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Abstract

We propose a method for modelling economic systems in which outcomes depend locally
on the predictions that agents make of other agents� We develop population games in which
each agent adaptively searches for a good model of its environment� We demonstrate that such
systems can exhibit persistent dynamics� cyclic oscillations between low and high complexity
states� and other complex� yet endogenous� phenomena� We propose these �adaptively rational�
agents as a natural extension of rational expectations� suitable when mutual consistency is not
realistic� We discuss the connections between our work and the programs of bounded rationality�
evolutionary game theory and models motivated by statistical mechanics�

� Introduction

We seek a de�nition of homo economicus which relaxes the assumption that globally optimal�
mutually consistent strategies are selected by a system of autonomous agents� We believe the
development� dynamics� stability and change of this optimality should be modelled� not graven in
stone� We accept Nash�s ���	 judgement that


�It is unnecessary to assume that the participants have full knowledge of the total
structure of the game� or the ability and inclination to go through any complex reasoning
processes� But the participants are supposed to accumulate empirical information on
the relative advantages of the various pure strategies at their disposal��

Ours is part of a growing body of research studying the complex relationship between popu
lation dynamics and Nash equilibria� In fact� an explicit population in modelling games was �rst
introduced in Schelling�s ���� model of segregation in housing markets� Such models often go fur
ther than Nash�s admittance that �actually� of course� we can only expect some sort of approximate
equilibrium� since the information� its utilization� and the stability of the average frequencies will be
imperfect�� � with an explicit population we can address when Nash�s �approximate equilibrium�
is only metastable or unstable �and therefore of lesser relevance� and model the actual dynamics
in such cases� We adopt this approach and� for instance� we show that even for simple cooperative
games� equilibrium is not assured
 punctuated equilibria� metastability� limit cycles and other
emergent properties may all be observed�

Sargent ������ discusses a large variety of boundedly rational macroeconomic models� and
neatly summarises the basic philosophy underlying that program of study
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�Rational expectations imposes two requirements on economic models
 individual
rationality� and mutual consistency of perceptions about the environment � � � I inter
pret a proposal to build models with �boundedly rational agents� as a call to retreat
from the second piece of rational expectations �mutual consistency of perceptions� by
expelling rational agents from our model environments and replacing them with �ar
ti�cially intelligent� agents who behave like econometricians� These �econometricians�
theorize� estimate� and adapt in attempting to learn about probability distributions
which� under rational expectations they already know��

We take a jointly boundedly rational� population based modelling approach� and present a class
of evolutionary games� based upon the following assumptions


� large numbers of agents interact locally in a multidimensional lattice�

� they use predictive models from a class speci�ed by


� the past history of observations to use for predictions�

� the complexity of model to construct using that data�

� in their interactions� the agents form predictions of one another and base their behaviours
upon those predictions� in an attempt to optimise their utility � a function of the forthcoming
and historical behaviour of the system�

� they change their choice of model according to past predictive success via a given decision
rule �the evolutionary learning process��

So our model considers local interactions only� and deals with games in which there are a
continuum of possible responses� See Blume ������ for a related approach to K�K local interaction
games� with an asymptotic analysis using techniques from statistical physics �which we shall discuss
in x��� and Ellison ������ for results comparing local with global interactions� In particular Ellison
highlights the importance of transients and rates of convergence � if the rate of convergence of
a system is slow compared with its expected unperturbed lifetime� then the historydependent
transient is more important than the equilibrium state� He proves the expected result that local
interactions can give rise to much �e�g� �	��� times� faster convergence than global interactions�

Lane ������ argues for the importance of such transients� and that the concept of a metastable
state which may contain the seeds of its own destruction may be more important than pure stability�
Our current work supports this stress on the importance of transients� indeed the concept of a
metastable state is crucial to an understanding of the systems we consider�

We begin in x� with some simple adaptive agents � our agents are not bayesian optimisers�
rather they make predictions of other agents using their predictive model� They then optimise their
utility in a myopic fashion based upon those predictions� The also adjust their predictive models
over time� picking the best allowed adjustment that exists �details will be given in x��� We show
how these simple adaptively optimising dynamics can drive agents playing such games away from
steady state equilibria�

Given that simple equilibria are unstable� what is then possible� We expect a very interesting
dynamic� based upon a re�nement of the argument given in Kau�man ������� We introduce our
results in x���� but give an intuitive description here� In order to predict one another�s behaviour
optimally� complex adaptive agents will build optimally complex� and hence boundedly rational
models of one another� Such adaptive agents might well coevolve to the �edge of chaos� �the
boundary region between a disordered and ordered world state�� via the following framework
 �rst�
given �nite data� models which can optimise the capacity to generalise accurately must be of
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optimal� intermediate complexity �neither overly complex nor overly simple models can generalise
e�ectively�� Second� when adaptive agents make models of one another as part of their mutual
ongoing behaviour� the eventual failure of any �nite� approximate model of another�s behaviour
drives substitution of a �nearby�� optimally complex model of the other�s behaviour which now
appears to be the best �t to the other�s behaviour� The point is that� given any �nite set of
data� multiple models of about the same complexity will �t the data roughly as well� As the data
stream evolves� overlapping patches of the data are optimally �t by nearby models drawn from a
set of models of the same complexity� Third� adaptive agents may persistently alter their models of
one another�s behaviour� Since a change in agent behaviour follows from a change in model� such
agents must coevolve with one another using changing models of one another�s behaviour� Fourth�
presumably such coevolving behaviour can be chaotic� ordered� or at the edge of chaos� The ordered
extreme in which changes to models are rare �so models are mutually consistent� corresponds closely
to a rational expectations state� whilst the chaotic extreme corresponds to rapidly changing models
of the agents� At the edge of chaos� models of one another would be poised� tending to change�
unleashing avalanches of changes throughout the system of interacting agents� An appearance
of punctuated equilibria seems likely� Fifth� a qualitative argument suggests that in a persistent
attempt to optimise prediction about the behaviour of other agents� adaptive agents will alter their
�nite optimally complex models of one another so that the entire system approaches the edge of
chaos�

We expect the following picture
 if the dynamics are very stable and mutually consistent� then
each agent has an abundance of reliable data about the behaviour of the other agents� Given
more data� each agent naturally attempts to improve his capacity to generalise about the other
agents� behaviour by constructing a more precise model of the others� actions� In our systems�
this model is more sensitive to small alterations in other agents� behaviour� Thus as agents adopt
more precise models to predict better� the coevolving system of agents tends to be driven from the
ordered regime toward the chaotic regime� Conversely in the chaotic regime� each agent has very
limited reliable data about the other agents� behaviour� Thus in order to optimise the capacity to
generalise each agent is driven to build a less precise model of the other agents� behaviour� These
less precise models are less sensitive to the vagaries of others� behaviour� and so the system is
driven from the chaotic regime towards the ordered regime� So we expect an attracting state on or
around the edge of chaos� The precise form of this attractor is discussed in x������ Furthermore we
expect model precision and model complexity to be dynamically anticorrelated� This is because a
stabilising world will be better predicted by a simpler model and viceversa�

Thus we expect that the natural de�nition of homo economics which we seek is one in which
agent complexity� informationuse� forwardplanning horizons� and recursive modelling depth �my
model of your model of my model of � � � � are dynamically constrained within a �nite �bubble� of
activity� on average poised between the ordered and chaotic regimes of behaviour� This is the �rst
step within that search� in which we address model complexity� precision and informationuse�

After introducing our model and results� we present a mean�eld analysis of the aforementioned
state� and some extensions of that analysis based upon dynamical considerations� Finally we discuss
extensions to our work and add a few general conclusions�

� Adaptive agents

Given a system of interacting agents� �rational expectations� is taken to mean that the conditional
expectation of the future each agent has is consistent with the future generated by actions based
upon those very expectations� �Perfectly rational agents� act so as to maximise their expected
utility under any given information constraints� Assumptions such as these have been used to build
a rigorous mathematical formalism for economics� Now� most such rational expectations models
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implicitly or explicitly consider either

�� the representative agent framework� in which the entire economy is modelled with one aggre
gate agent�

�� only interactions between pairs of agents� or an agent and an averaged whole�

This research forms part of a growing body which seeks to rede�ne the assumptions of economics
by modelling uncertainty� limited information and bounded rationality� A simple example will
su�ce to make our point� Given a system with a large number of possible Nash equilibria� to
select a particular rational expectations state one requires additional parameters indexing agents�
beliefs�� If one lets agents adaptively select not only amongst those parameters� but also amongst
a larger class of beliefs of which rational expectations is but a subset� then what will the agents
do� Will they evolve to a particular rational expectations equilibrium �possibly path dependent��

If the answer is �no�� they must pick something quite di�erent� It is within this context that we
seek a de�nition of the natural rationality of agents whose beliefs are not arbitrarily constrained
by assumptions such as rational expectations�

Our models can be considered as one of a string of possible relaxations of RE� moving from
agents who adjust a �xed model in an attempt to learn the correct distribution �which is assumed to
be of that form�� to agents who adjust both model and model parameters� to populations of agents
whose models predict each other and in which� therefore� the dynamics are completely endogenous�

We shall situate our models by describing some of the links in this chain� before arriving at x�
where we de�ne our model using all of these ingredients�

Bray ������ has studied a simple model of adaptation to a rational expectations state� In this
model the equilibrium price pt for a single commodity is given by


pt � a � bpet�� � ut ���

This is a market clearing condition with pet�� the price that market participants expect at time
t � �� Now the steadystate rational expectations solution is pet�� � � �t� where � � a��� � b��
Bray addressed the question of what happens if we relax rational expectations and assume people
form the expectation pet�� by an average over past prices pt� Bray�s dealt directly with a least
squares learning process of a simple model� which e�ectively implied an equation of motion for
�t � pet�� �the expected price at time t � ��� of the form


�t � �t�� �
�

t
�pt�� � �t��� ���

Bray showed that a representative agent learning in a system whose dynamics are governed by
equations ���� will converge to the rational expectations equilibrium with probability one i� b � ��
The models we use are functionally more complex than Eq����� but they do not use information
from the entire past� Applied to Bray�s representative agent� our model is


�t � �� �

cX

i��

�ipt�i ���

for some positive integer c� where we will write � as a shorthand for ���� ��� � � � � �c�� This class
of models can approximate a wide variety of functional forms� and its range of dynamics include
complex oscillatory timeseries� This begins to approach the natural goal of replacing the global
expectation of a representative agent� with multiple expectations and predictions formed by a small
group of agents�

�See �Kreps� ����	 for related discussion of equilibrium selection�
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Figure �� A phase portrait for update rule ���

Model ��� is quite arbitrary as it stands� However if the agent optimises � as a function of
empirical observations� then it can build an accurate predictive model over time� and the model is
then quite appropriate � especially for the case in which agents to not have prior knowledge of
the expected equilibrium state �e�g� steady state� oscillatory� or more complex dynamics may all
be encompassed within the same framework�� Hence the dynamics of the price pt are driven by the
representative agent�s behaviour in the following way


pt � a � b��� �

cX

i��

�ipt�i� � ut ���

where

� � arg min
�

T

TX

i��

�pt�i � �� �
cX

j��

�jpt�i�j�
�� ���

where we have introduced another parameter T � the past history �number of lags� over which
the agent optimises the mean square error in the predictions of its model� Now ��� is a simple linear
rule� and ��� is an easy linear programming problem� However the combination of the two into an
update rule of the form pt � F �pt��� � � � � pt�T � is highly nonlinear� and will generally possess a
more rich dynamical structure � which in our models leads to instability�

If we consider the simplest nontrivial case� c � �� then � � ���� ��� and


pt � a � b
�

Var�pt���
�hptihpt��pt��i � hpt��ihptpt��i � pt����hptihpt��i � hptpt��i�� ���

where hpt�i � �
T

PT
i�� pt��i� hpt�pt��i � �

T

PT
i�� pt��ipt���i and Var�pt�� is the variance of pt over

the range t� � �� t� � �� � � � � t� � T �
Intuitively for large T � this system will be more stable� although stability is always tempered

by the value of b� Figure � shows how the stability of this system varies as a function of T and b�
This is a shorttimescale approximation to the true phase portrait which is independent of initial
conditions in the presence of noise� In the �gure� the �instability� is a measure of how long the
system spends away from the unique equilibrium point� The �least squares optimisation� adaptive
approach is one ingredient of the class of adaptive models we shall introduce in x�� There are many
other examples in the literature� from bayesian learning� to genetic algorithms� neural networks
and classi�er systems� Sometimes such systems use a representative agent� sometimes a population
of agents with heterogenous beliefs��

�In the latter case� Arifovic �����	 has shown the convergence to a rational expectations equilibrium in Bray
s
model may take place even when b � ��
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More formally� for the simple case above� without loss of generality set a � 	� and assume we
are near equilibrium� so hpti � 	� In fact let us assume hpti � O���T �� Then

pt � bpt��
hptpt��i
p�t��

�O�
�

T
� � noise ���

Approximate solutions to this equation are of the form pt � ezt � O���T �� where z � �
� log b�

Therefore provided T is large� so the O���T � terms are actually small� the update equation ��� will
converge to the unique �xed point a��� � b� i� 	 � b � �� For smaller T we anticipate values of b
close to� but smaller than � to be unstable� This is precisely the picture calculated empirically in
�gure ��

Finally� we should note that stabilising simple conditions on � could be imposed �
P

�i � �
is an obvious candidate�� But in the short term such conditions would lead to a worsening of the
agent�s predictive ability� It is only if we wish to consider very foresightful agents who plan far into
the future �and do not discount that future too rapidly� that such conditions might be realistic�
We do not pursue that line of research here�

� Model de�nition

We use the ingredients introduced earlier to model predictive economic systems� in which each
agent bases its own behaviour upon predictions of a small group of other agents� Allowing the
agents to change their beliefs over time� we observe these systems in computer simulations� and
perform approximate theoretical analyses� to understand the nature of the system�s attractor� The
attractor may be a static equilibrium� or an attracting dynamic� and the conditions under which a
given system evolves to one state or another must be determined� The predictive techniques used
are similar to Equations ����� on page �� yet even with such simple models� if we reject arti�cial
stabilising constraints on agent models� very diverse dynamics are observed and convergence to
static equilibrium is not to be expected�

We shall present a formal speci�cation of our population models� including the predictive models
the agents use� and the manner in which they update those models� and how their model predictions
dictate their behaviour� This includes discussion of locality of neighbourhood� riskawareness�
heterogeneity� cooperation versus competition� and the �stabilised� and �forward� predictive scenarios
we study�

The model we shall study for the rest of this paper may be formalised as follows


De�nition � A predictive system P is a sextuplet hN�L�A�B�M� gi� where�
N is the number of agents in the system�

L is a regular lattice with exactly N sites�

A � fa�� a�� � � � � aNg is the set of agents�

B is a Euclidean space of possible behaviours�

M is the space of possible predictive models�

u 
 B �BjN j � R is the utility�

Here� the lattice L prescribes a function N 
 A � Ar � �A which gives an agent�s neighbours�
The neighbourhood size r is constant� and we shall often write it as jN j� The neighbourhood

�Our results may also be applied under some circumstances to biological contexts� in which individual bacteria� say�
interact and compete and cooperate in the production of mutually useful chemicals and the absorption of resources
from the environment�
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relation will be re�exive� but not transitive� and we shall use multidimensional square lattices�
Each agent has the same utility function� Throughout this paper we shall take B to be the set of
reals �	� �			 � Agents who try to exceed these limits are constrained to act within them�

The entire state of the system at any time t maybe speci�ed by the time series of behaviours
bt�a� � �bt� bt��� bt��� � � � � 	� each agent a has generated� and the current model �t�a� 	 M each
agent uses� It is assumed the time series of behaviours are common knowledge but the agents�
models are not� For simulation purposes a short arti�cial past fbt� t � 	g is generated randomly
to initialise the system� We assume the information necessary for the evaluation of u� i�e� the past
timeseries� is common knowledge� This is a �rst order decision strategy�

The utility is used in two ways in our systems
 �i� via forward expectations and maximisation
to dictate an agent�s behaviour� �ii� retrospectively to give the quality of an agent�s model�

Both of these uses deal with local interactions and local information� This� and our wish to
investigate global dynamics and coordination problems� is why we restrict u to be a function from
the agent�s own behaviour B and the local neighbourhood of behaviours BjN j at a single time
period �it is myopic�� Thus we only use point expectations�

��� Utility Functions

Our agents act via a bestresponse dynamic� Given predictions of their local environment� they
maximise their utility function �all agents have the same function� although they will obviously
use that function on a di�erent information set�� There is a unique best response for the utility
functions we consider� of which there are three general types �phrased in terms of bestresponse
production quantities�


Coordination bbr � �
N

P
j bj� each agent must try to output precisely the average of the quantities

that its neighbours output �so the utility function is ��jb� �
N

P
j bjj��

Substitution bbr � �			 �Pj bj� each agent acts so that the sum of its production and that of
its neighbours is a �xed constant� Clearly each agent is taking part in a particular market of
�xed size�

Coordination with Preferences bbr � �D � �� � ��� �N
P

j bj � so each agent must output a
quantity biased between a �xed value and the average of its neighbours� The �xed value
becomes the average for the whole system� and becomes a dominant attractor� with attraction
given by the level of bias� A good interpretation of this is
 each agent has a private valuation
�D�� with a certain level of preference �� Its action is a weighted sum of its personal preferences
�to carry out �D�� and the in�uence of its neighbours �to coordinate�� This kind of strategy
is more naturally considered in the realm of social interaction and discrete choice �see �Brock
and Durlauf� ����� for such a model with local interactions��

This last game may also be considered a �dominant Nash equilibrium� case of the coordination
game� It is mathematically identical to the game in Bray�s study of adaptive price formation �with
� � b and a � ��� ��D��

These three game types are special cases of the following bestresponse rule


bbr � � � ��hbi � �� ���

This is a simple linear combination of the average of the locally observed behaviours �hbi �
�
N

P
j bj�� with a single �xed point b � � except for the case � � � for which there are in

�nitely many �xed points� independent of �� The utility function implied by ��� is u�b� fbjg� �
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�jb� �� �� �
N

P
j bj � ��j� According to the value of � we classify the bestresponse rule into the

following categories


� 	 � unstable coordination game

� � � basic coordination game

	 � � � � dominant Nash! coordination with preferences game

� � 	 zero game

�� � � � 	 dominant substitution game

� � �� exact substitution game

� � �� unstable substitution game

We primarily study coordination games with 	 � � � �� but we do also address our results to
substitution games� These utility functions imply assumptions of riskneutrality� a more general
payo� function would include observed predictive errors over some past history� weighted by both
their variance and mean��� A payo� function which heavily penalises the variance in errors in
preference to the mean is known as �risk averse�� A risk neutral payo� seeks only to minimise the
mean� The payo� function we use is riskneutral and blind to the past�

��� Predictive models

At date �t�� agent ai is completely speci�ed by its predictive model �t�a� and its past timeseries
bt�a�� where the space of predictive models satis�es the following properties


De�nition � A predictive model � 	M de�nes a triplet T � c and p� where�

T � T ��� 	 N� the length of history to use as data for predictions�

c � c��� 	 N� the complexity of the predictive model�

p � p��� 
 BT ���jN j	 � BjN j� a mapping from local historical observations to future predictions�

so that � allows an agent to form a prediction of the subsequent behaviour of its neighbours� based

upon their past behaviour for the previous T consecutive time�steps
� Clearly both T and c constrain
the choice of p�

We use the predictor� �� as introduced earlier� except that it operates endogenously now �there
is no global pt�� The basic model speci�es how to calculate � to predict an expected behaviour
bt���e from its preceding c behaviours
 bt� bt��� � � � � bt�c��� via the following linear recurrence
relation


bt���e � ��� �

cX

t���

��t�bt���t� ���

In order to calculate ��� we must minimise the total error over the past history� of length T �
For computational reasons the standard technique is to minimise the least squares error over some
past�


error�j�T� c� �

T�c��X

t��

fbjt � ��� �
cX

t���

��t�b
j
t�t�g� ��	�

�In which case it may be necessary to separate the decision�making u from the �pay�o
 utility u�
�Other examples of the complexity could be the number of Fourier modes or the size of a correlation matrix used

to �t the series�
�However we also consider random initialisation of the � followed by random adjustment over time in which better

predictive models are retained �this is known as �hill�climbing
	� for which our experimental results are unchanged�
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Figure �� For agent a to predict a given neighbour b using local information it can form a predictive model
using any of the four data	sets shown� Furthermore� for �c� and �d� the agent may either use one
or jN j models�

The sums here are given for the j�th agent� aj with timeseries fbjtg� There are a large number
of choices to consider when extending such a predictive model to a population in which local
neighbours are modelled� The basic choices concern whether we believe di�erent timeseries are
related� whether our neighbours should be modelled individually or together� and whether an
agent should include its own timeseries in its model estimation� It transpires that such choices
are usually not important� so we will �x on the case in which each agent has a single model with
� � cjN j coe�cients� which are calculated with a simultaneous regression on all the neighbours�
timeseries� This model is then used to predict the average hbti directly� We now calculate the
optimal �� � f���g 
 f��j��� � � � � ��j�c� j 	 Nig� so that the prediction is given by


bpredt�� � ��� �
X

j�Ni

cX

t���

��j�t�bj�t���t� ����

and the coe�cients �� are given by a leastsquares minimisation over the set of neighbouring lagged
timeseries of length T � Further details on the more general cases in which agents may have separate
models of each neighbour or use their own timeseries as regressors are given in Darley ������� These
scenarios are portrayed in �gure ��

The techniques used to perform the minimisations are singularvalue decomposition �details to
be given �Darley� ������� Let us note� however� that numerical stability factors �Press et al�� �����
mean that it is actually better to solve the minimisation problem rather than di�erentiating the
above equations and solving the subsequent equalities exactly�

Under any of these techniques� once neighbouring predictions are calculated� the bestresponse
rule!utility function dictate the agent�s own behaviour�

��� Dynamical update rule

The system�s dynamics stem from the ability of the agents to tune their predictive models� based
upon di�erences between observed and expected behaviours� in an attempt to optimise their own
behaviour with respect to the changing environment� We do not impose any exogenous shocks on
our models� This procedure can be summarised by the following sequence of actions� carried out
at every timestep� in parallel� by every agent ai


Prediction�i�P� at time t


i� Calculate private predictions bjt���e 	 B giving the expected behaviour of all other
agents �j �� i� at time t � ��

ii� Find b� � arg maxb�B u�b� fbjt���eg�� agent ai�s predicted optimal response�
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iii� Carry out action b��

iv� Observe actual behaviours bjt�� and� using g� calculate agent ai�s utility u� �

u�b�� fbjt��g��
v� If ���i with T � � T  � or c� � c � s�t� u�b�

��
i

� fbjt��g� 	 u� then pick the best such

new model ��i� This is the model update rule�

Step �v� is the �predictive model update rule� which dictates the main dynamical properties of
our systems� Each agent compares its utility under its current model � with the utility it would
have had under a perturbed model ��� If any of the alternative models would have been better the
best such model is selected� Under our perturbation scheme� movement in the space of predictive
models� M � is local� by steps of length � in either the T or c direction� Hence� discrete changes
to an agent�s model may be considered as moves in the twodimensional discrete lattice of history
complexity pairs� and agents can be thought of as performing local search in this space as they seek
the best model of the world around them�

As remarked earlier� the payo� function is blind to the past� and the only e�ect of a particularly
poor prediction is presumably a change in one�s predictive model to a better pair of parameters�
The only level of evolution in the system is the survival of certain models �and therefore certain
parameter values�� As a consequence we do not directly investigate phenomena pertaining to the
accumulation of utility �rule �v� only compares instantaneous utilities��

Finally we shall note two facts
 �rst� the sequence of update steps �i��v� is completely de
terministic� with no exogenous perturbations or shocks� second� the entire model is evolving in
synchrony� This di�ers from the approach of Blume ������ who considers �strategy revision oppor
tunities� independently exponentially distributed� such that the probability of two or more agents
updating simultaneously is zero�

����� Heterogeneity and the use of Information

Our agents are heterogenous because of two facts
 that they may choose di�erent models �or groups
of models�� and that the information upon which they base their predictions may be di�erent�

Given some slight variation in the world �originally brought about at least by nonuniform initial
conditions�� each agent will operate with u upon a slightly di�erent set of behaviours giving rise to
a variety of actions� We shall investigate whether this initial heterogeneity grows� diminishes� or
even vanishes with the evolution of the system�

It is worth pointing out that this research does not currently di�erentiate fully between the
two sources of heterogeneity �models and information�
 at a �rst approximation the information
used to model a given neighbour �its behaviour timeseries� is common to all agents modelling that
neighbour� so models are the only source of local heterogeneity� However� the manner in which
correlations between agents are modelled is constrained to utilise slightly di�erent neighbourhood
information sources� This is because we currently constrain agents to use local information only to
make their predictions� This means the four agents who make models of a given common neighbour
are all constrained to use di�erent information sets to construct their models if they wish to model
correlations�

Further research will allow agents to use nonlocal information� Such more sophisticated models
will enable us to pinpoint more accurately the assumptions from which heterogenous nonstationary
worlds can be derived�
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��� What to Predict�

Finally� given a class of predictive models� an economic strategy� and a set of neighbourhood
relations� we must decide what the agents should predict and the manner in which that determines
their own behaviours� We shall consider two scenarios


�i� the �forward predictive scenario� in which each agent predicts what its neighbours will do
tomorrow and uses the utility u to determine its own behaviour� This is the natural� obvious
predictive method�

�ii� the �stabilised predictive scenario� in which each agent ignores the just realised predictions�
The dynamics are as follows
 all agents make predictions� adjust their models based upon the
success of those predictions� but then those predictions are forgotten and ignored� The agents
generate a new set of predictions and repeat� Hence the models are updated as above� but
the behaviours and predictions undergo nothing more than a process of iterated re�nement�

The �rst scenario is the natural one� We also study the second because it is e�ectively a stabilised
version of the �rst� Rather than predicting forward in time� the agent e�ectively repredicts what
it should have just done� and then carries out that action �the process could be considered one of
perpetual re�nement of action� not unlike the simple adaptive processes considered earlier��

We will �nd that the dynamics which arise from these di�erent scenarios can be quite di�erent in
character� Intuitively scenario �i� may lead to excessively unstable dynamics� as the agents� forward
predictions diverge from one another� A more sophisticated predictive model may be required to
follow the dynamics� Scenario �ii� on the other hand may be too stable� with predictions from one
date to the next hardly varying at all�

A third and fourth scenario which we leave to future research are the following
 �iii� each agent
predicts using a discounted sum of expected future utility based upon neighbour predictions over
a given planning horizon �and seeks to optimise the length of that horizon�� �iv� agents build a
hierarchy of metamodels of each other � my model of your model of my model of� � � � and optimise
the cuto� height of this hierarchy�

We shall present our results for scenario �ii� �rst� in x���� which illustrates the coherently
organised coupling between modelupdate events� Then in x��� we give our results for scenario �i�
in rather more detail�

� Observation and Simulation

A system such as ours has a large number of possible rational expectations states� There are clearly
an in�nite number of possible Nash equilibria �using the coordination strategy at least�� and many
more periodic equilibrium states are possible� One important consideration when given multiple
equilibria is to try and understand the problem of equilibrium selection� The parameters which
characterise the choice of equilibrium index beliefs the agents have �individually and collectively�
about their world� One common use of adaptive models is in equilibrium selection in just such a
scenario� From our perspective we would like to understand more than just �selection�� we would
like to know what happens when models are not forced to be stable� This implies that our agents
do not have as a priori �and rather ad hoc� beliefs that the world is heading inexorably to a simple
static equilibrium �this is implicit in Bray�s model and our extensions to it�� Our agents will
naturally pick from a class of models �which includes a set implying stationarity� so as to maximise
their immediate gain�

So one question we must address is
 �Is a static �coordinated� equilibrium selected for��� If
not then we will concern ourselves with understanding and explaining whatever nonstationary
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dynamics are observed� In particular we attempt to formulate a categorisation of the natural

rationality of agents whose mutual interactions form their world� We shall compare the results of
our analysis and experimentation with the intuitive ideas introduced earlier�

In order to initiate the simulations� agents are given an arti�cial randomised past timeseries�
and history and complexity parameters� All the results are robust to changes in the initialisation
technique �gaussian� sinusoidal and uniformly random initialisations have all been tested�� We now
present our experimental results for the two predictive scenarios�

��� Observations of the Stabilised Scenario

The following results are all for predictive scenario �ii�� As remarked earlier� the stabilised sce
nario allows us to investigate feedback and propagation of information between models in a more
restricted stable world� For this scenario� there is little di�erence in agent behaviour dynamics
between the small and large population cases �the behaviours are simple and stable across the
system�� However the large case shows interesting spatial order in the space of agent models� so we
shall consider that case exclusively�

We observe two regimes of behaviour� which we label �coherent� and �random�� each preceded
by a short transitory phase� These two regimes are qualitatively di�erent�

During the �rst� coherent regime predictive errors decrease exponentially fast� whilst variance in
agent behaviour ��system heterogeneity�� collapses down exponentially fast onto the system mean�
These are di�usive spatial dynamics in which any behavioural heterogeneity disperses rapidly� Such
dynamics can be generated by a wide class of models in which agents try and imitate each other
using simple adaptive models� such models are presented elsewhere �Darley� ������ During the
second� random regime� predictive errors and system heterogeneity have reached a lower bound at
which they remain� These occurrence of these regimes is explained below�

Model update dynamics are more interesting
 de�ne an �avalanche� to be the number of con
secutive timesteps an agent spends adjusting its predictive parameters c� T � Then in the coherent
regime� we observe a powerlaw relationship between avalanche frequency and size
 f � c�lk� where
k � 	���  	�	�� Hence the modelupdate process has organised model change into a critical state
in which large� longduration avalanches may occur� This requires coordination to build up en
dogenously across signi�cant subgroups of the population of agents� so we refer to this state as
�selforganised�� In the random regime the avalanche frequency distribution develops into an expo
nential fallo�
 f � pl���� � p�� where p � 	����  	�		�� Furthermore� an examination of spatial
�rather than temporal� avalanches in the lattice gives the same �powerlaw then exponential� result�
In that sense the system is scaleinvariant in both space and time�

We should point out that there is a large practical di�erence between a powerlaw and an
exponential fall o� of avalanche size� For the exponential case� large avalanches e�ectively never
occur� whereas in the coherent regime we have much data for disturbances of size nearing �		� for
instance� This is an important distinction�

The reason for the dramatic change between regimes is as follows
 in the �rst regime behaviour
variance and predictive errors are both converging to zero exponentially fast �the former at least is
expected for a di�usive dynamic�� Once the di�erences between models� predictions are less than
that discernible under the numerical representation used� numerical rounding errors contribute
more than model di�erence� At that point model selection becomes a random process� This
hypothesis has been con�rmed using test experiments of varying �oating point accuracy� The
curve �t pl���� � p� in the random regime is just the expected number of consecutive moves in a
random walk with probability p of moving�

The random regime is therefore of lesser importance� and the selforganised critical behaviour
can be considered the predominant characteristic of the internal dynamics of the stabilised scenario�
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Figure �� Mean Agent Behaviour in a 
� � 
� world� The maxima�minima represent almost completely
homogenous behaviour in between behaviour is highly disordered�

This critical behaviour exists in a wide variety of observables� indicating that the system does truly
selftune to a boundary intermediate between order and disorder� Although coherence is eventually
lost due to the overwhelming stability we have imposed� leading to a degenerate dynamic� it it clear
that basic coevolutionary forces between the agents� models have profound in�uence upon the
global dynamics� and the macroscopic behaviour can be captured with a relatively simpler picture�

An extension of the above observations can be found if each agent models each of its neighbours
using a totally separate model� We still �nd the same two regimes �and avalanche characteristics�
as before� but now we get exponential convergence to a non�uniform state� Each agent has a
di�erent behaviour� but such behaviours are coordinated so the agents are still in a highutility
state� So whereas the old system converged to a systemwide �xed mean� zero variance� the new
system converges to a systemwide �xed mean� but nonzero variance�

A basic issue which this raises is
 persistent local diversity requires at least the capability of
modelling that diversity � an agent which uses a single model for each of its neighbours �or� more
generally� for the entire information set it observes� believes the system�s equilibrium states are
much simpler than the agent with multiple models who has no such presupposition� In systems
such as ours in which the dynamics are endogenous� and agents� beliefs are re�ected in those
dynamics� and hence it is important to take those beliefs into consideration�

��� Observations of the Forward Predictive Scenario

The following results are all for predictive scenario �i�� This is a more natural predictive situation�
in which we can expect both models and behaviours to exhibit interesting dynamics�

The most clear di�erence between this and the stabilised scenario is in observations of the
agents� behaviours� They no longer always settle down over time� There are two generic cases


Small system or stabilising models � agents coordinate across the system on relatively simple
strategies� The variance in behaviour across the system is very low� and its mean follows a
simple monotonic path�

Large system � an interesting interplay between between periods of coordinated behaviour� and
periods of disordered rapidly changing behaviours is observed�

Figure � shows the basic behaviourspace dynamics for large systems� Comparing this with
�gure �� we can see that the coordinated timephases are precisely linked with periods of very low
variance in agent behaviour� whereas the uncoordinated periods show very high variance levels�
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Figure �� Agent behaviours in small populations� The horizontal axes are time vertical is behaviour� Each
agent�s behaviour at each time step is plotted as a dot� which are connected in the �rst �gure�

Hence the agents all converge to a particular selection� retain that behaviour for some time� with
only quite minor �uctuations� and �nally the coordination breaks down and the agents pass through
a disordered bubble of activity� selecting any of a great range of behaviours before settling upon a
new metastable state�

Consider the coordination and substitution games we introduced� We can summarise our re
sults for these very succinctly
 the �unstable� variants are indeed unstable because bestresponse
dynamics drive the system away from equilibrium� dominantNash games are identical to coordi
nation games �which are the speci�c case with no domination� � � �� in the short term� but have
more robust equilibria in the longterm� Their short term dynamics and the general dynamics of
the coordination game exhibit interesting punctuated equilibria� cyclic oscillations� � � � which we
shall analyse in detail below�

We shall discuss the case with small populations �rst� before considering the large population
case�

����� Small populations

The large scale dynamics described above are su�ciently complex that it is insightful in this
case to consider small populations in which we can better see how the agents in�uence each other�
and in which there is less room for variation� and fewer degrees of freedom to go unstable�

The �rst thing to learn from �gure � is that the agents can learn to coordinate on particular
behaviours� and that that coordination can take place in a relatively rapid� damped oscillatory
form� Plots �b� and �c� show that coordination need not be on a static equilibrium� if the agents
have a su�ciently large percentage of the total information available� i�e� if each agent is modelling
a reasonably large fraction of the total number of agents� then global coordination on a tdependent
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path may be achieved� Notice that� since the agents are constrained to the range �	� �			 that this
will causes a temporary instability on any path which hits the bounds�

The exact paths in �gures �a�� �b� and �c� are

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900 1000

Exact substitution game

Figure �� Behaviour of a sample agent taken
from a ring of 
� playing the exact sub	
stitution game�

completely historydependent� although the range
of possible qualitative dynamics is rather small�
When we consider systems in which the proportion
of agents modelled is low� a characteristic dynamic
emerges� Equilibrium is only possible on a con
stant value� and those equilibria are metastable�
The system will leap from one such equilibrium to
the next via disordered transitions� This qualita�

tive dynamic is very robust� and the only historical
in�uence is in the actual equilibrium values�

These results are all identical for the exact substitution game� for which we give a sample plot
in �gure �� The stabler variants of these games� with j�j � � damp down to the unique equilibrium
after a �dependent time� for both coordination and substitution games� For large populations this
still occurs� but only after signi�cant transient periods�

����� Large populations

As explained above� the only characteristic simple coordinated states for larger populations are
static equilibria� These occur with great regularity� and are highly uniform across the entire system�
Figure � shows how the variance of the agents� behaviours drops almost to zero at these times � a
spatial plot of such a state is shown in �gure ��a�� Such states are only metastable� however� and
hence oscillatory dynamics are observed��

All the large systems we consider show a punctuated equilibrium dynamic� Successive equilib
ria are destabilised endogenously� leading to wild �uctuations before the agents settle to another
equilibrium�

Furthermore these dynamics are not transient for the exact coordination or substitution game�
However� interestingly enough� given some small level of dominance in the game �j�j � 	��� say�� the
dynamics do become transient after su�ciently long periods of time� The agents eventually correlate
their behaviours and models su�ciently that they reach of state of small �uctuations about a static
equilibrium� The surprising dynamics of history and complexity by which this may be achieved

�The interested reader� with fast Internet access� should point their web browser at http���www�fas�harvard�

edu��darley�Vince�Thesis�html for some some movies of the ��dimensional evolution of such a system�
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�a� A coordinated regime �b� An uncoordinated regime

Figure 	� Spatial distribution of behaviours for the forward predictive scenario� This is for a ����� square
lattice of agents� with smoothing applied for representational purposes�
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are shown in �gure �� Both the early punctuated equilibrium regime� and the transition last for
signi�cant periods of time� Note� however� that external perturbations can destabilise that system�
so that the �natural� dynamics may be either the punctuated or static equilibrium depending upon
the natural frequency with which exogenous perturbations occur� As remarked in our introduction�
it is always important to remember that distinction when analysing systems with long transients�
since that will dictate which of the possible behaviours is actually observed�

We will postpone a detailed analysis of the transition in �gure � for future research� but we
will point out a number of simple facts� That model history and complexity both eventually evolve
to small values �hci � � and hT i � �� shows that the agents do learn to change their models �i�e�
implicit beliefs� so that those beliefs are in accordance with the dynamics of the world around them�
In this case the world has become very simple� and the agents learn that� This is an important
point which is not so readily discernible in the presence of more unstable dynamics � for instance
in the limitcycle� �gure �� the mean complexity certainly reduces with system heterogeneity� but
the world destabilises before the complexity is reduced too far� A possible intuitive explanation
for why the reduction takes so long in �gure � is that more complex models or models with longer
histories are only discarded because of subtle e�ects of over�tting the data� However� this is work
in progress� and we expect to give more precise� rigorous reasons in a future analytical work�

Why does the system spontaneously destabilise� These instabilities start at a point� and
propagate rapidly across the system� They are caused by the following dynamic
 a locally simple
world state allows agents to build successively more precise models of the local dynamics �i�e�
modelling the exact shape of local oscillations� with small expected error�� Once an agent begins
modelling the shape of the dynamics su�ciently closely� rather than some generic average� small
�extraneous� in�uences from notsonearby agents cause neighbouring changes which under the
agent�s model result in very large changes in local predictions� Within our systems� a very precise
model �i�e� with a very small expected predictive error� is much more sensitive to local perturbations
than a more generic average model� Hence these �extraneous� perturbations will cause an agent with
a precise model to predict dramatically di�erent behaviours� and hence its own behaviour will leap
accordingly� In a selfful�lling manner� the neighbouring agents will observe that leap and change
their subsequent predictions accordingly� Such large changes immediately propagate outward and
a destabilised wave is observed� propagating across the entire uniform state of the system� and
disrupting that equilibrium� The result is that all agents will pick models with more degrees of
freedom but larger expected errors� In the extremely disordered case� these models will predict a
basic weighted average� since their observations are too chaotic for precision to be valuable� Such
�averaging� models will then stabilise the system again and the cycle repeats�

	 Analysis

Condensed matter physics has a long history of analysing lattice models in general� These will
often be abstractions of ferro and paramagnetic materials� taking the form of Ising spin models
�and numerous variants�� In general� for such models� there exist parameters such as the temper
ature and external magnetic �eld which have a direct� profound in�uence upon the given system�s
dynamics� These models are very useful for describing and explaining experimental observations
of physical systems� For example� a phase portrait of the equilibrium state under di�erent val
ues of the temperature and external �eld can be determined experimentally� In such a portrait�
di�erent regimes of behaviour are noted� separated by phase changes which are accompanied by
critical transitions �exhibiting powerlaw scaling in correlations between changes to variables� and

�Again the interested reader is referred to the movies which have been made available on the internet to help gain
an intuitive feel for these models�
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discontinuities in certain observable variables �e�g� lattice magnetisation�� By slowly varying the
temperature or �eld we can move the system through these di�erent regimes� and can watch the
behaviour of the system�s observables�

The predictive models we consider are fundamentally di�erent to these basic spin models� in that
there are no such obvious parameters to be tuned by the experimenter� In particular the tempera
ture� which plays a crucial role in all statistical physics� has no immediate and clear interpretation
�or role� in our models� Although we could perhaps observe an analogue of the temperature or at
least of the entropy of the system� those values emerge from the system itself  they are selftuned�
and hence the whole system has the capability of moving itself through di�erent regimes and phase
changes� As an experimenter� we do not have control over these variables� As such� we call these
systems self�organising�

Selftuning models often exhibit interesting dynamical attractors� rather than static equilibria�
Unlike an experimentertuned model� in which for a given parameter set a given equilibrium �or
equivalence class of equilibria� is determined �provided there are no energy barriers preventing it
from being reached in the timescales under consideration�� a selftuning system relies upon its own
dynamics to dictate the environment in which those very dynamics operate� Provided the system is
not overweeningly stable� it can only really settle down to a dynamic equilibrium� a coherent mode
of active behaviour which is selfreinforcing� The inherent dynamicity of the system will normally
destabilise any potential static equilibria�

Such phenomena are observed in many realms in the real world� and an interesting paradigm
for their study has developed from the work of Per Bak �Bak et al�� ������

��� Mean�	eld approach

A standard approach from which to begin an analysis of such lattice systems is the mean�eld
approximation� We can apply this whenever the system�s constituent parts interact in a primarily
local fashion� We approximate by considering that each agent is only really interacting with a
hypothetical �mean�eld�� the average of the forces �i�e� �eld� generated by the actions of the
agents in the rest of the system� perturbed slightly by its own actions �or that of a small cluster of
agents��

����� Approximating assumptions

We shall make certain assumptions designed to contain a minimal speci�cation of what we consider
to be the essential properties of our models� We do not yet attempt to derive these approximations
from the system�s precise microdynamics


��� that one can derive from each agent a real number representing the sophistication of the agent�s
model �
�� Moreover� that each sophistication� denoted s�
�� labels an equivalence class of
models� Within each class there is variation in model� given in this simple case by the directional
degree�s� of freedom of 
� As such we shall assume the set " of all possible 
 is a vector space
over the reals� " will be chosen as a succinct characterisation of the space of possible models�

Formally then� for every agent� a� we have a corresponding model given by 
a� where we de�ne
the usual inner product over "


h
a� 
a�i � R ����

So that the �sophistication� of a given agent�s model is
 s�
a� � 	
ph
a� 
ai� We shall often write

j
aj� for s�
a��� Small elements of " correspond to simpler models� and the directional degrees
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of freedom represent di�erent types of behaviour� This de�nes a sophistication equivalence
relation over "



a � 
a� � s�
a� � s�
a�� ����

Two models �and therefore agents� are in the same equivalence class i� the models have the
same sophistication�

��� From the observable behaviours in the world� we can derive a vector �eld� such that an agent
may be considered to be in a local behaviour �eld �� which is some externally imposed behaviour
pattern � �assumed to be very small� plus a local �eld provided by the neighbouring agents�

�� � ����� local agents� ����

��� There is a global di�culty of prediction� � 	 R
� � derived from observations of the character

and complexity of timeseries behaviour observed in the predictive system�

� � ��fb�a�ga�A� ����

����� Mean	�eld assumptions

Given the above assumptions� it is reasonable to assume that the average e�ective model 
m in the
�eld �� will be given by the following law



m � behaviour �eld ��

di�culty of prediction
����

This states the average agent�s model is proportional to the local behaviour �eld and inversely
proportional to the di�culty of prediction in the system as a whole� We assume that if prediction
is hard the agents will tend to pick simpler models�

The mean �eld assumption is that the behaviour �eld due to neighbouring agents is a function
of the average model 
m� We shall consider 
m to be small so we can expand �� in a powerseries
about �� Note that � is the sole source of exogenous e�ects� other terms are purely endogenous�
The �rst term is given by


�� � � � l
m ����

This relates the observed behaviour �eld �� to the character of the exogenous forcing and
average local model� Note that it implicitly addresses the interactions from the point of view of a
single individual� It can be extended to consider small clusters of individuals� but the qualitative
consequences of the results are not changed� Now� writing � for the di�culty of prediction�


m � c�� � l
m���

�
c�

� � lc
�

c�

� � �c

Where c� l are constants and �c � lc� This solution is only valid for � 	 �c� otherwise 
m points
in the opposite direction to � which is not meaningful� For � � �c we must expand �� to third
order �second order terms are not present for reasons of symmetry� in 
m


�� � � � �l � bh
m� 
mi�
m ����

�� � � � �l � bj
mj��
m ����

�	



and we �nd



m � �
�

� for � � �c ��	�

For � � �c�


�m � ��c � ���cb ����

Following assumption ���� since 
m is not just a real number� this implies that the mean
sophistication s�
m� is �xed by ����� but that the choice of 
m within that equivalence class is not
�xed� and a preferred direction will exist�

����� Interpretation

It is clear from the above analysis that the correlate of temperature in physical systems is the
�di�culty of prediction�� and that there are two qualitatively di�erent regimes of behaviour� given
by � � �c�

Therefore


� 	 �c If the di�culty of prediction is high �the �high temperature� regime�� in the absence of

external forcing �� � 	� as in the endogenously generated worlds we study� agents will


�� Pick simple models �sophistication is proportional to the reciprocal of the di�culty��

�� Since the average of all models is the �zero� model� there will be no preferred choice of

 within any given equivalence class of sophistications� Agents� models of the world are
not mutually consistent �the signi�cance of this point will be expanded upon later��

If there were to be external forcing� signi�ed by �� then a preferred choice of model would
exist� Currently this situation has no real interpretation in our predictive systems� P� as
they stand� However� were we to impose a certain pattern of cyclical variation in the world
�incorporating� for instance� an economic �sunspot� e�ect �Barnett et al�� ������� we would
expect the particular choice of agents� models to re�ect the character of that forcing behaviour�

� � �c If the di�culty of prediction is low� even without any external forcing� the agents sponta
neously symmetry break within their equivalence class of models� 
� to pick out a preferred
type of model� This occurs because the directional degree of freedom of the average model

m is nonzero� That degree of freedom gives the preferred model�

The interpretation here is that by selecting a preferred model� the symmetry breaking ensures
that the agents� models are mutually consistent� The system naturally reaches a state exhibit
ing an important ingredient of what are normally the assumptions of rational expectations�

Of course this description and analysis only apply directly to a static equilibrium scenario�
which we do not expect to arise in these systems� However� one expects a dynamic equilibrium
situation to situate those dynamics around any marginally unstable static equilibrium� Indeed the
�rst step in taking the above analysis further is to consider the character of perturbations about
the static equilibrium we have so far derived�

There are two important points still to address
 that of the assumed �di�culty of prediction�
and that of interpreting the of agents� models as being mutually consistent or inconsistent�
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Di
culty of Prediction Despite the form of assumption � on page �	� in the analysis which
followed� the di�culty � was treated as a tunable parameter� independent of the agents� In general
it is certainly not independent of the agents� as assumption ��� states� it is a function of the agents�
behaviours
 � � ��fb�a�ga�A�� Certainly if the agents behave in a reasonably varied fashion it will
be easier to discern their underlying models and predict than if all agents behave similarly �given
some underlying level of noise and that we wish to consider relative ability of predictions�� So the
di�culty of prediction will be an emergent observable� tuned by the dynamics of the system� Its
dynamics over time will depend upon the following forces


�i� the relative ability of a successful versus unsuccessful agent will be greater in a higher variance
world�

�ii� agents with fancy models will be more susceptible to subtle changes in the behaviour of the
world� i�e� a smaller discrepancy is capable of disproving their that models�

�iii� if the systems are su�ciently dynamic in the sense that agents must adjust their models over
time in order to do relatively well in the world� then nonstationarity is maintained�

�iv� if the world is �too� static or simple� an agent which encourages more varied behaviour in its
environment will lead to the potential for relative success to be possible in its neighbourhood
�following �i��� leading to destabilisation of a small region�

Consistency of Model The two regimes over �� are characterised by


� 	 �c � Agents have inconsistent models

� � �c � Agents have consistent models

What does this actually mean� Consider an equivalence class of models with the same sophis
tication s�
�� Any given choice of 
 within that class re�ects a hypothesis of the character of the

observed dynamics in the world�
A simple analogy would be that a given equivalence class selects a �xed number� s�
�� of fourier

modes �or splines or � � � � to be used to model a given timeseries� The set of models within that
equivalence class will be the set of all models which use exactly s independent fourier modes� Clearly
the models within that class which utilise di�erent fourier modes to describe a series re�ect wildly
di�ering hypotheses about the dynamics of the underlying process generating the given timeseries�

So� for the former case� the dynamics of the world prevent information of agent�s models from
transferring through the subsidiary medium of generated behaviours� Agents will pick inconsistent
models of the world� In the latter case� information transfer is achieved� and agents will pick
consistent models�

So� in the high di�culty regime� agents� hypotheses about the underlying dynamics of the world
are mutually inconsistent �the dynamics of the world prevent information of agent�s models from
transferring through the subsidiary medium of generated behaviours�� In the low di�culty regime
agents will actually select� on average� a single model from a given class �information transfer is
achieved�� Thus the agents will have a common hypothesis for the world�s dynamics�

Observations An estimate for the concept of �di�culty of prediction�� upon which the analysis
is based� may be obtained from the observed predictive errors� Figure �	 shows how these vary
over time� and a very clear correlation between timeperiods of highdi�culty and uncoordinated
behaviour can be discerned � compare with �gures � and ��

Although we have as yet no statistical estimates� the transitions between coordinated!uncoordinated
and small!large errors are very sudden� This lends credence to the concept of an underlying phase
transition�

��



0.0 200.0 400.0 600.0
Time

0.0e+00

1.0e+05

2.0e+05

3.0e+05

M
ea

n 
S

qu
ar

ed
 P

re
di

ct
iv

e 
E

rr
or

�a� Mean error

0.0 200.0 400.0 600.0
Time

0.0e+00

2.0e+10

4.0e+10

6.0e+10

V
ar

ia
nc

e 
in

 S
qu

ar
ed

 P
re

di
ct

iv
e 

E
rr

or

�b� Variance in error

Figure ��� Averaged predictive errors over a ����� world� These can be considered approximate measures
of observed predictive di�culty� Errors are uniformly small or uniformly large�

��� Statics and Dynamics

The di�culty of prediction � is analogous in this exposition to the temperature parameter in
magnetic phase transitions� with one crucial di�erence� It is not a exogenous parameter � it is an
endogenous observable� driven by the very dynamics it implicitly tunes� At this point we leave as
an open theoretical question whether its emergent dynamics drive the system to the consistent or
inconsistent regime� or to �uctuate between the two� The above analysis can only be considered a
static stability analysis� and must be extended to derive dynamical results�

Let us �rst note� however� if models are simple we would expect � to be small� Hence a large �
encourages a small j
j which in turn produces simpler dynamics and a smaller �� Conversely� as �
becomes smaller� 
 � p

�c � � increases and so we expect � to increase� These opposing forces will
therefore push � away from extremal values� This is in agreement with the argument presented
in the introduction and with empirical observations � we �uctuate between an approximate ra
tional expectations state �in which agents� implicit expectations of the world are in almost perfect
agreement�� and a highly disordered state�


 Discussion and Conclusions

We shall �rst discuss a number of limitations and assumptions on which our work is based� and
what perhaps might be done to alleviate some of the more arti�cial constraints� We then summarise
our goals� progress and results�


�� Utility Constraints and Generalisations

Throughout this study� we have con�ned ourselves to utility functions exhibiting a number of
constraints �for the forward predictive scenario�


Historical Dependency � �rst note that� given some level of random noise� all the results of our
simulations are �independent� of the initial conditions� In particular the initial distribution of
history and complexity values has no in�uence upon the longterm dynamics� By �indepen
dent� we mean that the qualitative nature of the system�s evolution is not dependent on initial
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conditions� In the absence of noise� one can �nd a few pathological initial conditions which
are nongeneric �completely uniform starting values for history� complexity� for example��

Convergence � the distinctions between coordination� substitution� and varying the � parameter
have already been discussed�

Continuity � all the games we use are smooth� such that a small di�erence in predictions causes
only a small di�erence in behaviour� If the space of behaviours �or those behaviours selected
by the game� is discretised� then most of the observations and predictions we make are no
longer valid� We have not investigated whether this can be alleviated via the choice of a
predictive model more suited to discrete predictions�

Variation � when making predictions one can use single models or multiple models� predict the
average or the individuals� We have already discussed the tradeo� between model stability
and system size as it e�ects the system�s dynamics�

Frequency � the tradeo� between dynamicity of the system and the stabilising forces of model
selection and prediction can be altered by changing the frequency with which the agents can
adjust their predictive models �i�e� only carrying out the predictive update step �v� every n�th
timestep�� Our results are very robust against changes to this parameter
 even if agents only
adjust their model every� say� every �	 time steps� no di�erence is observed� This is further
evidence �though no more than that� of the independence of our results of synchronous versus
asynchronous modelling�

Topology � the neighbourhood size a�ects the rate of information propagation� and we have
noted that system stability increases with neighbourhood size �for a �xed number of agents��
The type of local neighbourhood is not important� If each agent�s neighbours are given by a
�xed random assignment from the set of N � the results are identical� This accords with our
mean�eld analysis�


�� Cooperative vs� Competitive Games

A signi�cant limitation to our work is the following
 the dynamics we have observed in these
predictive systems are limited to games which are �cooperative� in the sense that the best response
for a given agent is not excessively bad for its neighbours� Some counterexamples such as the
�unstable substitution game� seem of little importance since we understand quite clearly why they
are unstable� However other �nonlinear� games such as the undercut game �in which each agent
tries to pick as a behaviour a number just a little bit smaller than its neighbours� unless they pick
very small numbers in which case it is desirable to pick a very large one� seem to require a more
sophisticated modelling and strategic approach than we provide� We have not investigated whether
out results can be extended in these directions via a more competitive iterated system� in which
multistep forward planning� is incorporated� and nonpure strategies are allowed� Procedures like
this allow cooperation to become reasonably stable in the iterated prisoners� dilemma� for example�

A direct extrapolation of our results suggests the intuition that such a forward planning horizon
would be evolutionarily bounded in the same manner in which history and complexity are in our
current systems�


�� Predictive Regime Changes

Examining the evolution of behaviours through time� as in �gure �� and in connection with the
theoretical results� it is clear that no single� simple model should try to analyse and predict the
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coordinated and uncoordinated regimes together� A model which seeks to perform better should
categorise the data from the past into blocks from each regime� It should use just the data from
coordinated periods for predictions when the world is reasonably stable� and the remaining data for
the uncoordinated periods� This requires the identi�cation and selection of noncontiguous blocks
of data� and hence a much more sophisticated predictive approach� These kind of valuejudgements
must be made when modelling realworld economic!market data � in a healthy economic climate�
data a�ected by political turbulence� depressions and market crashes will not be used for basic
modelling�

Our current research makes no attempt to address these issues� It is an interesting question
whether that type of modelling would in fact stabilise our systems�


�� The accumulation of pay�o�s

Ordinarily one associates with a payo� function the gain of something of value �money� energy�
which one would expect in any economic market or system of biological survival� However� these
predictive systems operate solely via the use of a relative payo�� in which the only use of the
payo� is in deciding which model should be used subsequently� The reason for this is that in our
models there is no place for the accumulation of payo�s� a more complex class of model would
allow the introduction of such a scheme� In particular it will be possible to study the dynamics of
price formation in market systems� an area in which economic theory is notoriously unsuccessful�
Work in progress is beginning to achieve an understanding of how predictive agents interact to form
prices�

Other extensions to this work� upon which we do not report in detail in this paper� are the
following
 �i� agents use a probability distribution over an entire space of models rather than a
single model� and update that distribution �using a Bayesian rule� according to model success�
creating a probability �ow over model space� Our results there show that all agents evolve to
attach nonzero weight to only a small� �nite fraction of the space� In this sense� model selection is
also bounded� �ii� extensions to Bray�s model in which single or multiple agents imitate� learn and
model each other in simple environments� �iii� forward planning� �iv� hierarchies of models�


�� Conclusions

It has long been observed �for a good discussion� see �More is di�erent�� Anderson ������� that qual
itatively di�erent emergent phenomena arise in large systems� usually accompanied by macroscopic
events and correlations brought about by the accumulation of what are essentially simple� local mi
croscopic dynamics� The spirit of this paper is that such collective behaviour can be harnessed in
a dynamic theory of economic systems� Furthermore� we believe that interesting global� dynamical
phenomena can arise out of systems in which the agents are relatively simple� with homogenous
behaviour patterns based upon simple predictive rules� This is no simple case of �complexity begets
complexity�� we do not demonstrate that any given complex phenomenon can be recreated with
complex� heterogenous underlying rules� rather we wish to show that� given a reasonable� simple
class of agents� they can generate a wideclass of global� punctuated� metastable phenomena�

So� as a �rst step in that direction� we selected a class of predictive systems� P� designed to relax
rational expectations and stationarity assumptions towards a more natural unconstrained dynamic�
in which agents� beliefs are allowed to evolve and hence select the most advantageous state� The
systems were chosen to be as simple as possible� without exogenous shocks� but the games and
rules were selected so as to bring about a large amount of feedback in the manner in which the
interactions accumulate� It is because an individual�s environment is no more than its neighbours�
that changes in its behaviour may cause changes in its neighbours� behaviours which will then both
propagate and feedback� generating an interesting dynamic�
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����� Natural Rationality

We based our systems� and choice of agents� upon the need to investigate assumptions and ques
tions of local interactions� coordination� optimal use of information� and the resulting dynamics of
rationality� We gave heuristic arguments for why dynamics of this form will cause the system to
drive itself towards interesting nonstationary dynamic equilibria� intermediate between conceivable
ordered and disordered regimes in its character� separated by a critical point�

A mean�eld analysis of our systems shows very strong agreement with the qualitative nature of
the simulated system�s dynamics� There are two regimes
 coordinated and uncoordinated� and the
system is driven from one to another according to the level of di�culty of prediction in the world
�although the mean�eld model does not predict the �uctuations in detail�� under a selforganising�
endogenous dynamic�

Hence the system cycles between selecting for a static rational expectations state and breaking
down into a disordered state� We studied games with both an in�nite number of Nash equilibria
and a single equilibrium� expecting that a single equilibrium would stabilise the system so that
persistent diversity would not be observed� However this was shown to be wrong� Punctuated
equilibrium may be observed for very long transient periods even in systems with such a single
�xed point� Under the in�uence of noise� such transients can become the predominant dynamic�

The manner in which these dynamics pass from coordinated phases to disordered� uncoordi
nated bubbles of dynamics is very reminiscent of realworld market phenomena� In that sense
our results show that as systems of autonomous agents grow in size� periods of highly disordered
activity �stock market crashes or bubbles�� are to be expected� and are not an anomaly� These
results hold even in the absence of noise or exogenous perturbations��

There are some connections which can be drawn with business cycles and the exploitation of
market niches� For example� if we consider the static state to represent a market in which all the
�rms have the same strategy� then a �rm which o�ers a slightly di�erent kind of product!service may
well be able to exploit the rest of the system�s unsophistication� However our results suggest that
such exploitation can destabilise the market� leading to a highly disordered regime �bankruptcies
etc�� from which a new standard emerges� It could be argued that the beginnings of such a process
can be observed in the airline industry� On a rather di�erent scale� the nature of the �wheel of
retailing� �in which �rms evolve from innovative� small operations through a more sophisticated
growth phase and �nally become a larger� stabler more conservative retailer� opening a niche for
yet another lowcost� innovative operation to enter the market� could perhaps be analysed via the
same techniques �see McNair ������� Brown ������ for elaboration on this �wheel��

In summary� our results demonstrate that agents evolve towards a state in which they use a
limited selection of models of intermediate history and complexity� unless subjected to a dominant
equilibrium when they learn to use simple models� It is not advantageous to pick models of ever
increasing sophistication� nor to attach nonzero weight to all available information� As such�
our agents in their mutual creation of an economic world� do not evolve towards a static rational
expectations equilibrium� nor to what one would naively consider a perfectly rational state� Rather
in their coevolutionary creation of a nonstationary world� they evolve to use a level of rationality
which is strictly bounded� constrained within a �nite bubble of complexity� informationuse� model
selection� As they �uctuate within those constraints� these agents can still achieve systemwide
coordination� but the coordinated states are metastable� The dynamics are driven by the need to
create models of greater!lesser precision to match the world�s observed dynamics�

We interpret this state as an extension of rationality away from the simple static case to en
compass the natural rationality of non�stationary worlds� Thus the natural �evolutionarily advan
tageous� rationality of these systems is a state in which information usage� model sophistication


At a very low level there is some noise caused by rounding and other numerical phenomena�
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and the selection of models are all bounded� It is in that sense that the natural rationality of
our agents is bounded� Adaptive agents evolve to such a state� mutually creating a system which
�uctuates between metastable coordinated and uncoordinated dynamics� This is the �rst step to
understanding what agents must do in systems in which their mutual interactions coevolve to create
a nonstationary world� and is therefore the �rst step to an understanding of homo economicus in
such systems�
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