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The Localisation of Interaction and Learning in the
Repeated Prisoner’s Dilemma!

Robert Hoffmann? and Nigel Waring®
February 15, 1996

Abstract

The evolution of cooperation in the repeated prisoner’s dilemma depends on
the conditions under which the game is played. The results of a series of computer
simulations show that the emergence of cooperative play in the game is strongly
affected by the localisations of both interaction and learning. While the local-
isation of learning promotes mutual cooperation, the localisation of interaction
has an ambiguous effect on it. Moreover, the localisation of learning seems to
promote disequilibrium behaviour in the system.

1 Introduction

Despite four decades of intensive research, the growth in the literature on the repeated
prisoner’s dilemma game {RPD) is showing no signs of abating. While many social
scientists still perceive a need to complete their understanding of the evolution of coop-
eration among selfish and rational individuals, other disciplines are increasingly jumping
on the bandwagon for their own reasons. In biology, the game has been used as a rep-
resentation of the problem of reciprocal altruism between animals and organisms (see
Axelrod and Hamilton [7], Maynard Smith [25], Trivers [41]). The computer sciences
are testing novel techniques to model human decision-making and interaction, such as
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neural nets and classifier systems, through their application to this well-studied sce-
nario. The exchange between the different disciplines involved in researching the RPD
can be highly rewarding. Although the present study falls into the first category, it has
evolved out of the collaboration between an economist and a computer scientist.
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Figure 1: The Prisoner’s Dilemma

The prisoner’s dilemma (figure 1) is a symmetric pairwise game in which each player
has the option to cooperate (c) or to defect (d). The four payoffs of the game obey the
simple conditions T > R > P > § and 2R > T'+ 5. For games 1n which the last round
is common knowledge, dd in every round is the only Nash equilibrium. The conundrum
of the game is the fact that the resulting equilibrium of mutual defection (dd) is pareto-
dominated by mutual cooperation (cc). Despite this compelling logical finding, mutual
cooperation in the game has been observed both in laboratory experiments (Dawes and
Thaler [11]; for surveys of experimental activity, see Rapoport and Orwant {33}, Roth
[34] and Poundstore [32]) and in many social and economic settings described by the
game (see Dawes and Thaler [11], Axelrod [3]). Hence, the research agenda in this field
is to identify the circumstances under which mutual cooperation can be sustained in
the game. Although early results established that mutual cooperation is possible in
the infinitely repeated game (see Fudenberg and Maskin {14]) as well as in the finitely
repeated game with incomplete information (Kreps et al. [21]), there is no consensus on
how this cooperation can be ensured. Specifically, these results stipulate cooperation
as only one possible of a host of multiple equilibria.

One source of this difficulty has been identified in the conventional assumption of
instrumental rationality. It is held by some authors that cognitive limitations prevent
real agents to gather, process and store information in order to be able to behave ra-
tionally in terms of the theory (Simon {38, 39]). Instead, agents are seen to display
‘bounded rationality’, that is, employ decision-making routines updated by emulative
and experimental learning on the basis of their performance. In game theory, routines
are modelled as set strategies that are adopted on the basis of the payoffs they generate.
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This type of agent learning is suitably modelled in an evolutionary context (Maynard
Smith [25], Mailath [23], Hodgson {16}), where alternative strategies diffuse in popula-
tions of players according to the principles of (artificial) selection and survival of the
fittest. Evolutionary game theory analyses this type of interaction and learning among
populations of boundedly rational agents paired successively to play repeated games.

Work in this area has also encountered the problems of demonstrating the existence
and uniqueness of cooperative equilibria (Boyd and Lorberbaum [10}). In response,
some authors have abandoned the equilibrium analysis of the game in favour of an in-
vestigation of the process of play leading towards stability. However, progress has been
hampered by problems of computation in the analysis of the models. Evolutionary
models as dynamic systems can exhibit complexity in the guise of lock-in, path depen-
dence, multiple equilibria (Arthur [1]) or even chaotic behaviour (Nowak and Sigmund
[29]). In addition, experimental learning of boundedly rational agents may introduce
stochasticity to the model that is difficult to capture by theoretical means {Axelrod
[4]).

As a result, much of the recent work on the RPD has adopted the computer sim-
ulation technique to simulate the behaviour of interacting and learning populations of
boundedly rational agents. The computer permits analysis in the presence of both high
model and high dynamic complexity. Moreover, computer simulations are ideally suited
to monitor complex processes as they unfold. The pioneering work in this area is due
to Axelrod [3], who was the first to use the simulation technique to demonstrate the
individual viability, the spread and the subsequent stability of conditionally cooperative
behaviour among populations of players. However, his seminal results are in the pro-
cess of re-examination with the realisation that the inductive nature of the computer
simulation technique generates a crucial dependence of the results on the parametric
assumptions of the model. In particular, seven key simulation parameters which have
a strong impact on the outcome of the simulation have been identified (Axelrod and
Dion (6], Hoffmann [17]): they are the composition of the initial population, the rela-
tive size of the RPD payoffs within the game’s conditions, the number of rounds played
per interaction, the presence of stochastic shocks or agent ‘mistakes’, the type of agent
strategies, the definition of the agent learning dynamic and the structure of agent inter-
action and learning. While Axelrod’s results remain unchallenged with respect to the
specific settings for the parameters he employed, much research is being carried out to
investigate the effect of varying the values of individual simulation parameters on the
evolution of cooperation. This research aims to establish a comprehensive list of the
factors that promote cooperative behaviour in the game.

Work to shed light on the effect of varying the more fundamental of these parameters
has progressed steadily over recent years. The effect of varying the relative size of the
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game’s payoffs within its conditions (Mueller {27), Nachbar (28], Hoffmann [17]) and
of noisy strategy transmission (Hirshleifer and Martinez Coll [15], Mueller [27], Miller
[26], Bendor, Kramer and Stout [8], Hoffmann [17]) is now well-understood. However,
little is yet known about what impact the use of alternative population structures has
on simulation results. The present study reports results from a series of simulations
designed to investigate this matter systematically.

2 Population Structure

The process matching agents to play the RPD and learn from one another, or in Axelrod
and Dion’s [6] words, the ‘population structure’ of the simulation, has a profound impact
on the simulation results (Axelrod and Dion [6}, Hirshleifer and Martinez Coll, Mueller
[15], Sigmund [37]). However, most of the early contributions sidestepped the complex
issue of examining the precise effect of population structure by employing either ex-
haustive or randomised matching processes that avoid asymmetric effects. Nonetheless,
Axelrod acknowledged at the very outset of the RPD-simulation literature that much
of the behaviour the literature is trying to capture involves biased matching processes
(Axelrod [3]). In Axelrod’s view, agents mainly interact with and learn from certain
subsets of the total population.

Recently, alternative and more realistic population structures of this sort have been
explored in the literature. Vanberg and Congleton [42] as well as Stanley, Ashlock and
Tesfatsion [40] investigated games where players have an option to exit once selected to
play. However, this violates the conditions of the game as defined by Axelrod (3] and
arguably defeats its paradoxical character. Axelrod [3] and Holland [18] consider agents
which carry social labels or tags on the basis of which they are matched fo play the game.
This area of research is promising but yet at an early stage. A third strand of work is
concerned with introducing a territorial structure to interaction and learning (Axelrod
[3], Nowak and May {30, 31], Ellison [12], Feldman and Nagel [13], Routledge {35],
Kirchkamp [20]). The motivation for this approach is that much of the interaction and
learning that computer simulations aim to model takes place within ‘neighbourhoods’
of players. For instance, firms tend to interact with and learn from other firms either in
geographical or in more abstract proximity (for example in terms of vertical or horizontal
integration). In computer simulations, this kind of interaction can be captured by
placing agents into territorial structures and restricting them to interact and learn
within geographical neighbourhoods. For interaction, a neighbourhood determines the
subset of the simulation pool with which a player is matched to play the repeated
game. Localising learning means restricting the subset of the pool from which players



can learn better-performing strategies. Nowak and May [30, 31] study a population of
agents distributed on squares on a torus which are capable only of the Always Defect
(AD) and Always Cooperate (AC) strategies. Fach agent interacts with the agents
on all eight adjacent squares and imitates the strategy of any better-performing one.
Nowak and May find that the distribution of strategies on the torus depends on the
relative size of the RPD-payoffs. Cooperative behaviour can be sustained in clusters of
agents that insulate cooperators from hostile ADs under certain RPD payoffs.

Both Routledge [35] and Kirchkamp [20] consider localised interaction between
agents on a torus employing finite automata to play the game. While these authors
detect the effects of varying the payoffs, the learning assumption as well as the amount
of noise in the system on simulation results, they do not compare global and local
population structures.

Hence, despite the obvious promise of analysing the effect of the localisation of both
learning and interaction, further research 1s clearly required. Specifically, two questions
arise from the work reported to date. First, in order to ascertain the effect of localising
interaction and learning, it is necessary to compare the conventional global model with
models incorporating a localised population structure. In the literature to date, little
comparison of this sort is made. The current work is intended to address this issue. The
comparison is most suitably made by investigating the localisation as a variable of the
model. In this sense, the current work reports on the results of increasingly localising
interaction and learning starting with global population structures.

Secondly, both Axelrod and the subsequent RPD-literature treat the neighbour-
hoods for interaction and learning as identical. The argument is that restricting players
to interact within a neighbourhood also impairs their ability to observe and thus learn
on a global scale. However, it is argued here that the localisation of learning and inter-
action are two separate topics which deserve individual attention. In many instances
it is not clear why the localisation of both learning and interaction should coincide.
It is easy to imagine situations where individuals interact locally while being able to
observe what individuals outside their interaction-neighbourhood are doing. For ex-
ample, while the inhabitants of a small village may rarely have interactions outside 1t,
they may nevertheless be able to observe the behaviour of outsiders via access to the
mass media. Conversely, individuals in large urban areas may be able to interact with
a larger proportion of their environment, but cognitive constraints may prevent them
from observing and remembering the behaviour of everyone they have encountered.
As a result, in the following, a model will be presented in which the localisations of
interaction and learning are separate parameters.



3 The Model

In order to investigate these issues, the following model was employed. Following recent
literature on bounded rationality (Aumann [2], Rubinstein {36}, Binmore and Samuelson
[9]), the agents in this model select Moore machines to play the RPD on their behalf.
A Moore machine is a finite automaton which generates an output contingent upon
its own current state and its current input. Finite automata such as Moore machines
are well-suited to represent the game strategies of boundedly-rational players. For the
RPD, the possible states, inputs and outputs of the machine are elements of the set
{d, c}. The inputs into the machine are the moves of the opponents, and the output the
machine’s own moves. The automaton’s states map its input onto its output. Moore
machines can have any finite number of states. One-state Moore machines have either
a d-state or a c-state and are equivalent to AD- and AC-automata respectively. Two-
state Moore machines have one d-state and one c-state. These machines generate moves
on the basis of the outcome of the previous round of play in a game. There are thus
twenty-six possible two-state Moore machines, a complete list of which is provided by
Binmore and Samuelson [9] as well as Linster [22]. The present work examines the
effect of independently localising agent interaction and learning with agents using both
one- and two-state Moore machines. Two-state Moore machines can exhibit behaviour
considerably more complex than that of their more forgetful colleagues and hence the
effect of the localisations may differ. Moreover, the use of these two conventional
machine types allows comparison with previous work on both automata types.

In the current model, populations of n such agents are located on the periphery
of one-dimensional rings. The advantage of rings (or tori, the two-dimensional version
of the ring structure) compared with other spatial models such as chessboards is that
boundary effects, where players have an unequal number of neighbours, are avoided.
The players on the ring are restricted to interact with their immediate ¢ neighbours
on either side of the ring. For example, with an interaction neighbourhood of size
1 = 2, each player would interact with one player from either side. Further, players are
assigned to learning neighbourhoods of size I, which define the number of neighbours
learning agents can emulate. Hence the population of players on the ring is structured
in a web of overlapping interaction as well as learning neighbourhoods. The increasing
localisation of interaction and learning is analysed with simulations using alternative
values for [ and ¢ respectively subject to 2 < ¢ <n—-1land 2 <1< n—1 and
otherwise identical parametrisations. Series of simulations were carried out sampling
possible combinations of ¢ and {.

Learning in this model is implemented using a Genetic Algorithm (GA). The GA
is a population-based heuristic search technigue. Its popularity derives from its proven



robustness and success at finding near-optimal solutions to a wide range of problems
involving complex search spaces. Potential solutions in the GA are encoded as strings of
binary digits analogous in function to the chromosome of biological systems. An initial
randomly generated population of bit-strings are manipulated by the GA using idealised
genetic operators. The first, crossover, allows for recombination of parent bit-strings in
a process functionally analogous to sexual reproduction; the second, mutation, causes
random perturbations of individual digits in the resulting offspring strings. Evolution-
ary pressures are applied to the population by only allowing the most ‘fit” individuals
to mate, and using the resulting offspring to replace weak population members. Fitness
in this context refers to the efficacy of the individual solutions when applied to a given
problem. By promoting the propagation of useful genetic material at the expense of
less useful material, the population eventually converges on near-optimal solutions.

The GA’s use of evolutionary processes in optimisation it a popular means of mod-
elling learning under bounded rationality (see Axelrod [5], Marks [24], Miller [26], Rout-
ledge [35]). Learning boundedly rational agents, much like the GA, display optimising
behaviour on the aggregate despite their individual myopia. Each individual agent
merely seeks to improve their performance by selecting amongst alternative decision-
making rules using imitation and trial-and-error learning. Individual rules are thus
subject to artificial evolutionary processes generated by agents’ selection between them.
Thus, on the aggregate, successful rules can spread amongst pools of players much in
the same way as good solutions are propagated by the GA.

The GA is well-suited for incorporation into the simulation of interacting boundedly
rational agents. Agent strategies in the guise of binary strings representing Moore
machines can be used as the possible GA-solutions. Finite automata lend themselves
to the binary representation in the computer program and thus can be conveniently
subjected to the GA’s artificial evolution (see Hoffmann [17] for an exploration of finite
automata and their genetic representation as well as manipulation). The evaluation of
the automata’s fitness consists of their average payoffs generated by their interaction
with other machines.

We depart from the conventional approach to GA implementation in three ways.
First, in the canonical GA there is no spatial dimension which allows the formation of
a relationship between a strategy and its location. Here we adopt a cellular implemen-
tation of a GA (see Kapsalis et al. [19]) to enable the imposition of spatial properties
on the model. One consequence of this approach can be seen in the type of mating
process employed. Traditionally, the selection of partners for mating is unrestricted.
Here selection is limited to individuals belonging to the same learning neighbourhood.
Next, the traditional approach to integrating new members into the population has
been abandoned in favour of one more suited to the cellular implementation of a GA.
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Of the two offspring produced each mating, only one, selected randomly, is allowed to
survive. This is used to replace the strategy of the first parent automaton. The second
parent’s strategy remains intact. The first parent strategy cannot be selected again
during the same learning period; the second can while it remains unmodified. The final
departure from the GA as conventionally used is in the way fitness scores are derived.
Traditionally, the GA evaluates alternative solutions to a static problem. Here fitness
is a measure of a strategy’s performance in a mutually adapting environment of com-
peting players. This form of evolutionary adaption is called bootstrapping or coevolution
(Axelrod [5]).

Each simulation thus proceeds as follows. The n players on the ring are allocated
a random automaton of the type concerned. Each agent then interacts with all their ¢
neighbours and obtains an average payoff accordingly. After the interactions have been
completed, half the population are chosen at random for a strategy update. This update
involves selecting an agent from the learning neighbourhood of the player concerned us-
ing a stochastic process that discriminates from a probability distribution favouring
the better neighbours. Crossover using a randomly-selected single crossover point oc-
curs with probability 0.6, otherwise the learning player’s automaton remains intact. If
crossover occurs, one resulting offspring is chosen at random to replace the learning
player’s strategy. Subsequently, the player’s strategy is subjected to a mutation rate of
0.001. After this process is repeated for all n/2 learning players, the next generation of
the simulation commences and proceeds as the first.

4 The Results

The work reported here explores the effect of independently localising the interaction
and learning of populations of boundedly rational agents playing the RPD. The agents
are distributed on rings and their strategies are represented by Moore machines. Agent
co-adaptation is modelled by the GA. Two series of simulations of this model were
carried out. In series one, twenty-one players were placed on the ring and allocated
one-state Moore machines at random. The parameters : and [ were varied between
two and twenty at intervals of two with otherwise identical parametrisations. For each
i/l-coordinate, one hundred simulations were carried out and the results aggregated
respectively. One round per game was played. In series two, thirty-one players were
placed on a ring and randomly allocated two-state Moore machines. The variables ¢
and [ were independently varied between two and thirty at intervals of four. For each
localisation coordinate, twenty five simulations of five hundred generations were run
and the results aggregated. Fifty rounds per game were played. For both series, the



payoffs used throughout were 7’=1, R=0.6, P =0.2 and S = 0.

The GA generates an evolutionary learning process which manipulates the strate-
gic composition of the population on the basis of individual strategies’ fitnesses. A
strategy’s fitness in turn depends on its adapting strategic environment. The resul-
tant dynamic system thus converges when the individual fitnesses in the population
are equal. If the convergence is stable, the system has reached an attractor. If multi-
ple attractors exist, the selection between them depends on the parametrisation of the
system which defines its initial conditions. Subsequently, the mutation operator of the
GA causes temporary or permanent deviations from the attractor(s). In the following,
we report results from the observation of such dynamical systems under alternative lo-
calisations. The analysis will focus on the issue of how the selection of the cooperative
attractor is affected by the change of localisation parameter. The next two sections
address this issue for one-state and two-state machines respectively.

4.1 One-state Moore Machines

The systems comprising one-state automata displayed convergence on two attractors,
mutual defection and mutual cooperation respectively. While all systems generally
converged towards either of the two, temporary departures from as well as periodic
shifts between them were in evidence. The selection between the attractors was strongly
influenced by the two localisations. In general, both localisations promoted cooperative
behaviour in the populations. This effect can be analysed using data on the frequency
distributions of all rounds played in the simulations over the RPD’s four outcomes dd,
dc, cd and cct.

The simulations displayed changes in behaviour in terms of these frequencies under
varying values of ¢ and [ (see figures 2(a) to 2(c)). Most of the interactions of the
observed simulation were characterised by mutual defection (figure 2(a)). However,
high levels of localisation generated some amount of mutual cooperation (figure 2(c)).

The diagrams suggest that mutual cooperation was aided by the localisations. For
2 =2,1=2,67% of rounds were characterised by mutual cooperation. About 20% of
rounds played with ¢ = 2, [ = 4 were cc. As the low ridge in figure 2(c) suggests, { = 2
generated a small amount (about 1%) of mutually cooperative behaviour for all values
of 7. All other simulations displayed no significant amount of mutual cooperation. This
result corresponds to Nowak and May’s [30, 31] finding. However, we can confirm that
only extreme levels of both localisations can produce this interesting effect.

The theoretical explanation of this result is that under the localisations, cooperative

4Since the incidence of dec and cd in a simulation must be identical, we report only the former.



players can persist in clusters which afford some degree of insulation from defecting
players elsewhere. The localisation of learning generates monomorphic strategy clusters
on the ring since the imitative learning implicit in the GA propagates fit strategies
locally. Since cooperative players benefit from playing fellow cooperators while defecting
players suffer in the presence of defectors, cooperation is aided by the localisations.
This phenomenon can be explained by example. Consider the section of a hypo-
thetical ring depicted in figure 3. The column of digits should be imagined to fold
back into itself. AD-players are represented by zeros, and AC-players by ones. Assume

%dd 50

25
0
10
I 18

100 +

75

%cc 50

25 4

0.:

Figure 2: The relative frequencies of the RPD outcomes for one-state machines for
(a) dd (b) dc (c) cc.
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i = [ = 2. The average score per generation for an AC-player in the middle of the
cluster is 2R, the border-ACs score R+ S, the border-AD players obtain T' 4 P, while
the ADs in the middle of the cluster get 2F. Changes in the cluster sizes can only
arise by border individuals adopting a new strategy. Assuming deterministic imitation
of the best performing neighbour, the AC-player on the border would swap to AD only
if T+ P > 2R. The AD-player on the border adopts the AC-strategy if 2P > R+ S.
Under the present payoffs, the AC-player on the border is equally likely to learn from
either neighbouring player, while the border AD-agent adopts the AC-automaton. In
general, the spread of the strategies depends on the definition of the learning dynamic,
on the relative size of the RPD payoffs and on the degree of localisation.

—

2R
R+ S
T+ P

2P
T+ P
R+ S

——
b
e

Figure 3: Payoffs on a hypothetical ring

Figures 4(a) and 4(b) contain snapshots from the simulation of the interaction on
a ring of size n = 10 with ¢ = [ = 2. The figures indicate how the two respective
equilibria become established in practice. Each vertical column in the figure represents
the population on the ring in a given generation. The horizontal axis shows the strategy
histories of individual players over the entire simulation. The light/dark areas represent
the spread of the AC-/AD-automaton respectively. The intermediate areas indicate
cooperators on the border of defecting clusters. The postulated cluster formation on
the ring is apparent in both figures. The evolution of cooperation and defection can be
seen in the growth and decay of strategy clusters.

Apart from affecting attractor selection, the localisations had a second impact on
the behaviour of the simulations. This concerns the stability of the attractor reached.
Figure 2(b) reveals that the level of disequilibrium in terms of the frequency of the
asymmetric outcomes was positively affected by the localisation of learning. The in-
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cidence of dc constitutes departures from either of the two atiractors. However, it is
difficult to define unambiguous measures of the level and amount of disequilibrium in
a system. Specifically, the dc-frequency hides whether the disequilibrium constitutes a
temporary departure from one attractor or the convergence towards another. Further
work in this direction is forthcoming.

(a) ccto dd

A B
S

agents

741 746 751 756 761 766 771 776

generations

(b) dd to cc

L] [y %] BN dh o
agents

875 885 895 905 915 925 935 945 955

generations

Figure 4: Snapshots of the history of a ring, size n = 10, of one-state machines showing
(a} shift from cc to dd (b) shift back again to cc.
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4.2 Two-state Moore Machines

The effects of the two localisations observed on systems comprising one-state machines
were also evident in systems with the more complex two-state machines. Figures 5(a)
to 5(d) display four typical simulation histories associated with extreme values for i
and [. In the figures, the population average payoffs are plotted against the number
of generations. The average payoft path for the population as a whole reveals much
about the behaviour in the simulation. In general, it is evident that the systems spend
most of the time at, or close to, two attractors, dd and cc (associated with the payoffs
R = 0.6 and P = 0.2) respectively.

However, the systems displayed a greater amount of cooperative behaviour than
the systems comprising one-state automata. The explanation for this phenomenon is
that two-state Moore machines are capable of the type of conditionally cooperative
behaviour that Axelrod [3} identified to be responsible for the evolution of cooperation.
Close inspection of the emergence of cooperation in the present systems has revealed the
following. In general, mutual cooperation in the systems is generated by the emergence
of conditionally cooperative strategies such as TRIGGERS especially and to a lesser
extent TIT-FOR-TAT® (TFT). These strategies discriminate between cooperative and
defecting strategies and reciprocate their behaviour. Since these strategies score high
payoifs against other cooperators while resisting exploitation by defecting strategies,
they can score high payoffs in variegated strategy environments. As these strategies
spread, the systems eventually converge on cc.

Figures 5(a) to 5(d) also reveal that shifts between the two attractors occur peri-
odically. These are caused by the phenomenon of ‘genetic drift’, which arises through
the GA’s mutation operator. Drift can allow a system to migrate between two basins
of attraction in the following way. For example, once the cooperative attractor has
been reached by the spread of conditionally cooperative strategies, the equilibrium is
subsequently supported by a phenotypically identical polymorphism of nice strategies’.
The equal fitness of the polymorphism allows the population to drift towards the more
exploitable members of the nice class, such as AC, until the circumstances become vi-
able for defecting strategies, such as AD, to re-emerge through mutation. The arrival
and subsequent spread of defectors can then shift the system towards the attractor of
dd. In convergence, a polymorphous mix of nasty® strategies may drift the population

3The sirategy that cooperates until a single defection of its opponent triggers its own continuous
defection.

5The strategy that repeats its opponent’s previous move.

“In Axelrod’s term a strategy that never defects first.

8Continuing Axelrod’s terminology, we define nasty strategies as strategies which never cooperate
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Figure 5: Four simulation histories with extreme values for ¢ and [. (a) i =2, = 2;
(b1 =2,1=30; (c)i=30,{=2; and (d} ¢ = 30, [ = 30.

towards nasty potential cooperators such as NASTY TRIGGERS?, which again make
the evolution of cooperation with the arrival of individual conditional cooperators fea-
sible. Specifically, TRIGGER can exploit NASTY TRIGGER. on every round of the
game but the first. Thus, the system can oscillate between the two attractors.

The system’s propensity to move between the two attractors in this way was again
influenced by the variables 7 and {. Figures 6{a) to 6(c) contain the average relative

first.

9The strategy that defects until a single cooperation of its opposition triggers its own continuous
cooperation.
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frequency distributions of the four outcomes against 2 and [ for all the simulations. The
inspection of figure 6(c) reveals the following about the relationship between mutual
cooperation and the two localisations. Again, the highest level of mutual cooperation is
associated with the lowest values for ¢ and [. The localisation of learning has a positive
effect on the frequency of cc for all values of :. However, the localisation of interaction
seems to have an ambiguous effect on mutual cooperation. For low {, falling 1 promotes
cooperative behaviour. For high [, the opposite is true. For [ = 2, 7 seems to have
an strong inverse relationship with cc, evident in the steep curve in the figure. As
[ rises, the curve becomes flatter until it reverses its slope. For { = 30, the posttive
relationship between 7 and cc becomes apparent. This phenomenon may point to a
dynamic relationship between the two variables.

In order to gain some amount of understanding of this phenomenon, consider the
simplified combinations of the two neighbourhood size parameters represented by the
four arcas depicted in figure 7. Although the complex nature of systems conventionally
analysed by computational means renders the explanation of results difficult, some
amount of speculation may prove insightful. Area B on the diagram represents global
learning and interaction as conventionally studied in the literature. All agents obtain
payoffs based on their interaction with all others, and can imitate any other agent in the
population. In analysing the increasing localisation of both interaction and learning,
we have to assess the effect of the three possible departures from global interaction and
learning represented by the areas A, C' and D.

Area D in the diagram involves systems in which learning remains global while
interaction becomes localised. The interaction neighbourhood in evolutionary simula-
tions constitutes the environment within which the fitness of an agent is established.
Under the localisation of interaction, agent fitness thus becomes dependent on the com-
position of smaller neighbourhoods. Depending on the neighbourhoods, even globally
poor strategies can thus prosper on the local level. The simulation results indicate that
area D is characterised by the lowest incidence of mutual cooperation of the four ar-
eas. There are two factors that may contribute towards this effect. First, area D gives
rise to the possibility that players imitate strategies which are wholly inappropriate in
their own interaction neighbourhood. Although players can observe well-performing
strategies elsewhere, the success of these may be limited to their respective interaction
neighbourhoods. This effect could harm cooperative players more than defecting ones,
maybe due to the robustness of defecting strategies. Furthermore, the localisation of
interaction can cause genetic drift before convergence if clusters exist. For example,
AC-players may spread by drift in a cluster of TRIGGER-players since the localised
interaction prevents the payoffs between them to differ. In this sense, drift may then
affect cooperative strategies more than defecting ones. However these observations
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remain speculative.

The departure from areca B to area A involves the localisation of learning with
global interaction. In an evolutionary sense, the learning neighbourhood generates the
environment within which a given player’s strategy can spread by being imitated. Thus,
localised learning gives rise to the formation of monomorphic strategy clusters by local
imitation. The localisation of learning makes it more difficult for globally fit genetic
material to disseminate in the population. Although the global interaction of area D
allows global fitnesses to be attributed to all players, the learning localisation makes
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Figure 6: The relative frequencies of the RPD outcomes for two-state machines for (a)
dd (b) de (c) cc.
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it less likely that this player can be observed by a given individual. In a sense, the
localisation renders the learning procedure of each player less efficient by reducing the
sampling of other players’ strategies. Players are only able to learn from the most
successful player in their neighbourhood.

|
|

global A | B
I

ne p——- -JI —————
local C : D
I

local global

Figure 7: Simplified combinations of ¢ and 1

Area A in the diagram is only second to area C' in promoting cooperative behaviour.
The localisation of learning generates the formation of clusters which aids cooperative
behaviour and harms defecting players. Cooperators score high payoffs against each
~ other while defectors perform poorly against their own kind.

The evolution of cooperation is promoted most when both interaction and learning
are localised (area C). Cooperative players are isolated from defectors in clusters, and
obtain high local payoffs which ensure individuals on the border to defecting clusters
learn from other cooperators. Under these conditions, the localisation of interaction has
a positive effect on cooperation which could be produced by a dynamic effect between
the two variables. For example, the learning of inappropriate strategies with low : and
high ! becomes offset with falling /. This may neutralise the harmful effect of low ¢ on
cooperation.

Apart from the issue of attractor selection, the localisation of learning seemed to
affect the incidence of disequilibrium behaviour. Again, the proportion of asymmetric
outcomes in the simulations were strongly inversely related to ! (figure 6(b)). Small
learning neighbourhoods caused large amounts of dc-behaviour. Moreover, figures 5(a)
to 5(d) confirm this finding. The average payoff paths of the populations look fuzzier
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for small values of {. More research into this phenomenon is forthcoming.

5 Summary

The localisations of interaction as well as learning have a marked effect on the evo-
lution of cooperation among agents using both one- and two-state machines. As far
as systems with one-state machines are concerned, only very high levels of both types
of localisation can generate some amount of mutually cooperative behaviour amongst
agents. A large amount of insulation is required to protect AC-automata from defecting
ones. Moreover, it seems that the localisation of learning has a more pronounced impact
than the localisation of interaction. Learning rather than interacting in neighbourhoods
generates the clusters protecting cooperation.

For two-state machines, the respective impacts of the two localisations are as fol-
lows. The localisation of learning again fosters cooperative behaviour while localised
interaction has an ambiguous effect on it. Localised inferaction promotes cooperation
under localised learning, but harms it under global learning. In the presence of strategy
clusters associated with small [, localised interaction promotes the growth of coopera-
tive clusters by generating high payoffs for insulated cooperators. When no clusters are
present with large I, the local payoffs generated by the localisation of interaction seem
to harm cooperative players. The largest amount of mutual cooperation is produced
when both localisations are at their maximum. '

Lastly, the localisation of learning appeared to promote disequilibrium behaviour
in the form of asymmetric outcomes in systems of both one-state and two-state au-
tomata. Presumably, the generation and persistence of strategy clusters hampered the
convergence of the systems on either of the two attractors.
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