quiescent dynamics� Our analysis is based on the same assumption as that for ASR
��
� namely that the time variations of the input signal occur on a time scale which is slower than all characteristic
times of the neuron�s	�

The excitable neuron model� which closely follows that in ��
� is introduced in Sect�II� Some technical points
regarding spike detection� relevant in later sections� are also presented in this section� Section III is dedicated to
replicating the numerical results in ����
 which are relevant to our study� The fundamental diagram of mean �ring
rate�versus�noise intensity is introduced in Sect�IV� In Sect�V� expressions for the expected values of the covariance
and correlation coe�cient in the quasistatic case �i�e� for slowly�varying inputs	 are derived and compared with the
numerical simulations of the full dynamics� Section VI places the results of the preceding sections in the light of the
dependence of the SNR on noise and frequency for the case of pure harmonic signals� The paper concludes in Sect�
VII�

II� MODEL AND NUMERICAL CONSIDERATIONS

We consider the FitzHugh�Nagumo �FHN	 neuronal model driven by a subthreshold signal and noise ��
� Sub�
threshold means that the driving signal alone is not of su�cient amplitude to produce action potentials� The system
equations are

� �v � v�v � a	��� v	� w � A� S�t	 � ��t	

�w � v � w � b � ����	

where v�t	 is a fast �voltage	 variable and w�t	 is a slow �recovery	 variable� The parameters are chosen as in ����
�
namely A is a constant �tonic	 activation set to ���� �unless otherwise stated	� � � ������ a � ���� and b � ����� S�t	
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is the aperiodic signal� ��t	 is the noise given by a Ornstein�Uhlenbeck �OU	 stochastic process of the form

���t	 � ����t	 � ���t	� ����	

where ��t	 is Gaussian white noise of zero mean and correlation h��t	��s	i � �D��t� s	� The autocorrelation of the
OU process is given by

h��t	��s	i � �D	
c	 exp��jt� sj	
c	 ����	

and its variance is D	
c� The choice of a OU process allows control over both noise intensity �refered throughout as D
rather than D	
c	 and correlation time 
c � ���� The stochastic FHN equations were integrated numerically using a
fourth�order Runge�Kutta method ���
 with a �xed step�size of ����� sec� A good approximation to Gaussian white
noise is obtained by choosing 
c equal to the integration step�size� The positive�going excursions of v�t	 reaching a
minimum amplitude �here set to ��� as in ��
	 are considered as action potentials with the caveats discussed in the
next subsection� The times of occurrence of the action potentials forms a point process which is modeled as a train of
equal�amplitude delta�function spikes� This spike train is then convolved with a �� sec unit�area symmetric Hanning
window in order to obtain an instantaneous �ring rate that varies in time� The convolved spike�train constitutes the
output signal R�t	�

A� Spike detection schemes

Adopting the upward threshold crossing of v�t	 as the only criterion for spike detection presents a problem for the
mid�to�high noise intensities considered in our study� For these intensities� v�t	 can �uctuate rapidly several times
around the threshold�
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FIG� �� �a� Detailed view of the action potential labeled by an asterisk in panel �b�� The apparently single upward threshold crossing

is in fact a close succession of three threshold crossings� each marked by a vertical bar� �b� Fast membrane potential v�t� �continuous line��

spikes times �marked by a vertical bar�� and instantaneous �ring rates �dashed lines� as de�ned in the text� The larger amplitude �ring

rate is obtained by counting all threshold crossings� �c� Interspike interval histogram� The intervals smaller than ��� sec are calculated

from one or two false spikes� Time �here in seconds� can be rescaled to match e�g� action potential durations in an experimental setting�
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Consider for instance the case depicted in panel �a	 of Fig� �� where the time course of v�t	 is plotted� With
the aforementioned parameters� no spikes are produced in the absence of noise� With noise� we �nd that an action
potential is induced starting at around time ����� sec� and evolves for about ��� msec� There are two additional
threshold crossings preceding this action potential �indicated by the vertical bars	 with interspike intervals of � and
� ms� It is known that� in a model of a nerve �ber of a certain length based on Eq���	� the only threshold crossings
that can be detected along the �ber are the ones corresponding to the action potential ���
� Therefore� an additional
criteria is needed to detect only the biologically�relevant spikes that propagate and transmit information about the
input� Here� we adopt the criterion used in ���
 by introducing an absolute refractory period ���� sec	 wherein no
positive�going threshold crossing is considered an action potential� In the context of Fig� ���a	 this criterion would
assign the time of occurrence of the action potential to the �rst crossing rather than the third� with a negligeable error
of � � msec� The more problematic false spikes are the ones that can occur during the action potential downstroke�
and are eliminated using this criterion�
To illustrate the di�erences between the two spike�detection schemes� Fig� �� �b	 shows �� seconds of a simulation

of the FHN equations� Eq�����	� The noise intensity is D � � � ����� and the signal was held constant at S � ��
The upward crossings of the �ring threshold �set to ���	 are marked with vertical lines� The dashed lines draw the
instantaneous �ring rate� the upper one is calculated from the scheme without absolute refractory period� while the
lower one disallows spikes closer in time than ��� ms� The di�erence in �ring rates is striking� these di�erences
increase with higher noise intensities �not shown	�
Fig� �� �c	 shows the interspike interval histogram �bin width of �� msec�	 constructed from a simulation of total

time of ������� sec� with the same parameters and constant input� There are ��� intervals in the �rst bin �clipped
in the plot	� The intervals measured between acceptable action potentials follow a sharp gamma�like distribution
with a sharp rise at about � sec� and are clearly distinct from those ����� sec�	 caused by small �uctuations around
the threshold� Our choice of the absolute refractory period ���� sec	 discards the �false
 spikes without a�ecting the
dynamically relevant events� In the following� we will compare results for simulations with and without an absolute
refractory period in the spike�detection scheme� The proper consideration of these false spikes changes the conclusions
of our paper quantitatively rather than qualitatively�

III� REPLICATING ASR AND SR WITHOUT TUNING

In this section� we reproduce the simulations as reported by Collins et al� ��! 
� The aperiodic signal S�t	 was
constructed according to ��
� that is� a OU process Eq� ����	 with correlation time 
c � �� sec passed through a
unit�area symmetric Hanning window �lter of width �� sec� Note that the Hanning window acts as an additional
low�pass �lter� resulting in a relatively smooth signal� It is important to realize that the correlation time of such a
signal is much larger than any relevant time scale of the dynamical system Eq���	� The one realization of the signal
we use in all our simulations is shown in Fig� �� The signal has zero mean� a variance of ���� ����� and a duration
of ������� sec� a value that allows use of the Fast Fourier Transform �FFT	 algorithm�
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FIG� �� Time series of the aperiodic signal used in our simulations�
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FIG� �� Estimation of the covariance C� and correlation coe�cient C� between S�t� and R�t�� C� measures the mean slope� indicated

by the slanted dashed line� of a hypothetical transfer function between the input S�t� and the output instantaneous �ring rate R�t�� C��

a measure of the linearity of the transfer function� is sensitive to the slope variability around the slanted dashed line �see arcs below and

above this line�� and to the variance of S�t� and R�t��

To compare our simulations with those in ��
� we also use the �power norm
 C� and the �normalized power norm

C� to measure the coherence between the signal S�t	 and the output R�t	� These quantities are de�ned as

C� � S�t	
�
R�t	�R�t	

�
����	

and

C� �
C�

�S��t	
�����R�t	�R�t		�
���
����	

The quantities in the denominator of Eq�����	 are the standard deviations of the signal and of the instantaneous �ring
rate� Note that in fact� since S�t	 has zero mean� C� and C� are� respectively� the standard covariance and linear
correlation coe�cient ���
� In this sense� C� is proportional to the mean slope of a linear regression between S and
R� C� measures the linearity of the input�output relationship of the neuron �see Fig��	� and varies between �� and
�� values for a perfect linear relationship with� respectively� negative or positive slope� C� is also proportional to C��
and inversely proportional to the variances of S and R�

A� Replicating ASR

Fig� � shows ensemble�averaged values and standard errors of C� and C� at di�erent noise intensities D calculated
using ��� realizations of the full dynamics Eq�����	� reproducing Fig� � in ��
� Circles with error bars label results
obtained without an absolute refractory period in the spike�detection scheme� whereas squares are for results from
the same realizations� but disallowing spikes closer in time than ��� ms� The best correspondence with the results in
Fig� � of ��
 is for the curves without an absolute refractory period� It is interesting that the rapid rise of C� to a
clear peak with subsequent decay is less prominent when considering only physiologically relevant spikes� However�
this also produces higher values of C��
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FIG� �� Ensemble	averaged values and standard errors of the �a� covariance C� and �b� correlation coe�cient C� versus noise intensity

D for simulations of the full dynamics Eq��
���� Circles with error bars show C� and C� values for a spike	 detection scheme without

absolute refractory period� Squares denote values obtained by disallowing any spike that occurs within ��� msec of a previous spike�

To understand the full signi�cance of these results� we have also plotted C� for all the individual runs �Fig� �	 used
to calculate the mean and standard errors shown in Fig� �� Only the values for simulations with absolute refractory
period are shown� Even for the noise level at the�resonant peak
 in Fig� �� the distribution of C� values �and thus�
of C�	 is extremely broad� always encompassing realizations with negative correlation between output and input�
Subtleties like spike�detection scheme do not substantially change this broad distribution �not shown	� Hence� the
standard error �an error bar inversely proportional to the number of realizations	 of C� and C� does not give as
accurate a picture of the correlation as the standard deviation calculated across all realizations�
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FIG� �� Individual C� values from the 
�� runs whose mean and standard error are shown in Fig� �� Even in the best case

�D � ���� ����� see Fig� �� the spread is extremely large� with occasional realizations where input and output are anti	correlated�
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B� Replicating �SR without tuning�

We now reproduce the results reported in ��
 for neurons in parallel� As in ��
� we consider an architecture where
the output of individual neurons� each driven by the same input signal but a di�erent noise source �the noise sources
have zero cross�correlation	� is averaged before the correlation is measured� The averaged output RM �t	 is

RM �t	 �
�

M

MX
i��

Ri�t	 ����	

where Ri�t	 denotes the instantaneous �ring rate of neuron i� Figure � shows results for M � �� ��� ��� ���� and ���
neurons in parallel and for both spike�detection schemes� While in both cases C� approaches one with increasing M�
the case where only physiologically relevant spikes are counted is clearly superior in performance� The close similarity
of Fig� � to ��
� Fig� � again suggests that no refractory period was used in their reported simulations�
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FIG� 
� �SR without tuning�� �a� C� versus D for di�erent numbers of neurons acting in parallel� using the spike	detection scheme

with absolute refractory period� Lines from bottom are for architectures with �� ��� ��� ���� 
�� neurons� Error bars denote the standard

error on C� for� respectively� 
��� 
�� �� 
 and � realizations� �b� Same as in �a�� but without a refractory period in the spike	detection

scheme�

IV� THE NEURON TRANSFER FUNCTION

Our aim in this section is to explain ASR in terms of frequency modulation of the mean �ring rate by the slowly�
varying input signal� We begin by computing the behavior of the �ring rate as a function of tonic activation A and
noise intensity D� This yields a basic transfer function for constant signals� The intuition behind our explanation of
ASR is that the signal� varying on a time scale slower than all characteristic times of the stochastic neurons� produces

 



quasistatic variations in the parameter A� Consequently� the �ring rate observed near a given value of the input signal
can be estimated from the transfer function at the corresponding �constant	 value of A�
In Fig�  �a	� the mean �ring rate for one neuron� governed by Eq���	 with S � �� is plotted versus A for D � ����

�rightmost curve	 to D � �� ���� �leftmost curve	� A supercritical Hopf bifurcation of the deterministic �i�e�� noise�
free	 system from a �xed point to an oscillatory state occurs for ����� � A � ����� as in ��
� These rate curves were
obtained by sampling the instantaneous �ring rate from a total of �� � sec of simulation for each combination of A
and D� The mean �ring rate is seen to always increase with increasing A and�or D� In the absence of noise� the
rate is zero until A � ������ then jumps abruptly to a value near one� and increases almost linearly thereafter� These
results are compatible with work in the last decade aimed at characterizing analytically and numerically such rates
of noise�induced �ring for simple excitable systems ������
�
In the ASR simulations� A is held constant at ����� and the signal varies by ������ This range of modulation of

A induced by the signal �note that S and A are added together in Eq����	 is indicated in Fig�  �a	� For A � �����
the autonomous deterministic dynamics correspond to �xed point behavior� As the dynamics are excitable� spikes
can occur when the noise drives the state variables to the threshold for spiking� Our quasistatic description of ASR
amounts to considering that the slow signal modulates the value of this globally stable �xed point�
Figure  �b	 gives an expanded view of the parameter range corresponding to the modulations produced by the

signal� Conventions are the same as in Fig�  �a	� except that the total simulation time is now ���� sec� and
� � ���� � D � � � ����	� From these data� the slope of the mean �ring rate versus activation A for all D can
be determined by linear regression� The relationship is almost linear for all curves �correlation coe�cient � ��� for
D � �� ���� and � ���� for D � �� ����	�
These slopes are plotted as a function of D in Fig�  �c	� This is the basic transfer function of the neuron for

constant and slowly varying signals� as they occur in ASR� The slope rapidly rises to a maximum at D � �� �����
and decreases slowly thereafter� Within a constant scaling factor� this curve perfectly matches that of C� in Fig� � �a	�
It is obvious from this curve that there is an optimal value of D for which the slope of the rate�vs�A relationship� or
�gain
� is maximum� Together with the variance of the �ring rate� this gain function allows us to predict the expected
values of C� and C� for slow signals� The e�ect of noise here is to linearize the transfer function� Stochastic resonance�
by contrast� is not a linearization ���
 but a cooperative e�ect of signal and noise� when the time�scale of the signal
is commensurate with the noise�induced �ring rate�
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FIG� �� Mean �ring rate as a function of A determined by solving Eq��
��� numerically at di�erent D values� The instantaneous �ring

rate R�t� was computed at each integration time step from the resulting spike train� using a �� sec Hanning window� taking a refractory

period into account� The mean rate was then computed from the time average of R�t�� �a� Wide range of A� A Hopf bifurcation occurs for

����
 � AT � ������ The signal range for the ASR simulations is indicated by the horizontal bars centered on A � ����� �b� Same as in

�a�� but restricted to the range of A modulated by the signal� �c� Slope of the rate	versus	A curves in �b� as a function of D� determined

by linear regression� Minimum noise intensities are D � ���� in �a� �rightmost curve� and D � 
����� in �b� �bottom curve�� increasing

by ���� up to ����� then in steps of �� ���� up to 
� ����� and �nally in steps of ���� up to �� ��� �uppermost curves�� Error bars

in �a� and �b� denote the standard deviation �not the standard error�� Ten sweeps of ����
 sec were used for each parameter set in �a�

�ten sweeps of �
��
 sec in �b���

V� DERIVING C� AND C� FROM THE TRANSFER FUNCTION

A� Aperiodic stochastic resonance

We now derive the expected values of C� and C� for ASR from the characteristics of the rate�vs�A transfer function
computed in Sect� IV� The shape of the transfer function in the activation range covered by the signal suggests� in
the context of quasistatic signals� the following linear ansatz�

R�t	 � �DS�t	 � 
D�t	 ����	

where �D is the gain �slope	 of the transfer function for noise intensity D� and 
D is a stochastic variable� This relation
is similar to the one used in ��
� with the substitution hR�t	i � �DS�t	� With the ansatz Eq�����	� the expected value
for C� is

E�C�
 � S�t	��DS�t	 � 
D�t		

� �D VAR�S	 ����	

under the assumption of vanishing correlation between the stochastic variation 
D�t	 and the signal� Here VAR�S	
means �variance of S
� We plotted this relationship for both spike�detection schemes in Fig� � �a	� The match is
excellent� The expected C� values can be derived by taking into account the variance of the stochastic variation of
the linear transfer function� Starting again from the linear relationship� Eq�����	� and noting that

VAR�R	 � ��D VAR�S	 � VAR�
D	 ����	

it follows that

E�C�
 �
E�C�
p

VAR�S	VAR�R	

�
�D VAR�S	p

VAR�S	���D VAR�S	 � VAR�
D		

�
�q�

� � VAR	�D

��
D
VAR	S


� ����	

In order to compare this expression for C� with the values derived from numerical simulations of the FHN equations
with signal S�t	� it is necessary to estimate VAR�
D	� Noting that S � � in Eq�����	 yields VAR�R	 � VAR�
D	�
we can estimate VAR�
D	 from simulations with constant signal� Consequently� for a given value of D� VAR�
D	 is
computed by averaging the sample variance of the instantaneous rate over ���� � A � ����� For each value of A� the
sample variance of the �ring rate was taken from Fig� �b	� Figure �� �b	 shows the resulting values of C� for both
spike�detection schemes� It is clear that the non�monotonic character of C� vs� D can be derived from the assumption
of a noisy linear relationship between �ring rate and tonic activation� This is the main result of our paper� For lower
noise levels� the predicted values are slightly higher than the ones obtained from simulating the full dynamics� This
is because� in this range of noise� the assumption of linearity is an approximation� as one can see from the slight
curvature in the transfer function� Another contributing factor to the discrepancy is the fact that VAR�
D	 shows a
systematic increase with A at low noise� However� the peak in our quasistatic estimate of C� as well as its decrease
at higher noise levels are perfectly well explained by the linear ansatz�
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FIG� �� Theory and simulation results of the �a� covariance C� and �b� correlation C� versus noise intensity D for simulations of the full

dynamics Eq��
���� Circles with errorbars show the results obtained without absolute refractory period� and squares are from simulations

with a ��� msec refractory period �same data as in Fig� ��� The lines connect values of C� and C� computed using the transfer function

and Eqs����
� and ����� �see text��

It is interesting to note that the Kramer"s�type analysis of the crossing rate of the FHN model presented in ��

supports our simple theory� This analysis� which approximates the escape�to�threshold problem in the two�dimensional
FHN system by a one�dimensional one along the v�axis� relies on the assumption of slow signals� While such adiabatic
theories of stochastic resonance have been proposed ���
� the fact that an adiabatic theory for the transition rates
agrees with numerical results of course does not imply that the underlying phenomenon is stochastic resonance� We
begin with Eq����	 in ��
 for the mean threshold�crossing rate in the presence of the slow aperiodic signal S�t	�

hR�t	i � exp
n
�
p
�
�
B� � �B�S�t	

�
�	D

o
� ����	

where B � AT �A measures the distance between the signal mean and the threshold �in ��
� AT is a constant equal
to � ����� i�e� the bifurcation value found numerically above	� Plots of hRi as a function of the tonic activation A
for constant signal and constant D are similar to those in Fig�  �b	� and also behave similarly as D is changed �not
shown	� The partial derivative of this rate with respect to A then yields the slope� similar to �D �

�hRi
�A

� �
p
��

D
�AT �A	� exp

�
�
p
��

D
�AT �A	�

�
����	

Plots of �hRi	�A as a function of D for constant A exhibit the familiar unimodal shape seen in Fig�  �c	� since this
quantity has an exp���	D		D dependence� Further� we see that this slope or �gain
 goes to zero at very high noise�
as expected from an extrapolation of the results of Fig�  �b	� This expression for the slope can then be substituted
into Eq�����	 which� together with a numerical determination of VAR�
D	 vs D �e�g� a quadratic function in D as in
����
	� can be used to determine C� as di�erent D values�
The nonlinearity that underlies ASR can also be intuitively understood using a simple analogy with the transfer

functions �or �squashing functions
	 used in neural networks �see e�g� ���
	� Such functions represent the instantaneous
�ring rate f of a neuron as a function of its activation or input level x� a quantity similar to the activation level A
above� This function goes to zero as x 	 �
� and to the maximal �ring rate �usually chosen to be one	 as x 	
�
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A frequently used analytical form is f � �� � exp���x	
��� a sigmoid whose slope at the origin is f ���	 � �� This
sigmoid turns into a Heaviside step function as � 	 
� This occurs when the noise level D � ���� proportional to
temperature in the neural network context� goes to zero� For any x� the slope is

df

dx
� exp��x	D	D�� �� � exp��x	D	


��
� ��� 	

For a given level of activation� this slope� which is similar to that of the curves in Fig�  �a	 and �b	� starts at zero for
D � �� goes through a maximum� and decays to zero as D 	
� This reproduces the basic behavior seen in Fig� �c	�

B� Neurons in parallel

The linear ansatz also allows the prediction of C� and C� for multiple neurons in parallel� Taking Eq�����	 together
with Eq�����	� we obtain for M neurons

RM �t	 �
�

M

MX
i��

Ri�t	 � �DS�t	 �
�

M

MX
i��


iD�t	 � ����	

where the 
iD�t	 are di�erent stochastic variables for each neuron and have zero cross�correlation� We �rst remark
that the expected value of C� is the same for a single neuron as for M neurons in parallel� Assuming then that the

iD�t	 have the same variance VAR�
D	� it follows that

VAR�RM 	 � ��D VAR�S	 �
�

M
VAR�
D	 � ����	

and thus� as for Eq�����	�

E�CM
� 
 �

�q�
� � �

M
VAR	�D

��
D
VAR	S


� � �����	

��
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FIG� �� �SR without tuning� explained using the transfer function in Fig� �� with �a� and without �b� refractory period� Symbols are

mean values obtained from simulating the full dynamics �see Fig� �� �from bottom� for systems with �� ��� ��� ���� and 
�� neurons��

Lines are theoretical values� calculated from Eq�������� VAR��D� was estimated as in Fig��� i�e� by averaging across A values using the

data in Fig� ��b��

We tested the accuracy of this relation for M � �� ��� ��� ���� and ��� for both spike�detection schemes� The
results are plotted in Fig� � together with results from simulations of the full dynamics� For the same reasons as in
the single neuron case� the predicted values are slightly higher than those from the full simulations for D � ����� but
match them very closely for higher D� Also� C� is again higher when a refractory period is taken into account�
This estimate of C� in Eq������	 in terms of the single neuron parameters VAR�
D	 and �D goes to one with

increasing M for VAR�
D		�
�
D � �� i�e� for non�vanishing noise intensity� As the value of C� for a signal of a given

variance fed toM neurons in parallel is determined by the factor VAR�
D		�M��D	� it follows that C� can be improved
by increasing �D � Another way to increase C� is to increase the linearity of the transfer function over the relevant
range of A values� It is tempting then to compare simulations of M neurons in parallel to one with a single neuron
operating in a parameter range where the transfer function deviates very little from linearity� Such a parameter range
occurs for D � � and A close to but above the threshold value � ������ In other words� a single neuron could also
optimize its response to a slow aperiodic input by adapting its dynamics to a higher resting potential� or �from another
point of view	 by lowering its threshold�
To illustrate the notion that a single neuron can do as good as a summing network of neurons operating at a higher

threshold� we compare the performance of ��� neurons� each with the same dynamical parameters and A � �����
to a single neuron with all the same dynamical parameters� except A � ����� and D � �� The single neuron now
�res periodically in the absence of input signal and noise� since A � ������ The value of A � ����� is chosen such
that the C� value for the single deterministic neuron equals the maximum value obtainable in the noisy summing
network� namely that for D � ���� ����� A comparison of S�t	 with R�t	 for the single deterministic neuron in its
suprathreshold regime and RM �t	 for the ��� noisy neurons is shown in Fig���� Thus� a shift in membrane potential
to a region of linearity also optimally transduces a slow aperiodic signal� This is true here even though the mean
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slope of the transfer function with noise is actually higher than without noise� The reason why C� is not exactly one
for the single neuron is that there is a slight curvature in the noiseless rate�vs�A function�
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FIG� ��� Comparison of rate	coding of a slowly varying signal �solid line� by a single noiseless suprathreshold neuron and a sum	

ming network of subthreshold noisy neurons� The dashed line represents RM �t� from the average activity of 
�� neurons �A � �����

D � ���� ����� for a total of ����
 spikes�� as in the stochastic resonance without tuning scenario� The dotted line is R�t� from a single

neuron in the suprathreshold regime �A � ���
�� D � �� 
�
 spikes�� The correlation coe�cients are C� � ���� for the 
�� stochastic

neurons� and C� � ����� for the single deterministic neuron� respectively�

The analysis in ��
 relies on the assumption
h
S��t	

i���
� B� i�e� signal variance is much smaller than signal�to�

threshold distance� For large B� i�e� for signals near or above threshold� it may adequately approximate values of
C�� On the other hand� our transfer function analysis allows us in principle to predict� for any value of A �and thus�
of B	� the value of C� for one or many neurons driven by a slowly varying aperiodic input� The accuracy of our
prediction will be higher if the slope of the transfer function is almost constant across the relevant range of A values�
This linearity will depend on the minimum and maximum bounds of the signal amplitude� as well as on the particular
combination of A and D values used�
It is clear that the reduction of the noise variance achieved using the summing network broadens the range of noise

intensities for which CM
� is high� This �attening of the CM

� versus D curve will however be much more di�cult to
maintain as D increases� The theory presented in ��
 yields an analytical approximation to C�� This result can then
be extended to M neurons by recalculating the normalization factor N� in the denominator of C� �N� is the variance
of R�t		� The result is

N�
M � VAR�RM 	 � hRi� � hRi� � ���D		M �����	

where brackets denote ensemble�averages� overbars denote time averages� and ���D	 is simply VAR�
D	 used through�
out our study� This factor is then used to obtain CM

� �see Eq�� in ��
	� For large D� this expression goes asp
M	�D��D		� Assuming that �� maintains its quadratic dependence on D� and that the noise sources on the neu�

rons indeed remain uncorrelated� we �nd that CM
� � pM	D�� This implies that� e�g�� for a twofold increase in the

noise level� a high value of correlation obtained with M neurons can be maintained by using instead ��M neurons�
We note that the same scaling is obtained using our Eq������	� in combination with Eq�����	� since this latter equation
yields a �	D dependence of �D at large D� Thus� broadening of C� versus D will occur� but can be quickly overcome
by increased noise�
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FIG� ��� �Cycle histograms� for di�erent noise intensities and signal periods� Each box represents a histogram computed for values of

noise intensity and signal period indicated on the axes� In each box the �ring probability �full scale corresponds to P between � to �����

is plotted versus the phase �full scale corresponds to phases from � to 
�� of the periodic signal� Histograms depicted here were used to

compute the correlation coe�cients plotted in Fig� �
�

VI� LOOKING AT THE FREQUENCY�NOISE INTENSITY PARAMETER SPACE

In this section we investigate the correlation of the �ring rate with subthreshold periodic signals of varying frequency
for di�erent noise intensities� Our aim is to illustrate that there are regions in parameter space where linearization
by noise governs the behavior of C�� and others regions where stochastic resonance plays a role�
The correlation C� was computed between a sinusoid and a histogram representation of R�t	 over one stimulus cycle�

This is known in the neurophysiology jargon as a �cycle histogram
� and represents �after proper normalization	 the
probability of occurrence of a spike as a function of the phase of the periodic signal� These histograms were computed
from numerical simulations of Eq�����	 as before� except that here S�t	 is a sinusoid of amplitude ���� �comparable
with that of the aperiodic signal used in previous sections	 and period T ranging from �� sec to ��� sec� The noise
intensity ranges from ���� ���� to �� �����
For each noise intensity�signal period combination� the �ring phases of the spikes were computed from ���� realiza�

tions of each period� i�e� from ���� cycles of the signal� The refractory period was taken into account in the detection
scheme� as explained in Sect�II� The histograms were computed by dividing one cycle of the signal into ��� bins� Note
that this criterion of choosing a constant number of bins should be taken into consideration for the interpretation of
the results in this section� For comparison with the treatment of R�t	 used in previous sections� phase histograms
here can be considered equivalent estimates of rate functions over one cycle� obtained by convolving the spike trains
with non�overlapping rectangular windows of length T	���� with results over all cycles folded modulo��� into one
cycle� The resulting number of counts in each bin of the cycle histogram is further divided by the total number of
spikes encountered during the ���� cycles� producing a normalized cycle histogram� Under these conditions� results in
this section can also be seen as analogous to the ensemble�averaged rate of ���� neurons in parallel over one stimulus
cycle� We note that the value of C� is not a�ected by the normalization�
Figures �� and �� show the result of our simulations of Eq�����	 with subthreshold periodic forcing� It is clear

that high values of correlation can be seen over the whole range of stimulus periods studied� Let us focus �rst on
the parameters values of Fig� �� which yield �half�wave recti�ed
 histograms� These cases occur for the lowest noise
intensities and all periods� and for the shortest periods and all noise intensities �in other words� for the cases along

��



the x or y axes	� For these parameter combinations� there is a higher probability of �ring at near a given phase of
the sinusoidal input� and very little �ring over a range of phases of � � radians� As noise or period increases� i�e�
as one moves away from the x or y axes� the histogram resembles more and more the sinus input� This qualitative
observation can be con�rmed by looking at the respective values of C�� These values of C�� shown in Fig� ��� represent
the highest value of correlation between the cycle histogram and a sinusoid of period T� the phase of which can be
varied across ��� ��	� As is already apparent from visual inspection� the amount of phase shift leading to this maximal
correlation depends on the noise intensity and the signal period�
We have observed that� for all the parameter values resulting in �recti�cation
 in the cycle histogram� the individual

spike trains exhibit the typical �skipping
 behavior ��
� and consequently� multimodal interspike interval histograms
�not shown	� It is important to remark that this is the hallmark of �a nonlinear cooperative e�ect whereby the
small signal entrains the noise�induced hopping� so the transitions are surprisingly regular
 ���
 �see also �����
	� This
extreme regularity associated with recti�cation� i�e� �rings occurring only near a given phase of a periodic input�
would prevent a neural ensemble from encoding the full excursions of the signal� resulting here in relatively low C�

coe�cients� This result implies that proper encoding� where the rate follows every modulation of an aperiodic input
signal� requires a relatively larger noise intensity �for a given �xed period	 than those producing the 
surprinsingly
regular
 noise�induced hopping� i�e� than those associated with skipping�

For relatively long signal periods� the behavior of C� as a function of D �see Fig� ��	 is� not surprisingly� similar
to what was shown in previous sections for aperiodic signals� Note also� in Fig� ��� the decrease in the amplitude of
the sinusoidal modulation of the cycle histogram with increase D� This is due to the nonlinear decrease of the gain
with increasing noise discussed in Sects� IV and V�
It is thus clear that� for any frequency� the correlation exhibits a clear maximum as D is increased� It is further

observed that for periods corresponding to the slow inputs used in ASR� the maximum always occurs near the same
value of D � Dmax� However� for T � � sec� the maximum moves to higher values of D� This increase in Dmax is a
clear signature of stochastic resonance� and can be understood from the time scale matching notion of SR �������
� a
higher noise level produces a higher mean crossing rate� which will optimally transduce a subthreshold deterministic
signal of higher frequency� We note that this dependence of Dmax on frequency in the FHN system is more pronounced
than for the maximum in SNR in the dynamically simpler two�state double�well system studied e�g� in ���
� This is
probably due to the �slower	 time scale associated with the recovery variable in Eq�����	�
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VII� CONCLUSION

In summary� our analysis shows that the aperiodic stochastic resonance and stochastic resonance without tuning

scenarios do not rely on the nonlinear cooperative e�ect of stochastic resonance� but rather on the noise dependence
of a linearization�by�noise e�ect� The role of noise in ASR is simply to linearize the transfer function of the neuron�
i�e� the fundamental relationship between the input to the neuron� S�t	� and the instantaneous output �ring rate of
the neuron� R�t	 �Fig�  	� A slowly varying signal increases the neuron �ring rate in proportion to its amplitude� i�e�
the neuron encodes the signal through rate�coding� This fact� along with the transfer function� enabled us to derive
expressions for the expected covariance C� and correlation coe�cient C� between S and R� C� is simply the gain of
the encoding� C� measures the quality of a straight line �t to the transfer function of the neuron� and hence will be
higher the more linear the transfer function is� It is important to stress that the optimal noise level is not exactly
the one for which the input�ouput transfer function has the largest gain �D� Rather� �D enters Eq����� and it is this
expression which determines the maximal value of C� as a function of D� This determination requires� in our study
as in ����
� a numerical determination of VAR�
D	�
We have taken special care to reproduce the numerical results of previous studies ����
 in order to carry out our

study of the nonlinearity underlying ASR in single neurons and in summing networks� In particular� we have found
that disallowing false spikes produces more coherence between output �ring rate and input signal� Thus� there is some
bene�t to introducing a refractory period in the simulations� and perhaps for the existence of a refractory period in
real neurons� Also� we have found that using the standard deviation rather than the standard error for the estimates
of correlation gives a fairer assessment of the degree of correlation� In fact� while the mean value of C� may be
positive� typical realizations may show negative correlation between output �ring rate and input signal�
Although the high CM

� values for the summing networks do not rely on stochastic resonance� it is still true that
their averaging property reduces the variability of the instantaneous �ring rate� Consequently� the C� versus D curve
does have a broader maximum� as Eq� ���� and the analysis in ����
 predicts� As a wider range of noises then allows
encodings of similar quality� the noise does not have to be tuned as critically as for optimal ASR in one neuron ��
�
It is important to realize however that an optimal C� for ASR does not imply a tuning of time scales between system
and signal� since the signal evolves on the slowest time scales� We anticipate that it will be possible to obtain �true
ASR
 for aperiodic signals evolving on time scales where SR occurs� i�e� for signals with a higher frequency content
�the left of Fig� ��	�
Linearization by noise in neurons is a well�known e�ect that has been studied both theoretically and experimentally

�see e�g� the superb review by �� 
� as well as those contained in ���
	� The results presented here and in ����
 provide
a theoretical�numerical framework to understand the basis for achieving optimal transduction of slow inputs through
variations in noise intensity� Future work will take a closer look at the tuning properties of noisy neurons in the light
of the conclusions of the present study�
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