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Abstract

We model chemical reaction networks as directed hypergraphs that are generated in
rule-based manner, using graph grammars as models of given sets of reaction
mechanisms. Graphs serve as abstractions of molecules. This provide a level of chemical
realism sufficient to ensure conservation of mass, atom type, and charge. Atom maps,
for instance, are thus consistently defined within the model. The generative approach
pursued here goes beyond the necessarily static network models that need to be
specified a priori and allows, in particular, application to network design problems.

Chemical pathways are represented by integer hyperflows. In contrast to more
traditional approaches of flux balance analysis or elementary mode analysis we insist on
integer-valued flows. Although this choice makes it necessary to solve possibly hard
integer linear programs it conveys the advantage that more detailed mechanistic
questions can be formulated and computed directly. Similarities and differences between
our work and traditional approaches in metabolic network analysis are discussed in
detail.

Three topics are used to demonstrate the applicability of the mathematical
framework to real-life problems. We first explore the design space of possible
non-oxidative glycolysis pathways and show that recent manual pathways can be further
optimised. We then use a very general model of sugar chemistry to investigate the flows
in the autocatalytic formose reaction and its relatives. Finally, we turn to the problem
of recognizing complex autocatalytic cycles in large reaction networks, where we
demonstrate how the TCA cycle and glyoxylate cycle as well as its combinations can be
identified as autocatalytic.
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Author Summary

Chemical reactions are typically presented as transformations of structural formulae.
This leads to graph rewriting systems or graph grammars as the appropriate
computational formalisation. On a more abstract level can a reaction be viewed as a
single hyperedge, thus making a chemical reaction network or “universe” a directed
hypergraph. Pathways then correspond to flows on these hypergraphs. We describe here
a comprehensive theoretical framework and an integrated software system to model and
analyse large-scale chemical networks. The combination of versatile strategies to
generatively explore chemical reaction networks with very flexible ways to analyse
networks in terms of integer networks flows makes it possible to address novel types of
questions. In particular we can systematically approach the problem of designing and
optimising chemical reaction systems within a potentially infinite search space of
alternative architectures.

1 Introduction

Large chemical reaction networks are at the basis of a wide variety of technical and
scientific questions. Their scope ranges from models of metabolism in the context of
both health and biotechnology, to complex processes in atmospheric and soil chemistry
including the impact of pollution and strategies for environmental recovery, and to
chemotechnical processes in fuel production and drug synthesis. The study of chemical
reaction networks as entities in their own right, often with the aim of identifying some
kind of pathways thus has a long-standing tradition. Well-established theories such as
Flux Balance Analysis (FBA) [115], Elementary Flux Modes (EFM) [6H9], Extremal
Pathways (ExPa) [10H12], or Chemical Organizations (CO) [13H15] have been developed
for decades to analyse chemical reaction networks arising from a broad array of
application scenarios. Each of these methods uses the stoichiometry of the networks,
and hence the structure of the network as a directed hypergraph is respected. The
approaches differ mostly in their aims. FBA is geared towards finding a single pathway
that is optimal with respect to a predefined criteria, while both EFM and ExPa focus
on fully characterising the space of potential pathways by enumerating certain corners
of the underlying flux cone.

Chemical reaction networks are sometimes modelled as graphs rather than
hypergraphs (e.g., see [16] for an overview). While this is sufficient for certain questions
and has the advantage of admitting simple, computationally efficient algorithms, it
disregards stoichiometric constraints and the structure an the many-to-many nature of
the relationships implied by chemical reactions. Hence they are much less powerful with
regard to integration of additional biological constraints [17].

In this contribution we present an intermediate model that respects the underlying
stoichiometry of the network while providing sufficient flexibility to accommodate
additional specialised constraints for the specific system under consideration. We
demonstrate that with this model it is feasible in practice to perform targeted,
large-scale enumeration of pathways according to a given optimisation criteria.

Much of the published literature views chemical reaction networks as a priori given
graph or hypergraph structures. This point of view enables the algebraic methods of
data analysis mentioned above, but at the same time disregards the inherently
generative (constructive) nature of chemistry. Chemical reactions can produce new
molecules that we may not even have thought of. In this contribution we also
demonstrate that detailed network analysis and generative network construction cannot
only be combined in a single framework, but also allows to formulate and answer novel
types of questions.
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Figure 1. The reaction network with the reaction

Ca0O + 2CO2 + HoO — Ca(HCO3)2 as a directed multi-hypergraph. Each ellipse
represent a vertex (molecule) in the hypergraph (reaction network), while a box
represents a directed hyperedge (chemical reaction).

Chemical Networks and Fluxes The modelling approach used here consists of
several interlinked components that are often subtly different from the models most
commonly employed. First, our chemical reaction networks are directed
multi-hypergraphs. This not only gives a well-defined “geometric” interpretation to the
stoichiometric matrix but also naturally allows us to encapsulate catalysts. The simple
reaction network with a single reaction CaO + 2 COq + H,O — Ca(HCOj3),, for
example, has 4 vertices, representing the molecules CaO, CO2, HyO, and Ca(HCO3),.
The network has a single hyperedge, whose tail is the educts CaO, HyO, and two copies
of CO3. The head of the hyperedge is the product Ca(HCO3)2. The network is
visualised in Fig.

Hypergraphs are a faithful representation of chemical reaction networks and in
particular encode the complete stoichiometric information. The hypergraph
representation can be extracted from published stoichiometric matrices, SBML files [18],
pathway databases such as KEGG [19] or MetaCyc [20], or computed directly from
generative models of chemistry [21-23].

In the hypergraph picture, chemical fluxes and pathways become integer-valued
hyperflows [17,24]. Hyperflows [25] are the natural generalization of flows on (directed)
graphs to hypergraphs and thus provide a direct link to the rich computer science
literature (see e.g., [26]). Flows on hypergraphs have been studied for restricted
classes [27,128] which however does not include chemical reaction networks. Indeed the
problem of finding a maximum integer flow in a chemical reaction network (directed
hypergraph) is NP-hard, even for bi-molecular reactions (bounded degree
hyperedges) [29).

The insistence on integer rather than rational flows may sound unusual at first
glance, since it forces us to deal with Integer Linear Programs (ILP) instead of the
Linear Programs arising from FBA, EFM, or ExPa problems, which have polynomial
time solutions. In contrast, ILP is known to be NP-hard in the general case [30|. This is
a price well worth paying as we shall see: First, some questions — such as the
identification of autocatalytic subsystems — can be asked in the traditional framework
only with the help of additional constraints and conditions that augment the FBA
framework. Second, we will show that there are chemically realistic cases in which the
LP and ILP solutions are vastly different. Since chemical reactions transform individual
molecules, ILP solutions admit a direct mechanistic interpretation, while non-integer LP
solutions may be superpositions of distinct mechanisms. Of course, many such issues
have been observed and discussed in the framework of FBA, EFM, or ExPA, where they
can be dealt with by post-processing the results. The advantage of the ILP framework
is that it directly yields more interpretable answers also in difficult cases. Given the
efficiency of modern ILP solvers, we find the computational price is worth paying. ILP
also offers additional benefits. For example, it becomes straightforward to sample or
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Figure 2. A graph representing the molecule caffeine visualised as @ the raw labelled
graph and @ in an abbreviated style familiar to chemists. Aromaticity is depicted with
special bonds, as opposed to using alternating single and double bonds, to properly
show the actual molecule encoding.

exhaustively enumerate suboptimal solutions in a principled manner. Furthermore,
additional ILP contraints have been employed to prune trivial pathways involving
reversible reactions [17}[24].

Graph Grammars as Models of Chemistries The second key component of our
approach is the generation of the reaction networks themselves by means of graph
transformation systems. This forces us to have an explicit representation of a molecule
as a graph rather than to treat molecules as mere labels for the nodes of the reaction
hypergraph. Adopting the ideas of chemical graph theory [31133], our molecules are
connected labelled graphs. Vertex labels encode atom type and charges, while edge
labels indicate bonds types. Since double and triple bonds are regarded as labels,
molecule graphs are simple, i.e., they do not contain loops or parallel edges, see Fig. [2]
for an illustration.

When molecules are represented as graphs it becomes natural to regard chemical
reactions as graph transformations [34439|. Several formal frameworks have been
described in the literature [40]. We find the Double Pushout (DPO) formalism
particularly intuitive for modelling chemistry [22]. A DPO transformation rule encodes
a reaction pattern, i.e., a generalised mechanism that can be applied on many different

sets of molecules. Formally, a rule p = (L LKL R) consist of three graphs (fragments
of molecules) L, R, and K called the left, right, and context graph, respectively. In
addition, the rule specifies two graph morphisms [ and r that determine how the
context K is embedded in the left and right graph.

A rule is applied to a graph G if a matching morphism m: L — G exists that fulfil
an additional consistency criterion. The chemical intuition is that L is a molecule
fragment that must be present in the educt molecules G for the reaction to take place.
From p, G, and m a new graph H can be derived that can be interpreted as a modified
version of G with the copy of L replaced by R. Thus H represents the product
molecules. We denote such a derivation (chemical reaction) as G 2= H and visualise it
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Figure 3. Abstract derivation G 22 H with p = (L LKL R). A concrete chemical
derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

l
d nl

~—D—H (1)

3
Qe

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G = H
becomes a directed hyperedge.

It is important to note that chemical universes can be very large. Polymerization
reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exzploration strategies |23] can
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be used instead that apply graph transformation rules in a guided manner and provides
preference, pruning, and filtering rules for molecules that implement a wide array of
constraints. A directed hypergraph (chemical reaction network) is obtained by recording
the direct derivations discovered during the execution of a strategy.

Application Scenarios We demonstrate the usefulness of combining a generative for
chemical reaction networks with the analysis of the networks in terms of integer
hyperflows in the context of several different applications. The question to what extent
and in what sense biochemical pathways are optimal dates back to the late 1980s.
Among the first studies of this type was Meléndez-Hevia’s analysis of sugar
rearrangements in the pentose-phosphate pathway (PPP) [42]. The PPP is used in cells
to transform hexoses (Cg sugars e.g. glucose a prominent carbon sources) into pentoses
(Cs sugars, integral components of nucleic acids such as RNA and DNA). The
conversion of five hexoses to six pentoses can be achieved in many different ways using
only established enzyme reaction mechanisms [43] such as transketolase and
transaldolase (which transfer Co- or Cs-fragments between sugars). It turned out that
nature implements this conversion with the least number of steps.

Following this line of reasoning we enumerate in section the possible
non-oxidative glycolysis pathways. Here, the design space is much larger than what one
can hope to cover manually or by ad hoc approaches. We automatically generate and
compare the alternatives to the single pathway “designed by intuition” in [44] and show
that superior solutions exist. Microbial synthesis of plant-derived secondary metabolites
currently is a hot topic in metabolic engineering [45L|46]. Impressive examples include
the synthesis of the anti-malarial drug precursor artemisinic acid [47], and of
(S)-reticuline [48], an important intermediate towards the benzylisoquinoline alkaloids
codein or morphine. Synthetic Biology holds promise to transform the entire process of
discovering and manufacturing pharmaceuticals. The most common strategy is to
transplant an existing biosynthetic pathway, e.g. from a plant, into the host microbe.
For many natural products of pharmaceutical interest, however, the biosynthetic
pathway is only partially known, or complete unknown. In such cases computational
strategies for de novo rational design, such as ours, are necessary, that identify
higher-order functional transformation networks with predictable behaviour from
existing enzyme reactions.

We then proceed to a detailed analysis of the flows in the autocatalytic formose
reaction in a general sugar chemistry network. We ask how autocatalytic cycles are
related to each other in functional cascades and how these intricate structures
“communicate” to the embedding background network of potentially “destructive” side
reactions. The ability to answer this question is essential for the characterization and
classification of large-scale chemical reaction networks. Networks involving distributed
autocatalysis and their properties are the core objects to understand the transition from
prebiotic chemical processes to the emergence of life. While quantum chemical methods
are efficient to predict the structure and reactivity of small molecules [49], techniques,
such as the graph grammar approach, located at a more coarse-grained level of theory,
are necessary to analyse the topological and functional organisation of complex chemical
reaction networks. Furthermore, higher order properties such as robustness or sensitivity
to perturbations can only be attacked within this broader systems perspective.

Finally, we turn to the problem of recognizing complex autocatalytic cycles in large
reaction networks. Using as variety of different objective functions we show that it is
possible to recognise the TCA cycle, the glyoxylate cycle, as well as an autocatalytic
combination of the two cycles without prior knowledge. Upon inclusion of parts of the
pyruvate conversion pathway, furthermore, the reverse TCA cycle also becomes
autocatalytic. In prebiotic chemistry [50], autocatalysis has long been hypothesized to
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Figure 4. Visualization of an abstract reaction network consisting of the reactions
g1 +8 —> g3, 84 —> g5, and 2gg —> g7

be one of the dominating mechanisms for focusing distributed mass in a combinatorial
mixture of reversibly interconverting molecules towards a small set of molecules, which
could have paving the way for the emergence of self-sustaining non-enzyme catalysed
primitive metabolic pathways. One of the main problems here, however is that only a
handful of prebiotically plausible autocatalytic reaction cycles have been described.
Furthermore other forms of global autocatalytic behaviour derived from cross-catalysis
or cascade catalytic mechanisms are conceivable. Therefore, a computational approach,
which allows to formally specify such autocatalytic behaviour, and subsequently enables
their efficient identification in arbitrary chemical reaction networks, makes a valuable
contribution to the origin of life research. Once novel instances are found, expensive
experimental and first-principle computational methods can be applied to study their
dynamic behaviour.

2 Model Description

In this section we develop a formal model for pathways in reaction networks. For
conciseness, we entirely use the language of hypergraphs in this section.

2.1 Directed Multi-Hypergraphs

A directed multi-hypergraph H = (V| E) is an ordered pair of a vertex set V and a set
of directed hyperedges E. Each edge e € F is itself a pair (e™,e™) of multisets (hence
“multi-"hypergraph) of vertices e™ C V and e~ C V, often called the tail and head of e.
In the following we will refer to directed multi-hypergraphs simply as hypergraphs.
Fig. [4] gives an example of the general visualisation scheme we use throughout this
contribution.

Since we will need to use both normal sets and multisets we will introduce the
following notation for multisets. When constructing a multiset we use double curly
brackets (i.e., {... }) to distinguish them from normal set constructors, {...}. For a
multiset ¢ and some element g we use my(Q) to denote the number of occurrences of ¢
in . We introduce a multi-membership operator, €,,, used in iteration contexts. E.g.,
S enol = ma(Q) = {4 €m Q} |

We first describe the basic pathway model and a simple notion of catalysis and
autocatalysis. This model allows for misleading, or chemically “uninteresting”,
pathways. An expanded model is therefore described to narrow the space of pathways.

Note that the core model aims at formalising the notion of a chemical pathway, and
does as such not include any optimality criteria. However, the model forms the basis of
a practical implementation in terms of integer linear programs (ILP), which we will
describe in detail in the following section. It is trivial, therefore, to add a linear
objective function.

2.2 Integer Flows on Extended Hypergraphs

Throughout, we assume that H = (V, E) is a directed multi-hypergraph. Syntactically
we will use a superscripted plus T to refer to “out”-related elements relative to vertices
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(a) (b)
Figure 5. @ a small network, H. @ the extended network, H. Note that most of the
input/output edges in the extended network will be constrained in the final formulation,
and thus for many chemical networks many of these edges will effectively be removed to
model specific interface conditions.

(e.g., out-edges), and a superscripted minus ~ to refer to “in”-related elements.
We will need a mechanism to introduce and extract molecules from the network, and
we therefore define the extended hypergraph H of H as

H=(V,E)

E=FEUE UE"

E” ={e, =(0,{v}) [veV}
EY ={ey = ({v}.0) veV}

which has additional “half-edges” e, and e, for each v € V. These explicitly represent
potential input and output channels to and from H, see Fig.

Network flows on graphs is a well-studied topic and can be used as a intuitive model
for many problems [26,51]. Hyperflows are the natural generalization of network flow
models from graphs to hypergraphs. Flows on several restricted types of hypergraphs
have been considered in the literature, in particular so-called gain-free hypergraphs [52]
and hypergraphs with single-vertex heads, i.e., |e”| = 1 for all edges |27,/28]. Hyperflows
are very similar to the notion of chemical fluxes used in, e.g., Flux Balance Analysis [5],
but as a core difference we will here restrict the model to integer hyperflows. In
section [3] we provide a detailed comparison to Flux Balance Analysis and the
consequences of the integrality constraint. Integer coefficients are also employed in [24],
where the term tick vector is used for what call here a pathway.

Recall the multiplicity function for multisets, where we for a vertex v € V and an
edge e € E can write m,(e”) for the number of occurrences of v in the head of e (and
my(eT) for the tail). We use 67(-) and 6~ (+) to denote a set of incident out-edges and
in-edges respectively, and thus use 6%(1)) as the set of out-edges from v, restricted to the
edge set E, i.e., 5%(1)) ={e€ E|v € et} Likewise, 6—(v) denotes the restricted set of
incident in-edges of v.

(2)

Definition. An integer hyperflow on H is a function f: E — Ny satisfying, for each
v € V the conservation constraint

S e )@= Y mulen)fe) =0 (3)
eeﬁg(v) 665%(’0)
We mostly speak of integer hyperflows, and will for brevity refer to them simply as flows.

In order to constrain the in- and out-flow to certain vertices we specify set of inputs
(sources) S C V and outputs (targets/sinks) T'C V. Thus

fle;)=0 YogsS and f(ef)=0 YogT (4)
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serve as additional constraints in an I/O-constrained extended hypergraph, which is
completely specified by the the triple (H, S, T).

We adopt the notion of an overall flow from the chemical overall reaction for a
pathway, which is simply a convenient notation for the I/O flow. For a flow f we
syntactically write the overall flow as

fleg) v+ -+ fleg, v — fleg) v+ + fleg, ) vy

However, as usual for chemistry we omit the terms with vanishing coefficients.

Flows are non-negative by definition. While we for reversible reactions could have
allowed negative flows (see Sec. [3]), we adhere to the usual framework of flow problems.
It is therefore necessary to model every reversible reaction by two separate edges
e=(eT,e”) and ¢ = (¢7,e™). This separation of the flow will later allow us to define
useful chemical constraints on the flow.

A capacity function u: E — Ny, finally, limits the flow from above, i.e., f(e) < u(e),
as in many typical flow problems. We will not make use of the capacity function in this
contribution.

2.3 Specialised Flows — Overall (Auto)catalysis

The nature of autocatalysis is that, the product of a chemical reaction catalyses its own
formation. This interaction leads to an exponential time behaviour in the growth
characteristics of the product, as well as, to a positive correlation of initial concentration
and the reaction rate. Autocatalytic reactions have been investigated for over a century
and instances of this behaviour have be found in a wide range of topologically different
chemical systems, which are based on a rich chemical setup (for a recent review see [53]).
Autocatalysis plays a major role in the processes of life. Usually several reactions are
organised in a cyclic network to achieve the proper topology for autocatalysis. Clearly
the reaction flux around the cycle must be significantly larger than the flux along
potential draining reactions, which reroute flux away from the cycle, to achieve turnover.
If autocatalytic cycles are coupled together in a cyclic, mutually autocatalytic structure,
a new level of organization, called hypercycle, is reached. The concept of a hypercycle,
as a principle of natural self-organization, was proposed by Schuster and Eigen [5456].

We here define a simple notion of both catalysis and autocatalysis in terms of the
I/O flow of a network. As we only constrain the flow of the overall reaction, we call this
overall (auto)catalysis. Catalysis means in chemical terms that a molecule, the catalyst,
is first consumed by some reaction and then regenerated by a subsequent reaction in
such a way that overall the catalyst is neither consumed nor produced. We therefore say
that a vertex v € V is overall catalytic in a flow f if and only if (i) the input and output
flows of v are non-zero and (ii) the input and output flows of v are equal, i.e., iff

0< fle,) = fle)) ()

Similarly, autocatalysis, refers to a situation where a molecule is consumed in a reaction
only to be (re)produced in subsequent reactions in higher quantities than what has been
consumed originally. In terms of flow we say a vertex v € V' is overall autocatalytic in a
flow f if and only if

0< fley) < flef) (6)

We extend the terminology to say that a flow f is overall (auto)catalytic if some vertex
is overall (auto)catalytic in f.
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(c) fs
Figure 6. Simplification of a flow f; to an equivalent flow f3, by removal of futile
2-edge sub-pathways. @ The molecule D is created through B + C'— D, but can
only be interpreted as being consumed through the reverse reaction. [@] After removal
of 1 flow from the reactions B + C <— D, the molecule C' now participates in a futile
2-edge flow. Removing 1 flow from B <— C and the I/O edges ) «+— B, we arrive
at the simplest flow.

2.4 Chemically Simple Flow and Vertex Expansion

Modelling reversible reactions as pairs of irreversible ones gives rise to pathways were
both an edge e and its inverse e~ ! have positive flow. Consider the hypergraph
annotated with a flow in Fig. [6al Here we see three pairs of reversible reactions with
positive flow: B + C' +— D, B +— C, and the 1/O reactions () «+— B. However, we
can argue that this flow is not “simple” in the sense that there is no interpretation of
the flow without a futile conversion of matter. This problem has of course been
recognized in the literature. Additional ILP constraints were used in [17,/24] to prune
such cases. However, this approach seems quite difficult to control in practise.
Disallowing all 2-cycles as in [24], for example, turns out to be too restrictive. Therefore
we advocate a refinement of the network model itself.

In the pathway a single copy of D is created, through the reaction B + C' — D,
and it can only be routed into a single reaction, D — B 4+ C. The sub-pathway
B+ C — D —» B+ (C'is thus a futile 2-edge branch that we can simplify away,
yielding the equivalent flow in Fig. [6bl The same reasoning can now be applied to C,
and subsequently B, resulting in the flow depicted in Fig.

Formally we say that a flow f is not chemically simple if there is a vertex v € V that
has only one in-edge e € E with positive flow and only one out-edge ¢’ € E with
positive flow, where the two edges are each others inverse, ¢/ = e~ 1.

The original flow in Fig. [6a] fulfils the requirement for overall autocatalysis in vertex
B (Eq. @)7 but clearly the in-flow of 1 B is not involved in the extra production of B,
which goes against the idea of general autocatalysis. The simplified flow, Fig. is
however not overall autocatalytic, and it is therefore desirable to constrain the model
such that non-simple flows are not possible, in order to further approach a precise
characterisation of autocatalysis.
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Figure 7. Example of a flow with meaningful 2-cycles, in the network from Fig.
Only edges with non-zero flow are shown.

From the shown example it is tempting to simply disallow all 2-cycles of flow. This
is the approach effectively used in FBA-related methods (see Sec. , and also in flows
on normal graphs [26},51]. However, as illustrated in Fig. [7} this is too strong a
constraint. We can interpret this flow such that no flow is directly reversed:

1. 0— A 5 C— A+ B
2. A— B
6. B— A
3. ) — F twice
4. B+2F —C 7. A— 0 twice

Since this interpretation is a series of chemically meaningful transformations, it should
not be excluded from the pathway model.

To facilitate the constraints that disallow flows that are not chemical simple we
expand the extended hypergraph into a larger network. Each vertex is expanded into a
subnetwork that represents the routing of flow internally in the expanded vertex.
Formally, for each v € V/

Vy ={uy. | Ve €d(v)} (7)
Vh = {ug, | Ve € 65(v)} (8)
Ey={(fu" . fu}) [u” eV um eV}

That is, v is replaced with a bipartite graph (V,” UV,', E,) with the vertex partitions
representing the in-edges and out-edges of v respectively, and the edge set being the
complete set of edges from the in-partition to the out-partition. We say that FE, is the
set of transit edges of v.

The original edges are reconnected in the natural way; for each e = (e*,e™) € E the

reconnected edge is e:
€= (et,e)
¢ ={luelvene}

e ={luseclveme}

We finally define the expanded hypergraph as

H=(V,E)

v=v,uywvt
veV veV

E=|JE,U{¢|ecE}
veV
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(a) (b)
Figure 8. The network from Fig. |pb| expanded into H. The vertices of H are the small
filled circles, while the large circles, A, B, C' and F', only serves as visual grouping of
the actual vertices. @ the expanded network without transit edges constrained in
Eq. . [@] the expanded network, simplified using the source set S = {A, F'} and
sink set T = {A}.

We expand the definition of a flow function to f: E — Ny and pose the usual
conservation constraints, but on H: for allv € V

Y omuen)fle)= Y my(eT)f(e)=0 9)

eeég(v) 6655 (v)

The I/0 constraints translates directly to the expanded network. In Sec. we formally
describe the relationship between flows on the extended and the expanded network.

Using the expanded network we can prevent flow from being directly reversed; a flow
f must satisfy that for every pair of mutually inverse edges
e=(et,e7),e = (e ,et) € E, we have

f((u;e,uie,)) =0 Vv €e” (10)
Fig. [8| shows the expanded version of the network from Fig. with these constraints in
effect.

Note that the expansion of the network also opens the possibility of forbidding other
2-sequences of edges, and in general the possibility of posing constraints on the routing
of flow internally in vertices.

When querying for chemical pathways with partially unknown I/O specification we
have found it useful to distinguish between reversible reactions that are in the original
network A and the reversible I/O reactions. That is, we may choose to not pose the
above constraints on transit edges (u,, “j,e') when e = e, and €’ = ¢/, thus allowing
excess input-flow to be routed directly out of the network again.

Fig. [7] showed a valid flow with a meaningful 2-cycle. The expanded flow is shown in
Fig.[9] and we note that no 2-cycles exist in this flow.
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Figure 9. The example flow from Fig. [7]in the expanded network, with only edges
with non-zero flow shown. Note that no 2-cycles exist in this flow.

Overall Catalysis and Autocatalysis In Eq. and @ we defined the I/O
constraints for overall catalysis and autocatalysis. These constraints are converted in
the obvious manner to the expanded network . However, the expanded network
reveals another possibility for somewhat misleading flows, exemplified in Fig.
Vertex A is overall autocatalytic, but is also utilised as an intermediary molcule. The
same autocatalytic motif can be expressed by a simpler flow, Fig.

In the interest of finding the simplest (auto)catalytic flows, we introduce the
following constraints. Let f be a flow and v € V' a vertex satisfying the I/O constraints
for overall catalysis (resp. overall autocatalysis @) In the expanded network f
must additionally satisfy the transit constraints (note that (525(11) does not include the
I/0 edges):

Fuf oiug ) =0 Ve € 65 (v), e € 55 (v)

That is, all transit flow in an overall (auto)catalytic vertex must flow either from the
input edge e, or towards the output edge e .

Exclusive Autocatalysis If a compound is overall autocatalytic, it merely means
that; if it is available then even more can be produced. However, this does not mean
that it cannot be produced solely by the other input compounds. Solutions can
therefore be found that may be surprising. One such solution is illustrated in Fig.
As a variant of our definition of autocatalysis we define that a vertex v, is exclusively
overall autocatalytic if and only if it is overall autocatalytic and is not trivially reachable
from the other input vertices, S\{v}. A vertex v is trivially reachable from a vertex set
S’ if it can be marked during a simple breadth-first marking of the hypergraph
H = (V, E). For completeness, the pseudocode is shown in Algorithm

Note that breadth-first marking of hypergraphs, and variations thereof, has in the
literature also been referred to as finding scopes of molecules [57,[58]. Breadth-first
marking has in those studies been used alone to analyse metabolic networks, and define
set-theoretical notions of pathways and later of autocatalysis [59]. The methods thus do
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(a) (b)
Figure 10. A simplified network with an overall autocatalytic flow. l@] the vertex A is
both overall autocatalytic and an intermediate vertex in the flow. the same motif
for overall autocatalysis, but without A being an intermediate vertex.

Figure 11. The vertex C is overall autocatalytic, but not autocatalytic in the chemical
sense.

not have focus on the underlying mechanism of the pathways, which is our aim in this
contribution.

2.5 Properties of the Expanded Hypergraph

The expansion of the networks obviously changes the size of the underlying model, and
it is therefore necessary to investigate how large the expanded network can get, in order
to bound the complexity of algorithms.

Size of the Expanded Network For a directed multi-hypergraph H = (V, E), let
the size of it be denoted by size(H) = |V|+ |E| + > cg(le™| + |e7]). Note that if the
hypergraph is seen as a bipartite normal graph, then this size corresponds to the
number of vertices and edges.

Algorithm 1: Breadth-first marking of a hypergraph, from a set of input vertices.
Input :A directed (multi-)hypergraph H = (V, E).
Input :A set of starting vertices S’ C V.
Output: A marked subset of the vertices.
foreach v € S’ do mark v
while no more hyperedges can be marked do
foreach (e*,e”) € F do
if all v € et are marked then
mark e
foreach v € e~ do mark v
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Proposition. The size of the extended network and the expanded network is polynomial
in the size of the original network.

Proof. The size of the extended network is size(H) = size(H) +4 - |V, as two

half-edges are added to each vertex. For the expanded network, #, the size depends on
the in- and out-degree of the vertices in the extended network. Let d%(v) denote the

in-degree of v € V| and d%(v) the out-degree. Note that the degree counts the number

of unique incident edges, so for e € E,v € V : m,(e”) > 1 the size contribution of e to
c%(v) is still only 1. Then the size of the expanded network is

size(H) = size(H) — |V| + Z )+ d% )+3 Z d—(v
veV veV
< size(H) = |V|+2-|V]-|E|+3-|V]-|E]?

where the inequality stems from the fact that at most all vertices are in all head and tail
sets, in the original network. O

Translation of Flow

Proposition. A feasible flow f: E — Ny on H can be converted into an equivalent
feasible flow g: E — Ny in H, with: g(e) = f(€), for alle € E.

Proof. If f is feasible, @D holds for all v € ‘7, By the definition of 7?[, we can say that
(©) holds for all v € V- UV, for all v € V. Recall that all transit edges have singleton
heads and tails, and f(e) = f(€),Ve € E. Thus, by addition of () in each v € V we get

out-flow of u, . in-flow of u,
——
wev = Y TS ey - e

Uy €Vy |\ utevyh

i +
out-flow of u;e in-flow of ;.

—_—~~
+ Y s (@)= DD fu ) | =0

ud eVt u— €V,

Here, the flow along each transit edge is first added and then subtracted again, so we
can simplify the expression to

YoeV Z My, (e7)f(e) + Z M+ (e fle) =0

Uy,e €V uﬁ,eer+

Using the definition of V7 and V" (Eq. and (8)) one verifies that these relaxed
constraints are exactly those of Eq. 7 i.e., the constraints on flows in #. O

Proposition. Let f: E — Ny be a feasible flow on H. 1t can then be decided in
polynomial time, in the size of H, if a feasible flow g: E — Ny in H exists such that
g(€) = f(e) foralle € E. If it exists it can be computed in polynomial time.

Proof. The proof proceeds by a reduction to finding a feasible flow in bipartite normal
directed graphs, with balance constraints. We refer to [26,/51] for a definition of this

problem. Recall that the edges of H are translated directly into a subset of the edges in
‘H, and we as such are tasked with finding a feasible flow on all the transit edges, which
can be decomposed into finding a feasible flow for each expanded vertex independently.
Let v € V, then the hypergraph (V,” UV, E,) only contains edges with singleton head

v
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and tail multisets. It is therefore a normal directed, bipartite graph. We then define the
flow balance function b: V,;” U V" — Ng as Yu, . € V;” : b(u, ) = f(e) and

Vu, € Vi b(uf,) = —f(e). Using the natural lower bound of flow I = 0 and infinite
upper bound finally gives us the complete specification. A feasible integer flow, if one

exists, can be found in polynomial time in the size of the network [26]/51]. O

The problem of finding a pathway with maximum production of specific compounds
is known to be NP-hard, even for networks with bounded degree reactions [29]. The last
proposition underlines that the expansion of the network does not drastically increase
the complexity of finding pathways, but it also shows a potentially practical algorithmic
approach to working with flows in the expanded network. In Sec. ] we will however
show a simpler approach to directly find the flows in the expanded network, using
integer linear programming.

2.6 Chemical Transformation Motifs

The formal model of pathways as integer-valued hyperflows outlined above sets the
stage for a concise analysis of large chemical reaction networks. From a chemical point
of view the notion of a chemical transformation motif (CTM) takes on a central role in
this context. It refers to a coherent subset of chemical reactions that have a well-defined
interface to the remainder of the network and implements a discernible overall chemical
transformation. Metabolic pathways and subnetworks networks exhibiting overall
catalysis or overall autocatalysis are concrete instantiations of CTMs within a given
chemical reaction network. It is useful, therefore, to think of a CTM as a formal
specification of a set of integer hyperflows in a chemical reaction network, possibly in
conjunction with additional constraints on the allowed hyperflows. A key property of
CTMs is that different instantiations can replace each other in a given reaction network.
CTMs therefore do not completely specify the chemical reactions in general. In the
section on glycolysis pathways, for example, we will investigate in some detail the
transformation motif defined by the conversion of 1 glucose to 3 acetylphosphates. The
many ways of instantiating this motif will be our key concern.

In recent years the interest in CTMs resurfaced in the context of designing
alternative networks performing the same function as their natural archetypes [60], as
well as in the context of the notion of optimality in biochemical network structure.
While the earliest work focused on small, well-characterised pathways such as the
pentose phosphate pathway and the TCA cycle [42,/61], recent work extends the original
approaches to larger networks including diverse reaction chemistry such as the central
carbon metabolism [62] or the COs fixation pathways [63]. In this literature the concept
of CTM is only discussed implicitly and to our knowledge there has been no explicit
attempt to formalize CTMs.

3 Comparison to Existing Methods

The basic pathway model described in Sec. is quite similar to the formalism used in
FBA, EFM and ExPa, with the latter two methods primarily aiming to categorise
specific classes of pathways [64]. The basic model is also similar to the model presented
in [24], although the specification of allowed I/O flow is phrased differently. In the
following we will recast FBA in terms of hypergraphs as the underlying models of
reaction networks to clarify the similarities but also the differences with our present
approach.

The mathematical development of FBA, EFM, and ExPa is based upon the concepts
of the stoichiometric matriz and flur vectors. These are analogous to a directed
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multi-hypergraph and non-integer hyperflows. Let (H,S,T) denote an I/O-constrained
reaction network as defined in Sec. with H = (V, E). The network can be
represented as two matrices, an out-incidence matrix ST and an in-incidence matrix S,
both in the domain N‘OVME‘. That is, each row represents molecules and each column
represents reactions. Let vertices and hyperedges have some arbitrary total order,

V ={v1,...,vy|} and E = {e1,...,eg}. Then for each pair of vertices and reactions,
v;, e;, the matrices are defined as S:j = My, (ej’) and S;; = my, (e ). Thus the
columns of ST represents the tail-multiset of each hyperedge, likewise for S~ and the
head-multisets. The actual stoichiometric matrix is defined as S = S~ — ST, which in
chemical terms is the change of the number of each molecule that each reaction induces.
The stoichiometric matrix describes both the proper chemical reactions and transport of
material from and to the outside, equivalent to the extension of a hypergraph H to an
extended hypergraph #, see Eq..

The stoichiometric matrix S completely describes the original reaction network, and
thus is equivalent to the I/O-constrained reaction network (#,.S,T) if and only if all
hyperedges have disjoint head and tail. All direct catalysts, however, are cancelled out
in the stoichiometric matrix, hence the equivalence fails whenever there are reaction
hyperedges with e Ne~ # (). This somewhat limits the scope of FBA. Although it is
possible in principle to replace reactions with direct catalysts by a sequences of
intermediate reactions that consume and regenerate the catalyst, the resulting FBA
network is no longer equivalent to the original one and allows the drainage of
intermediates. This alters flux solutions and may be undesirable, e.g., when modelling
the concerted action of enzyme complexes. Inspired by natural biosynthetic pathways
industrial biocatalysis research [65/66] currently intensively investigates multi-enzyme
cascade reactions, i.e. the combination of several enzyme reactions in concurrent one-pot
processes [67], because of their prospect towards a “greener” and more sustainable
chemical future. Intermediates from these cascades cannot be accessed as substrates by
reactions outside the cascade; hence they require special treatment when represented
explicitly.

A fluz vector f € RIFI models a pathway, and must satisfy the usual conservation
constraint, S f =0 (cmp. (3)). Reversible reactions are modelled in one of two ways:

e Combined: reversible reactions are modelled as a single reaction, but with the
flow/flux allowed to be negative. The flow/flux of irreversible reactions is
constrained to be non-negative. This is the approach followed when finding
EFMs [68].

e Separate: reversible reactions are modelled as two inverse reactions, and the
flow/flux on all reactions must be non-negative. This is the approached followed
when finding ExPas [69]. We also follow this approach in our contribution both
for mathematical simplicity and because it allows us to make use of the enhanced
modelling capabilities offered by the expanded network.

The extension of the stoichiometric matrix S to incorporate I/O reactions can also be
implemented using both the “combined” and the “separate” way of handling reversible
reactions. The I/O constraints from Eq. , specified by S and T, translate naturally
to the corresponding constraints on the extended flux vector.

Linear Programming versus Integer Linear Programming With FBA we
additionally define a linear objective function to find an optimal flux vector, possibly
with additional linear constraints [70]. As a flux vector is real-valued, and all the stated
constraints are linear, it can be found using linear programming (LP) in polynomial
time [71},/72]. Herein lies a major difference to the model presented in this contribution,
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(a) (b)
Figure 12. Examples of reaction networks with not totally unimodular stoichiometric
matrices. @ all entries in a TU matrix must be —1, 0, or +1. @ the submatrix
consisting of the top two rows has determinant 2.

Flow Reaction

1.0 G3P + DHAP — FBP

1.0 G3P — DHAP

0.5 R5P — X5P

0.5 E4P + F6P — G3P + S7P

1.5 P; + X5P — AcP + G3P + H>O
0.5 P; + F6P — AcP + E4P + H,O
0.5 P; + STP — AcP + R5P + H,O
1.0 FBP + H,O — P; + F6P

Overall X5P + 1.5 P; — 2.5 AcP + 1.5 H,O

Table 1. A non-integer pathway with maximum production of AcP from 1 X5P. The
optimal integer solution consists of the shaded reaction with flow 1. Relaxing the
integrality constraint thus allows for a recycling pathway using G3P to produce 1.5
extra copies of AcP. See Sec. [5] for a table of molecule abbreviations.

where we require an integer hyperflow. We can thus characterise the linear program
from FBA as the LP relazation of the basic pathway problem presented here.

The LP relaxation of an ILP yield an integer solution only under special conditions.
The best known sufficient condition is that the matrix of constraint coefficients is
totally unimodular (TU), i.e., when all its square submatrices have determinants —1, 0,
or +1, and thus all entries of the matrix are also —1, 0, or +1. This is the case for
example for integer flows in graphs [26,/51]. As the simple examples in Fig. [12] shows,
this not true in general for stoichiometric matrices and hence for hyperflows.

Even though total unimodularity is not a necessary condition, it is not too difficult
to construct reaction networks with linear optimisation problems where the integer
problem and the LP relaxation have drastically different optimal solutions. As an
example consider the carbon rearrangement network described later, in Sec. and the
question: given 1 xylulose 5-phosphate (X5P) and an arbitrary amount of phosphate
(P;), find a pathway that maximises the production of acetylphosphate (AcP). As X5P
contains 5 carbon atoms and AcP contains 2, it is clear that the maximum production
from a single molecule must be at most 2 AcP. It turns out that the optimal integer
solution just 1 AcP, by the single reaction P; + X5P — AcP 4+ G3P + H>O. However,
the optimal solution to the LP relaxation of the problem yields 2.5 AcP, via the
pathway described in Tab.[I} This non-integer pathway incidentally uses the same
reaction as the integer pathway, with an additional recycling network for converting 1
G3P into 1.5 AcP.
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Figure 13. Reduction from the independent set problem to the problem of maximising
output from a molecule in a reaction network, applied to the two graphs @ K3 and @
K4. The hyperedges are annotated with both a feasible integer flow and a feasible
non-integer flow, written as (integer) | (non-integer). Allowing a maximum inflow of 1
to all vertices v; ; and maximising the outflow of v, corresponds to finding a maximum
independent set in the original graph.

A scaling of the non-integer flow with a factor 2 gives an integer solution, and indeed
our methods can also find this as well as many other solutions implementing the same
motif. Since LP solutions with integer-valued constraint matrices and objective
functions with integer coefficients are rational, it is mathematically always possibly to
scale the LP solution to integer values. The actual numbers, however, may become very
large. Taking physiological constraints into account, the number of available individual
molecules may be small, even as low as 100 copies 73], and even smaller for biological
macromolecules [74,|75]. Small numbers may have a profound influence on chemical
kinetics and in many cases can cause qualitative changes in the system’s
behaviour [76H78]. It is an important feature of the ILP framework to allow for directly
expressing such biological constraints. At the same time, it provides pathway solutions
that have a direct mechanistic interpretation.

Integrality Gap In the previous example we maximised the production of a specific
molecule, and saw that the ILP solution have objective value 1 and the LP relaxation
have objective value 2.5. The ratio between these values is known as the integrality gap,
and it is known that this gap can scale with the input instance. For a simple example,
consider the reaction networks stemming from the polynomial-time reduction described
in the supplemental material reducing the well-known INDEPENDENT SET problem
to maximising the production of a single molecule in a reaction network. Applying the
reduction to complete graphs with n vertices and formulating the problem in terms of
hyperflows, we obtain an integrality gap of 5: for integer flows we can use at most 1
reaction, thus giving a maximum output of 1. When the integrality constraint is
removed we can let the flow be 0.5 on all reactions, giving an output of 5. The reaction
networks for the complete graphs of size 3 and 4 are shown in Fig. This illustrates
that the use of the LP relaxation is not just a technical detail, but changes the nature of
the problem entirely. We remark that the problem of finding an integer hyperflow with
maximum production of a given compound has been proven strongly NP-hard [29], even
for the restriction to reaction networks with 2-to-2 reactions.
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Solution Enumeration A linear program may have an uncountable number of
optimal solutions as the variables are in the domain of real numbers. The solutions can,
however, be described by enumerating the, possibly exponentially many, corners of the
optimal face of the polyhedron defined by the linear program [79.{80]. This has also
been applied to FBA [81].

In Sec. below we describe a simple method for enumerating solutions when using
integer linear programming. When restricting the solutions to be integer, we only have
finitely many candidates, and it is straight-forward to enumerate not only optimal
solutions, but also near-optimal solutions. This is of relevance in particular in design
applications. Here alternative co-optimal or near optimal solutions may be easier to
realize in practise than a particular optimal pathway.

4 Implementation using Integer Linear
Programming

The ILP formulation characterising feasible flows is based on an expanded hypergraph
H = (V,E). The flow function is modelled by an integer variable x. for each edge

e € E, and by constraints for flow conservation. The basic constraints are thus

Z my(et) - z.— Z my(e”) - ze =0 VoeV

eeag(v) €8 (v)
T, € Ny Yec E

This definition is similar to an ILP formulation of a classical network flow problem, but
with important differences; H is a hypergraph so an edge e € E may be in both 55 (u)
and 55(1}) (or 5;; (u) and 5% (v)) for u # v. Additionally, H is a multi-hypergraph, and
thus the coefficients m,(e™) and m,(e™) are introduced, which may be larger than 1.

The basic formulation can be augmented with constraints, e.g., on the I/O edges,
and an objective function depending on the specific problem to be solved. Additionally,
the constraints for chemical flows specified in Eq. are added in the obvious way. In
the following sections we describe constraints for finding catalytic and autocatalytic
flows. For the formulation we will use M to denote a classical “large enough” constant,
and as some parts of the catalysis and autocatalysis models are similar we will first
describe the formulation of these common parts.

4.1 Strict Flow Through Overall (Auto)catalytic Vertices

In our definition of (auto)catalysis we require that if a vertex is (auto)catalytic, then no
flow can enter the vertex from the network and exit the vertex to the network again.
Let z, be the indicator variable for the vertex v € V being (auto)catalytic, then the
requirement is trivially enforced by the following constraints:

Te < M- (1—2,) Ve = (u u;e/,)EVU_ xVitie #£e; Ne' #ef

v,e’’

4.2 Overall Catalysis

We model catalysis by introducing an indicator variable z¢ € {0, 1} for each v € V
indicating whether v is catalytic or not. Thus we can enforce a solution to be catalytic
by posing the constraint

IEES

veV
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The actual constraints for the indicator variables are obtained partially by the section
above on strictness of flow. Below follows the last requirement, Eq. [b] which is realised
through a set of auxiliary indicator variables, 20, 2=, 2> € {0,1}
0 —
1—20 <a, +af
M-(1-20)>a; +xf

v

v

r, =ar =0e20=1

- + <
r, <z +M-(1—z2
T, <z ez =1 {U v ( v)

_ + <
T, >z, — M-z

{:cj<a:,u+M-(1—zU>)

+ - > _
T <z, Szo =1
Y Y v xr>a; — M-z

c < > 0

zyg > 1 =20 — 25 — 2,
c 0
_ 2o <1—z2
O<u, =a; ©zi=1=¢"" P
zy <1 —25
c >
zy <1 —27

4.3 Overall Autocatalysis

As for catalysis we model autocatalysis with a set of indicator variables z% € {0,1} for
all v € V, and force a solution to autocatalytic with the constraint

Zzg >1
veV

We use the constraints for strictness of flow and model the remaining constraint, Eq. [6]
using the auxiliary variable set 2, indicating x, > 0:

0<xv<f>zvl{ Zqi<xi
M-z, >z,
zg < x,
O0<z, <zl &20=0= r, <zl +M-(1-2%)
M-28 4z, >af —M-(1—2z))

4.4 Solution Enumeration

A typical use of solvers for integer programs is to find a single optimal solution.
However, from a chemical perspective we are also interested in near-optimal solutions
and in some cases even all solutions. The structure of our formulation additionally have
influence on when two solutions are considered different. Often we might not consider
two solutions different if they only differ in the flow on the transit edges, i.e., those
introduced by the vertex expansion. This makes it difficult to use build-in features in
solvers, such as the solution pool in IBM ILOG CPLEX, to enumerate solutions.

For finding multiple solutions we therefore explore a search tree based on the domain
of the variables; each vertex in the tree represents a restriction of the variable domains,
with children representing more constrained domains. Note that this tree, in theory, is
infinite as some variable may have no upper bound. In each vertex we use an ILP solver
to find an optimal solution for the sub-problem. If the problem is infeasible the sub-tree
is pruned, otherwise a path to a leaf in the tree is constructed to represent the solution
found by the ILP solver. The quality of the found solution at the same time acts as a
lower bound on the objective function of the sub-tree (when minimising the function).
Vertices in the tree are explored in order of increasing lower bound.
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If a different value of flow is not to be considered a difference in the solution we
simply do not consider the corresponding variables to be part of the branching
procedure.

4.5 Software Implementation

The pathway model is implemented as an extension of the larger software package,
Med@1Datschgerl (M@D) [82l[83]. The software combines the pathway analysis with
methods for working with generative chemistries [22}|84], including the algorithms for
network expansion 23] also used in this contribution. The tight integration between the
methods makes it a convenient tool to design artificial chemistries, both high-level
systems like DNA-templated computing [85], or hypothetical prebiotic

chemistries [86,/87]. Our implementation uses IBM ILOG CPLEX 12.5 for solving
integer linear programs. An upcoming version of M@D is in preparation that will
include the pathway model.

5 Results

In the following we will illustrate the strength of our constructive approach with the
help of the following problems. (1) find an “optimal” pathway transforming educt to
product molecules using a predefined set of chemical transformations. What optimality
means in this context will be discussed later. This type of problem is central to
metabolic engineering in the Synthetic Biology context, where frequently design
objectives and reactions in the form of enzymes are given but no network to optimise
on! For the solution clearly constructive chemistry approaches which generates the
network during the optimisation are indispensable. (2) find sub-networks, embedded in
a large chemical reaction network, which optimise a given objective. Besides well
established objectives such as the minimization of the number of reactions used or
maximizing the yield of a target compound, the objective can also be a chemical
transformation pattern for example autocatalysis F + X — 2 X + W. Here F and W
are arbitrary “food” and “waste” molecules needed during the self-reproduction process
of the autocatalyst X. Of course for the later case the identified subnetwork possess
only the right topological requirements to exhibit autocatalytic behaviour. No
statements about the kinetic properties are made.

Evolution resulted in the emergence of complex life forms, showing a remarkable
adaptation to the environmental conditions of their habitats. Natural selection was
identified as the major driving force behind this intricate optimisation process, that
shapes the structure and logic of functional entities on all scales of biological
organization. A specific system of interest is cellular metabolism the chemical
machinery which supports every biological function. Metabolism is usually understood
as a collection of enzyme-catalysed reaction sequences tied into a network by common
intermediate metabolites. By encapsulating the reaction chemistry into enzymes, i.e.,
modules operating under almost identical conditions, nature achieved a lego-type
plug-and-play system for the physical implementation of nearly any desired overall
reaction mechanism via chaining of the appropriate enzymes. It is believed, that the
design principles and shaping constraints of modern cellular metabolism can be
elucidated via optimality analysis [61]. In particular since the same overall conversion of
matter can be achieved by different not necessarily overlapping sets of enzymes, it seems
natural to view a given metabolic pathway as solution of a combinatorial optimisation
problem.

The three chemistries are all modelled using the graph grammar approach described
in the introduction, and the reaction networks are discovered using exploration
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strategies. A visualisation of all rules can be found in the supplemental material
along with tables of molecule name abbreviations

5.1 Carbon Rearrangement in the Non-oxidative Glycolysis
Pathway

Finding sustainable processes for the produce of fuel molecules, that drive our modern
society, is one of the big challenges today. One possibility, which is intensively explored,
is to engineer the biochemical setup of microbes, to convert feedstock molecules, such as
glucose, into the desired fuel molecules. The biochemical idea behind this approach is to
couple the catabolic pathway known as glycolysis, which decomposes glucose (a Cg
molecule) into acetyl coenzyme A units (AcCoA, a Cy molecule), to a designed synthetic
pathway, condensing AcCoA into the skeleton of the target molecule. The drawback of
this approach is, however, that 2 of the 6 carbon atoms from glucose are lost as CO4
during normal oxidative glycolysis, which pushes the yield of this pathway down to 75%,
in terms of atom economy. Coupling the biofuel producing synthetic pathway to a lossy
process for educt production is, from the economic perspective, a bad idea.

A recent study [44] attacks the aforementioned problem by hand crafting a
non-oxidative glycolysis (NOG) pathway, which prevents the carbon atom loss of its
natural counterpart. The general logic of this designed pathway is to couple the
splitting reaction that produces the desired C, body and a C4 body as putative wast, to
a carbon rearrangement network, which then recycles the C4 body into molecules, that
can be fed back into the NOG as educts. With this strategy NOG achieves a 100 %
carbon atom economy. The architecture of metabolic networks in general shows this
kind of self-referential topology, every putative waste molecule is recycled, making
metabolic networks very different from unevolved chemical reaction networks (e.g.,
atmosphere or geochemical networks), which do not show this property.

The paper [44] discusses several sources of variation for the structure of the NOG
pathway. First the splitting reaction can be performed by two types of phosphoketolase
(PK) enzymes, differing only in the their input sugar preference; either fructose (F) or
xylulose (X). Second the carbon rearrangement network can go either via fructose
1,6-bisphosphate (FBP, a Cj sugar) or sedoheptulose 1,7-bisphosphate (SBP, a C;
sugar). This freedom allows for three basic structural designs (see Fig. 2, [44]) of the
NOG pathway. In this section we illustrate that many more equivalent solutions can be
found automatically. We use a generic model of the chemistry in order to explore
related reactions for which concrete enzymes may not yet exist.

Modelling The molecules are encoded as graphs in the straight-forward manner,
though without stereochemical information. This implies that certain classes of
molecules are represented as a single molecule, e.g., RubP and X5P.

We have modelled the generic transformation rules listed in Tab. [2] and shown in the
supplemental material In [44] the use of phosphoketolase is associated with specific
names for the specific reactions:

XPK for X5P 4+ P; — AcP + G3P
FPK for F6P + P; — AcP + E4P
We extend the naming scheme to cover educts with 7 and 8 carbons:
SPK for S7P + P; — AcP + X5P
OPK for CgP + P; —> AcP + G6P

To create the reaction network we use the starting molecules P;, AcP, G3P, DHAP,
E4P, R5P, Ru5P, F6P, S7TP, and FBP.
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Abbr. Name Description Example Reaction

AL Aldolase A generic aldol addition. G3P + DHAP — FBP
AlKe  Aldose-Ketose Aldehyde to ketone conversion. R5P — Ru5P

KeAl Ketose-Aldose Ketone to aldehyde conversion. RubP — RSP

PHL  Phosphohydrolase Use water to cleave off phosphate. FBP + Ho,O — F6P + P;
PK Phosphoketolase Break C-C-bond and add phosphate. F6P + P; — AcP + E4P
TAL Transaldolase Move Cs-end. F6P + E4P — G3P + S7P
TKL  Transketolase Move Cs-end. G3P + S7TP — X5P + R5P

Table 2. List of generic transformation rules for modelling the non-oxidative glycolysis
chemistry. The full details of the rules are shown in the supplemental material

Network The network is created by iterating the application of all the transformation
rules listed in Tab. [2] until no new molecules are discovered. This chemistry is
theoretically infinite, so we impose the restriction that no molecule with more than 8
carbon atoms may be created. This is a reasonable constraint, since even under
physiological conditions carbohydrates are inherently metastable compounds. For
carbohydrates larger than Cg the decomposition reactions become a dominating
reaction channel. Although alternatives (L-type PPP) or extended reaction sequences
via higher carbohydrates have been suggested their biochemical evidence has been
questioned (see discussion in recent review [88]). The network generation therefore
terminates, and results in a network with 81 molecules and 414 reactions.

Pathways For the overall reaction F6P + 2 P; — 3 AcP + 2H>0O we have
enumerated all solutions using at most 8 unique reactions and with at most 11 reactions
happening in total. Additionally we disable the AL and PK reactions with small educt
molecules; those with less than 3 carbon atoms each. This is in agreement with the
experimentally characterised reversible ping-pong mechanism of these two enzymes [43].
This results in 263 different pathways, which were computed within a few minutes on a
normal desktop computer. In Tab. [3| we categorise the pathways according to the
properties

e number of unique reactions used,

e number of reactions used,

e whether the only bisphosphate used is FBP,

e the histogram of different PK reactions (see the modelling above).

The table shows the number of solutions in each combination. Interestingly it turns out
that the solution space where FBP is the only bisphosphate used is quite similar to the
space where other bisphosphates are allowed but with only 7 unique reactions. The
solutions are distributed in the same manner except for a 1-shift in the number of
reactions. There is a 1-to-1 mapping between these two sets of solutions such that the
only difference in the pathway is the sub-pathways described in Tab. [4]

In Fig. [14] one of the solutions are illustrated in detail. This solution has similar
properties to the solution shown in Fig. 2a in [44]: the phosphoketolase reactions all
have F6P as educt, and the only bisphosphate used is FBP. However, this solution can
be regarded as being shorter as it uses fewer reactions, though the number of unique
reactions is the same. Allowing other bisphosphates than FBP to be used enables even
shorter solutions to be found. Fig. [L5| shows the shortest solution, which uses a
bisphosphate with 7 carbon atoms. Its use of phosphoketolase is also different, as it uses
both XPK, FPK, and SPK.
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Only FBP Other Bisphosphates

8 Unique Reactions 7 Unique Reactions 8 Unique Reactions
Phosphoketolase Type Reactions Reactions Reactions
XPK, FPK, SPK, OPK 8 9 10 11 7 8 9 10 11 8 9 10 11
0,0,0,3 - - - - - - - - - - — 4 16
0,0,1,2 - - - — - - - - - - 3 2 -
0,0,2,1 - - - - - = - - 4 - -
0,0,3,0 - - 1 2 - - 1 2 - - - 9 20
0,1,0,2 - - - - - - - - 4 4 -
0,1,1,1 — - - — - - = — - 3 — — -
0,1,2,0 -1 - S 8 2 -
0,2,0,1 - - - - - - - - - - 6 -
0,2,1,0 - 1 - - - 1 - - - - 9 - -
0,3,0,0 - - 4, - - B 4+ - - - 14
1,0,0,2 - - - - - - = - - - 2 4 -
1,0,1,1 - - - - - - - - 1 - - -
1,0,2,0 - - - - - - - 6 2 -
1,1,0,1 - - - - - - = - - 2 -
1,1,1,0 1 - - - - - - - 3 - - -
1,2,0,0 - 2 - - - 2 - - - - 10 - -
2,0,0,1 - - - - - - = - - - 4 - -
2,0,1,0 S T S S
2,1,0,0 - 2 - - - 2 - - - - 10 - -
3,0,0,0 - - 25 4 - - 2 4 - - - 12 20

Table 3. Overview of number of NOG pathways. Categories marked with subscript 4,
b, and . refer to Fig. 2 of [44], and we see that not only are there alternate solutions in
the exact same categories, but in the case of , we even find a shorter pathway with the
same properties. Note that the left block is similar to the middle block of categories,
but with 1 less reactions used. This is due to a replacement of part of the pathway with
a shorter pathway, see Tab. 4l The pathway shown in Fig. is from the framed blue
category, and the pathway in Fig. is from the framed green category. Their
counterparts with the replacement from Tab. 4| are the unframed shaded numbers.

I
=

H

FBP + Hb O —— P;+F6P
E4P + F6P 2Ly Q3P 4 S7P DHAP + E4P 2L .p,
G3P + DHAP 2Ly pBP H,0 +SBP  HLy  g7p 4 Py
DHAP + E4P + 1,O ——» SiP+P; DHAP t E4P + 1,O ——» SiP+P;
(a) (b)

Table 4. Two pathways with the same overall reaction. l@] a 3-reaction pathway using
FBP as bisphosphate. This sub-pathway is highlighted in Fig. [@] a 2-reaction
pathway using a bisphosphate with 7 carbons. This sub-pathway is highlighted in

Fig.
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Figure 14. Tllustration of a pathway similar to the one depicted in Fig. 2a of [44],
using fewer reactions. This solution category is the framed blue cell of Tab.[3] The
highlighted sub-pathway is the pathway from Tab. @
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Figure 15. Hlustration of the shortest NOG pathway, denoted by the framed green cell
in Tab. [3] It uses three different phosphoketolase reactions: XPK, FPK, and SPK. The
highlighted sub-pathway is the pathway from Tab.
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The basic structure of the NOG solutions combine a productive splitting reaction
with a recycling network, which converts the “waste” produced during the splitting
reaction back into starting material using carbon rearrangements. The major source of
variability in the solutions stem from the flexibility and combinatorial nature of the
carbon rearrangement chemistry. Our investigation nicely illustrates how vast the
chemical network design space is. Even if the reaction chemistry is restricted to only a
handful of enzyme functionalities, systematic exploration of the network design space
without computational approaches is inefficient and many interesting solutions may be
missed.

5.2 The Citric Acid Cycle and Glyoxylate Shunt

The citric acid cycle (TCA) is found with slight variations [89] in all kingdoms of life.
One of TCA’s basic functions is to provide redox-equivalents and H* to the respiratory
chain to harvest energy in the form of ATP molecules. Furthermore, the TCA is one of
the hubs in central carbon metabolism which interfaces between catabolic and anabolic
pathways which provide the necessary building blocks for cellular functions. Two carbon
compounds in the form of acetyl-CoA are feed into the TCA, where they are merged
with a four carbon compound to yield citric acid (a type of tricarboxylic acid), which
gave the cycle its name. Subsequently two carbon atoms are split off from the citric acid
as CO4 followed by a series of “recycling” reactions to regenerate the initial four-carbon
compound, which finally closes the reaction sequence to a cycle. The acetyl-CoA, which
is metabolised in the TCA, is either produced from breakdown of sugars via glycolysis
or by degradation of fatty acids during §-oxidation. In bacteria, plants, and fungi a
shortcut of the TCA exists, called the glyoxylate shunt, which allows these organisms to
de-novo synthesize sugars from acetyl-CoA stemming from [-oxidation of fatty acids.
This type of gluconeogenesis is possible since the glyoxylate shunt bypasses those steps
in the TCA, where carbon is lost in the form of COs. The glyoxylate shunt has been
found in higher animals only up to the clade of nematodes [90]. Recently the question of
gluconeogenesis from fatty acids via the TCA has been re-investigated using elementary
mode analysis [91]. The results support the five decade old finding, that this conversion
is only possible via the TCA if the glyoxylate shunt is included.

In the following we re-investigate the TCA cycle including the glyoxylate shunt and
the feeding reactions to illustrate that the various operation modes (e.g., maximizing
the production of redox-equivalents, autocatalytic solutions, etc.) of the TCA
correspond to different objective function functions. In particular our approach
identifies the gluconeogenesis from fatty acids as an autocatalytic solution in
oxaloacetate, giving a mechanistic explanation why this TCA mode works, insight which
cannot be gained directly by elementary mode analysis.

Modelling We use reaction patterns for the reactions in the TCA cycle and the
glyoxylate cycle, and the patterns necessary to connect pyruvate with oxaloacetate and
acetyl-CoA. We also include the inverse patterns, so we can generate the inverse cycles.

For the starting graphs we use a set of food molecules (e.g., water, NAD' and
coenzyme-A). Additionally we add glyoxylate, puryvate, acetyl-CoA, and all the central
molecules of the TCA cycle.

Network The network is created from a 1-step expansion from the starting molecules.
The central part of the network with the TCA and glyoxylate cycle is shown in Fig.

Overall (Auto)catalytic Cycles For all queries we use oxaloacetate and the food
molecules as the input set, and the set of all molecules as output set.
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Figure 16. Abstract visualization of the central part of the TCA and glyoxylate
network. The black, red, and orange parts correspond to the TCA cycle, which in the
generated network is the catalytic cycle with the maximum production of NADH.
Instead, minimising the length of the cycle leads to the glyoxylate cycle, shown in black
and green. Searching of an autocatalytic cycle leads to two different possibilities: one
based on the glyoxylate cycle (black, green, blue, orange), and one using the reverse
TCA cycle (reverse black, red, orange, violet).
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Using the objective of minimising the number of used reactions, we find a subset of
the glyoxylate cycle. This subset is shown in black and green in Fig. When we
instead use an objective function which maximises the production of NADH, we find the
TCA cycle, depicted in black and red in Fig. Additionally, when searching for
autocatalytic cycles we find the complete glyoxylate cycle, marked with black, green,
blue, and orange in Fig. Another found autocatalytic cycle is the reverse TCA cycle,
obtained as the reverse of the black, red, orange, and violet parts of Fig.

Results For demonstration purposes, we applied optimisation techniques, which are
well established in the field of linear programming (to which FBA belongs as well). In
particular, the reaction network was kept fixed while the objective function was varied
to find solutions respecting specific side conditions. For example, finding autocatalytic
solutions while minimizing the number of used reactions. If the network is queried for
the shortest autocatalytic solution, a cyclic solution in oxaloacetate is found, which
involves the glyoxylate shunt. This autocatalytic solution feeds on acetyl-CoA to
produce two copies of oxaloacetate. One of them can be pushed up glycolysis, while the
other copy maintains the autocatalytic production of more oxaloacetate from
acetyl-CoA. This solution nicely explains mechanistically why organisms, which possess
the glyoxylate shunt, can produce sugars from fatty acids. The reductive (reverse) TCA
cycle is found as an alternative solution. It is one of six naturally occurring carbon
fixation pathways (for recent reviews see [92,93]), which is operated solely by bacterial
lineages in anaerobic, high COy environments. It requires only two ATP molecules to
reduce COs to pyruvate, and is therefore more ATP-efficient than the Calvin-Benson
cycle [63]. In the context of origin of life research it was suggested that, the reductive
TCA operated non-enzymatically on primitive Earth [94-96]. Its stability under
prebiotic conditions is however highly debated [97].

5.3 Autocatalytic Cycles in the Formose Process

Carbohydrates (CH20),,, vulgo sugars, can formally be viewed as polymers of
formaldehyde CH5O building blocks. The chemical reactivity of sugars is dominated by
the two functional groups (1) carbonyl group (C = O) and (2) vicinal hydroxyl groups
(HO — C — C — OH), making carbohydrates amenable to keto-enol tautomerization,
aldol addition, and retro-aldol fragmentation reactions. Due to this intrinsic reactivity,
sugars are potentially labile compounds, which readily isomerize into complex mixtures
under non-neutral conditions. The formose process, described by Butlerov [98] is one of
the scarce examples of an autocatalytic reaction network, which generates complex
mixtures of sugars from an aqueous formaldehyde solution under high-pH conditions
(for a recent review on autocatalysis see [53]). The formose process has intensively been
studied (for a recent review see [99]) for its potential to produce biologically significant
carbohydrates from formaldehyde under prebiotic conditions [100]. The
time-concentration behaviour of formaldehyde consumption during the formose process
shows a linear lag phase, followed by exponential consumption, and a levelling off when
the formose processes runs out of formaldehyde supply. This is the point where the clear
reaction mixture starts to turn yellow and the generated C4—Cg sugars isomerize to a
combinatorially complex mixture of compounds and black tar. The core autocatalytic
cycle of the formose process usually found in the literature [50,/99L[101], glycolaldehyde
“fixates”, via a series of keto-enol tautomerizations and aldol additions, two
formaldehyde molecules (thereby doubling in size) followed by a retro-aldol
fragmentation, resulting in two copies of glycolaldehyde. However, experimental
evidence exists [101,|102] that this base cycle cannot account for the massive
consumption of formaldehyde, after the lag-phase. The reasons is that, under the
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Abbr. Name Description Example Reaction

KeEn Keto-Enol Keto to enol form conversion. Coy — Coe
EnKe Enol-Keto Enol to keto form conversion. Coe —> Coy
AA Aldol addition Merge an enol and a keto. Coe + C; —> C3,

RAA Retro-aldol add. Split a keto into enol and keto. Cgzy — Coe + Cq

Table 5. List of generic transformation rules for modelling the formose chemistry.

reaction conditions, enolization of the carbonyl group and aldol addition are much faster
than “ketonization” (restoring the carbonyl group) required to close the autocatalytic
base cycle. From this experimental evidence the following mechanistic picture arises;
fast repeated addition of formaldehyde to enolized keto groups produces larger sugars,
draining material from the the base cycle and retro-aldol fragmentation of larger sugars
replenishes the base cycle (or variants) with short carbohydrates. How these higher
order cycles are organized around the base autocatalytic cycle is unknown as well as
their concrete structural organization and interconnectedness.

Modelling For the formose chemistry we will adopt the following naming scheme for
molecules; Cy 4y, where N specifies the number of carbon atoms and (t) indicates the
position of the double bond. We use , for aldehydes,  for enol forms, and i for ketones.

The chemistry is modelled based on [100] which describes two basic reactions:
keto-enol tautomerism and aldol reaction. Both are reversible, thus giving four
transformation rules listed in Tab. [5| and shown in the supplemental material The
starting molecules are formaldehyde (C;) and glycolaldehyde (Cs,).

Network The network is expanded to include all derivable molecules with at most 9
carbon atoms, thus reaching a size of 284 molecules and 978 reactions. The
computation time is a few seconds.

Enumeration of Solutions In the network we have enumerated overall autocatalytic
flows starting from those of minimum size. Specifically, flows with the overall reaction

Coa+2Ci —2 Coy,

with minimum number of unique reactions used. For the purpose of this enumeration
we consider two solutions equivalent if the set of reactions used is the same, thus how
many times a reaction is used is ignored. Tab. [6] shows the resulting number of solutions
found, grouped by the number of reactions used and the maximum size of molecules
involved. The enumeration was split into 6 queries, one for each row of the table, and
the combined computation time was approximately 134 hours. We were not able to find
all the solutions corresponding to the two unknown entries en the table. Each of the
queries, in the current implementation, needs more than 200 hours of computation time
and more than 64 GB memory.

Results The computational analysis of the formose process chemical space reveals
that the density of autocatalytic cycles is very high. The majority of the enumerated
autocatalytic cycles involve higher sugers (C5-C8), but conform to the overall reaction
of the shortest possible autocatalytic cycle, referred to as base cycle. The higher cycles
branch off from compounds in the base cycle and merge back to the base cycle further
downstream. The resulting structure of interwoven autocatalytic cycles is highly
self-referential and shows, with respect to this property, similarities to evolved metabolic
networks, where also all tentative wast compounds are recycled by feeding them back
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Maximum #C

Unique reactions used 4 5 6 7 8 9 Sum

6 0o 0 1 1 1 2 5
7 0o 0 O 0 0 2 2
8 15 7 17 37 68 135
9 0o 0 12 12 37 69 130
10 0 12 50 274 849 — >1185
11 0 5 41 190 738 — >974

Table 6. Overview of the number of autocatalytic flows in the formose chemistry.
Solutions are grouped by the number of unique reactions used, and by the number of
carbon atoms in the largest molecule used. We were not able to compute the missing
entries due the demand of computation time (more than 200 hours) and memory (more

than 64 GB RAM).
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Figure 17. Schematic overview of 3 autocatalytic pathways in the formose chemistry,
where carbon-carbon double bonds and carbonyl groups are shown, while hydroxyl
groups and hydrogens are implicit. The first pathway can trigger the second pathway
via the green molecule, and the second pathway can in turn trigger the third pathway
using either the purple or orange molecules. The autocatalytic compound,

glycolaldehyde, is shown in blue.
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into the metabolic network. The massive drain of material by the feeding of the higher
autocatalytic cycles considerably slows down the turn-over of the base cycle or even
result in breaking of the cycle. Furthermore, even if the higher autocatalytic cycles
themselves would not turn over, the base cycle would still be replenished with C2-C3
compounds generated by retro-aldol fragmentation reactions of longer sugars. This
results in a mechanistic scenario where compounds of the base cycle massively fixate
formaldehyde in a fast polymerization type process to form longer sugars, which
themselves feedback to their starting points on lower levels via fragmentation reactions,
refilling these crucial compounds in the base cycle. In that way the fragmentation
reactions compensates for the material loss of the autocatalytic base and higher cycles.
To better understand the functional aspects of this intricate structure, the couplings
between the autocatalytic cycles were analysed. We found, that the interactions
between autocatalytic cycles are such, that later cycles in the cascade are triggered by
compounds produced by predecessor cycles. Fig. [I7] shows an example of such a
triggering cascade sequencing 3 cycles, all with the same overall reaction.

6 Discussion

The model presented here, based on integer hyperflows, provides a versatile framework
for querying reaction networks for pathways. The restriction to integers, although
harder to solve in the general case, has the advantage that the network flow solution can
be directly interpreted in terms of mechanisms. Furthermore, questions such as “how
many of a specific product can be formed from a limited amount of starting molecules”
can easily be formulated and answered in our framework, due to the use of Integer
Linear Programming. The ILP approach also enables a targeted enumeration of
pathways of interest.

Autocatalysis, for instance, is frequently discussed as one of the key mechanistic
concepts to understand the transition from abiotic to biotic chemistry. Reaction
chemistries that “maximize” the emergence of this reaction pattern are considered the
most plausible predecessors of the chemistries employed by present-day biochemistry.
To identify these potential precursor reaction chemistries, a strict algorithmic approach
for the search and identification of functional subnetworks in arbitrary reaction
chemistry is indispensable. We applied our technique to the formose process and found
an intricate topological structure of cascading autocatalytic cycles that feed upon each
other, fitting well to the existing experimental evidence. By switching the objective
function, different “optimal” solutions can be identified in the same hypergraph as
demonstrated with the chemical space of the TCA cycle.

The NOG problem is a prime example of the problem setting in engineering cellular
metabolisms, a branch of Synthetic Biology. Given starting material, a target molecule,
and a set of enzymes, the task is to find a network that implements the desired chemical
transformation. Because of lack of efficient computational network design methods, the
established work flow rests on directed evolution and screening [103]. This requires
searching for the desired transformation network in metabolic networks of existing
organisms, transplanting the identified pathways into the microbial cell factory, followed
by improving the performance of the pathway in the alien environment of the host cell.
Although impressive examples of this approach have been published [45]/47,(104], this
strategy must fail, if no natural pathway, implementing the desired transformation, is
known.

Finally, the combination of a graph grammar-based generative chemistry with
hyperflow optimisation techniques results in a extremely powerful framework for
attacking a wide range of problems from Chemistry and Biology. The grounding of the
graph grammar approach in well established mathematical theory allows us to provide
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efficient algorithms for an intermediary level of detail. For instance, the Double Pushout
formulation of the reaction rules gives us a handle on tracking individual atoms
throughout the network, e.g., following specific pathways. The graph transformation
formalism also makes it possible to lump reaction sequences into a single overall
reaction [84], thereby enabling precise coarse graining operations on reaction networks.
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A S1 Appendix. Reduction from Independent Set
to Maximum Output

This reduction is intended to serve as an example for Sec. [3} in the context of LP
relaxation. For a wider set of proofs of the computational complexity of integer
hyperflow problems, see |29], where also reductions to bounded hyperedge degree
networks are described. We here reduce between the optimisation versions of the
problems, though it can easily be adopted to the decision versions. In order to easily
compare the reduction to the LP relaxation of the INDEPENDENT SET problem, we will
also state the ILP formulation of the problem.

INDEPENDENT SET: Given an undirected graph G, find a set of vertices V! C V(G),
of maximum cardinality, such that no edge in the graph is between vertices of V', i.e.,
EGNV' xV' =40.

MAXIMUM OUTPUT: Given

e a directed multi-hypergraph H,
e a special output vertex t € V(H),
e and lower and upper bounds on flow I,u: E(H) — Ny,

find an integer hyperflow f: E(H) — Ny, with maximum output of ¢, i.e., max f(e;").
ILP Formulation of Independent Set Let G = (V, E) be the input graph.

max E Ty

veV
st. x,+x, <1 Y(u,v) € E
x, € {0,1} YveV

The resulting independent set is the vertices v € V with x,, = 1.
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Reduction to Maximum Output Let G be the input graphs for the
INDEPENDENT SET problem. We will first construct a directed multi-hypergraph #:

H=(V(H), E(H)
V(H) = {vg} U {ve | e € E(G)}
E(H = {({ve lecd)}, fvg}) | v e V(H)}

We thus construct a vertex for each edge in G and an extra “goal vertex”. The
hyperedges correspond to the vertices of G, with the goal vertex as the head and the
rest of the vertices corresponding to the incident edges of G as the tail.

The hypergraph is then I/O-extended to H, and we define the lower bound on flow
to be 0 on all hyperedges. We set the upper bound to 0 for the input flow to the goal
vertex, and 1 for the input to the remaining vertices. All other upper bounds are left

infinite.

After maximisation of the output flow of the goal vertex we can construct the
independent set as all the vertices v € V(G) where the corresponding hyperedge

e € E(H) has f(e) = 1.

B S2 Appendix. Molecules

The following sections contains tables of the molecule abbreviations used in the main
text. Some molecules are modelled using non-chemical vertex labels that represent
unimportant substructures. For those molecules we explicitly visualise the labelled
graph, while for the strictly chemical molecules we show a SMILES string.

B.1 Molecule Abbreviations Rules for NOG

Abbreviations Name SMILES /Visualisation
(.
AcCoA Acetyl-CoA N
CJ)A H
AcP Acetyl phosphate 0P (0) (=0)0C(=0)C
CsP occ(c(oyc(oyc(oyc(oic(oycorp(o) (0)=0)=0
COq Carbon dioxide 0=C=0
CoA Coenzyme A 0 \‘\CQA
DHAP Dihydroxyacetone phosphate 0P (0) (=0)0CCc(=0)COo
E4P Erythrose 4-phosphate 0P (0) (=0)0cc(0)Cc(0)C=0
F6P Fructose 6-phosphate 0CC(=0)C(0)C(0)C(0)COoP(=0) (D)0
FBP Fructose 1,6-bisphosphate 0C(COP(0) (0)=0)C(0)C(O)C(COP(0) (0)=0)=0
G3P Glyceraldehyde 3-phosphate Cc(C(C=0)0)0P(=0) (0)0
H>O Water 0
P; Phosphate 0=P(0) (0)0
R5P Ribose 5-phosphate 0P (0) (=0)0cc(0)Cc(D)C(0)C=0
Rub5P, X5P Ribulose 5-phosphate, Xylulose 5-phosphate 0CC(=0)C(0)C(0)COP(=0) (0)0
S7P Sedoheptulose 7-phosphate 0=P(0) (0Cc(D)Cc(o)Cc(o)Cc(o)Cc(=0)Cco)a
SBP Sedoheptulose 1,7-bisphosphate 0C(COP(0) (0)=0)C(D)C(0)C(D)C(COP(D) (0)=0)=0
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B.2 Molecule Abbreviations for TCA and Glyoxylate

Abbreviations Name SMILES/Visualisation
|
AcCoA Acetyl-CoA . CL .
CJ)A ]‘I
Acon Aconitate 0=C(D)CC(=CC(=0)0)C(=0)0
AKG 2-oxoglutarate 0=C(0)C(=0)CcCC(=0)0
Cit Citrate c(c(=0)0)Cc(cc(=0)0) (Cc(=0)D)0
COq Carbon dioxide 0=C=0
q
CoA Coenzyme A . - \CO A
Fum Fumarate C(=CC(=0)0)C(=0)0
GLX Glyoxylate Cc(=0)Cc(=0)0
Ht Proton [H+]
H>0O Water 0
ICit Isocitrate 0=Cc(0)c(cc(=0)0)Cc(o)Cc(=0)0
Mal Malate 0=C(0)cc(p)c(=0)0
NAD* Oxidized nicotinamide adenine dinucleotide NAD*
NADH Reduced nicotinamide adenine dinucleotide 1 —NAD
OAA Oxaloacetate 0=C(0)Cc(=0)CcCc(=0)0
OASuc Oxalosuccinate c(c(c(=0)Cc(=0)0)C(=0)0)C(=0)0
P; Phosphate 0=pP(0) (0)0
Pyr Pyruvate c(cc(=0)0)C(=0)0
Q Quinone O\ Q/O
QH- Hydroquinone e O o RO .
Suc Succinate c(cc(=0)0)Cc(=0)0
1‘1
0 o)
0 “
SucCoA Succinyl-CoA H
CoA H
g
£
H H
xMP H
(—
«DP ) — ‘ —0
0
Sy
H
N
xTP ()oo/
0 P
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B.3 Molecule Abbreviations for Formose

Abbreviations Name SMILES /Visualisation
Cq Formaldehyde  C=0

Caa Glycolaldehyde 0CC=0

Cae 0C=C0

Csa 0CC(0)C=0

C S3 Appendix. Transformation Rules

The following sections contains visualisations of all graph transformation rules used to
generated the analysed networks. Each rule is annotated with references to the data its
modelling is based on. Most of these reference are to entries in the MACIiE (Mechanism,
Annotation, and Classification in Enzymes) database [105,/106].

C.1 Transformation Rules for NOG
C.1.1 Aldolase

L K R
(i\ I‘] (H) (i\ H O (i\‘ H 7(‘)
C\CH CH C\CH CH C\CH—CH
OH \()H OH

MACIE entry 0052.

C.1.2 Aldose-Ketose

L K R
— H
O=—=CH 1‘| O CH T (‘)7(‘17”
H—C—O0 m Cc 0 H  C—o
MACGIE entry 0308.
C.1.3 Ketose-Aldose
& K R
o—8__n O CH 1 ('):(‘?H H
1‘[ C—0 H C O H—C—O0

MAGIE entry 0308.

C.1.4 Phosphohydrolase

L K R
H— OH H OH H OH
0 p—"O0H ; _OH (‘) ‘/()H
C/ ({/ \()H C/ ({/ \()H C/ (4/ \()H

MACIE entries 0043, 0044, and 0047.
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C.1.5 Phosphoketolase

L K R
0 0 0=
¢ C o —C o0
! \/ on ! ('// oH R C// OH
wo—_~ ‘ i oH i ‘ i on /N ‘ i
c O—D—OH C O—P—OH (,\ O——D—OH
H f H H f
0 ol 0

MetaCyc |107] reaction entry 4.1.2.22.

C.1.6 Transaldolase

L K R
Ho Ho Ho
Ho— ¢ Ho—C Ho— ¢
\ HO HO \ HO
C C C
2~ 20—~ P~
(0] CH\ 0] CH 0] /CH
\TH (‘*H cH CH H(‘} WH
0 0 0 0 0 0
H H H
MAUCIE entry 0148.
C.1.7 Transketolase
L K R
H H H
(") (") 0 0 (‘) (‘)‘
H H H H HC H
C . C C . C C\C C
J/ o) = AR
H,C H,C H,C
AN AN AN
OH OH OH
MACGIE entry 0219.
C.2 Transformation Rules for TCA and Glyoxylate
C.2.1 AcCoACarbonylTrans
L K R
0 H o H 0O—H
C CH c  CH C—CH,
OQC/ OH / )§C/ H U= —oH
C /f c 0 c :
5 ][/ . 5 H /S\“‘\H
CoA CoA CoA

MACIE entries 0053 and 0078. The vertex label CoA is used as a shorthand for
representing all of coenzyme A, except for the terminating SH group.
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C.2.2 AcCoACarbonylTrans, inverse

L K R
O—H O H O H
C—CH, C CH, C CH,
/O S C/ / S C/ / =SS C/
e OH C OH Ie // 5,)H

/

S— ; S
Pt P 0

CoA CoA CoA

MAUCIE entries 0053 and 0078. The vertex label CoA is used as a shorthand for
representing all of coenzyme A, except for the terminating SH group.
C.2.3 Hydration

L K R
C—C C C (\‘*C“

H—OH H OH H OH

MACIE entries for EC 4.1.2.*.

C.2.4 Dehydration

L K R
T*(‘} C C C—cC
H

OH H OH H—OH

MACIE entries for EC 4.1.2.*.

C.2.5 NAD Oxidoreductase

L K R
(‘J C C
C C C
oo o o o=—c"
H H NAD* H H NAD H H—NAD

MACGIE entries 0007 and 0021. The vertex labels NAD+ and NAD are used to represent an
entire NAD molecule. Though, the reduced form has an attached hydrogen atom.

C.2.6 NAD Oxidoreductase, inverse

L K R
C C (‘*
C C C
o—0c" o o o—c\/
H H—NAD H H NAD H H NAD

MAGIE entries 0007 and 0021. The vertex labels NAD+ and NAD are used to represent an
entire NAD molecule. Though, the reduced form has an attached hydrogen atom.
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C.2.7 Carboxylation

L K R
O O 0—1H

\C/c 7 \C/C o

J j j

O

MACIE entries 0007 and 0021.

C.2.8 Decarboylation

N\
a
|

N\
a
a

/

Q

\

a

N\
/
a
\
a

AN C
0

0] 7 c— 7 !
J J J

MACIE entries 0007 and 0021.

C.2.9 Carboxylation, S-trans

L K R
I I I
S y S ) S
()/C o ow 0 ‘ C H O/C\c oy
7\ '\ /\
i o« . o ¢ b o ¢
NAD NAD NAD*

MACIE entries 0106 and 0280. The vertex labels NAD+ and NAD are used to represent an
entire NAD molecule. Though, the reduced form has an attached hydrogen atom.

C.2.10 Decarboxlyation, S-trans

L K R
I I I
C S C S s
o~ e et 0 C o o/ o o+
VAN J\ J\
H o ¢ i o ¢ q o ¢
NAD* NAD NAD

MACGIE entries 0106 and 0280. The vertex labels NAD+ and NAD are used to represent an
entire NAD molecule. Though, the reduced form has an attached hydrogen atom.
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C.2.11 Acid CoA Ligase

L K R
<MP <MP <MP
P P e
‘ (‘)H ‘ (‘)H ‘ (‘)H
0 OH 0 OH 0 OH
0 < i < i o <
| o o )
S OH S OH OH
T C C
7\ VAN VAN
o ¢ o ¢ o ¢

MACGIE entry 0198. The vertex label xMP is used as a shorthand for representing any of
the nucleoside monophosphates, e.g., AMP.

C.2.12 Acid CoA Ligase, inverse
L K R
x)‘IP xk"IP XI\‘IP
0 P P
OH OH OH
0 OH 0 OH o) OH
H o ‘ < H ‘ < 0 ‘ <
| o o | o
oH S oH S OH
C C e
/\ /N /N
o c o c o ¢

MACGIE entry 0198. The vertex label xMP is used as a shorthand for representing any of
the nucleoside monophosphates, e.g., AMP.

C.2.13 Q Dehydrogenase
L

()///Q\\\o

O

C—C

MAGIE entry 0294. The vertex label Q is used to model the cycle in both hydroquinone

and quinone.

C.2.14 Q Dehydrogenase, inverse

C=—C

O

O

C

C

MACGIE entry 0294. The vertex label Q is used to model the cycle in both hydroquinone

and quinone.
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C.2.15 Oxo Acid Lyase

L K R
(‘7—(‘) c o C—0
TH H CH 1l HC— 1
O O O
O OH O OH O OH

MAUCGIE entry 0272.

C.2.16 Oxo Acid Lyase, inverse

L K R
c=—o0 ) (‘1—(‘)
HC——11 CH 1 CH T
C C C
/
07 om 07 om 07 om

MACGIE entry 0272.

C.3 Transformation Rules for Formose

The two reversible reactions have been modelled based on [100].

C.3.1 Keto-Enol

L K R
c=—0 c 0 c—O0
C—H C H ‘(‘* }‘|
C.3.2 Enol-Keto
L K R
c—O0 c 0 c=—0
‘(‘? 1‘| C H C—1H
C.3.3 Aldol addition
L K R
H H H.
- .
[ S A S |
C C ¢ C C_ ¢
\\\C C o

O O O O O O
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