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On singularities in combination-driven

models of technological innovation
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It has been suggested that innovations occur mainly by combination: the more inventions
accumulate, the higher the probability that new inventions are obtained from previous designs.
Additionally, it has been conjectured that the combinatorial nature of innovations naturally
leads to a singularity: at some finite time, the number of innovations should diverge. Although
these ideas are certainly appealing, no general models have been yet developed to test the
conditions under which combinatorial technology should become explosive. Here we present
a generalised model of technological evolution that takes into account two major properties:
the number of previous technologies needed to create a novel one and how rapidly technology
ages. Two different models of combinatorial growth are considered, involving different forms
of ageing. When long-range memory is used and thus old inventions are available for novel
innovations, singularities can emerge under some conditions with two phases separated by a
critical boundary. If the ageing has a characteristic time scale, it is shown that no singularities
will be observed. Instead, a ”black hole” of old innovations appears and expands in time,
making the rate of invention creation slow down into a linear regime.

Keywords: Technology, evolution, combination, networks, patents, phase transitions

1. Introduction

Technology is one of the most obvious outcomes of
human culture. Over the last 100.000 years, humans
have been able to manipulate their environments and
the species they used to interact with in an amaz-
ing range of ways. Technological inventions have been
developing at an accelerated rate since the industrial
revolution [1-5] and economist Brian Arthur conjec-
tured that such rapid growth is a consequence of the
underlying dynamics of combination that drives the
process [2]. Specifically, it has been suggested that
novelties arise mainly as a consequence of new forms of
interaction between previous artifacts or inventions [2].
Such view connects the pace of man-made evolutionary
designs with a basic principle of biological evolution:
the presence of tinkering [6] as a dominant way of
generating new structures [7,8].

Systematic studies of technological change are dif-
ficult to perform due to a number of problems. These
include the lack of a genome-like description of artifacts
and the complex nature of their design paths. The study
(largely naturalistic) of some particular systems, such
as cornets [9-10] reveals some interesting similarities,
while uncovering deep differences with cultural change.
More recent work based on network theory [11] provided
a novel quantitative approach to technological change
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Figure 1. Hyperbolic growth of the total USPTO dataset
(a). In (b) we plot of the logarithm of patent counts against
tc − t (b) for t > 1950. The best fit for this data set gave an
estimate η = 0.87 ± 0.06 consistent with an exponent z ≈
1.14. The inset (c) provides a picture of the spindle diagram
for N(t) and in (d) we show the same diagram for the initial
part of the time series.

that defines a formal framework to explore technological
change and the impact of design principles.
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2 Technological singularities Ricard V. Solé et al.

One consequence of the combination principle pro-
posed by Arthur is that the growth dynamics of
inventions would be faster than exponential (or super-
Malthusian) and should exhibit a finite-time singular-
ity [12]. The implications of such rapidly accelerating
innovation processes have been discussed in recent
years, raising controversial speculations [13]. Predicting
the progress of technological change is a timely issue
but also a difficult task. Nevertheless, some insights
have been gathered from using proper databases and
statistical methods [14,15].

A surrogate of the ways in which innovations take
place in time is provided by patent files [16-18]. Patents
are well-defined objects introducing a novel design,
method, or solution for a given problem or set of prob-
lems. Existing data bases store multiple levels of patent
description and they can be analyzed in full detail.
Additionally, they indicate what previous novelties have
been required to build new ones. An example is given
by the U.S. Patent and Trademark Office (USPTO)
patents filed between 1835 and 2010 ‡. In figure 1a
we display the total number N of filed patents, which
clearly reveals an accelerated trend over time [3,12].
The dashed line in particular indicates the start of the
modern information technology era (around 1950).

In [18] a study of the USPTO database was made
in search for evidence of combinatorial evolution. The
authors concluded that truly new technological capabil-
ities are slowing down in their rate of appearance, but
nevertheless a great deal of combination is present thus
allowing for a ”practically infinite space of technological
configurations” [18]. One potential outcome of this vir-
tually exploding space is a growth dynamics displaying
potential singularities, i. e. divergent numbers of inven-
tions would eventually occur as we approach a finite
time window. In this paper we want to address the prob-
lem of how to define the conditions for technological
singularities to be expected. Two main components of
combinatorial dynamics will be taken into account: (a)
the diversity (number) of potential innovations required
to trigger a new one and (b) the degree of ageing that
makes older innovations less likely to be used. As shown
below, two main phases are expected in this diversity-
aging space, defining the conditions for singularities to
be present.

2. Hyperbolic dynamics: minimal model

Using the simplest approximation, we assume a neu-
tral model of innovation based on pairwise combina-
tions of existing designs. In this model, the set π =
{π1, π2, ..., πn(t)} defines the ”design universe” at any
given time t. Each πj ∈ π represents an invention as
described, for example, by a patent file. Here, N(t) is
the total number of inventions (patents) at year t. Two
given designs will then combine at a given time t with a

given probability: πi + πj
µij

−→ πn(t)+1 where µij weights
the likelihood of such an event to happen. This defines
a second-order (bimolecular) reaction kinetics [19-21].
Such nonlinear reaction dynamics seems to pervade

‡http://patft.uspto.gov

the super-exponential growth observed in a number of
economic and demographic systems [22-24].
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Figure 2. Different rates of patent growth are observed in
the record of USA patents. Here we plot the rate of patent
numbers growth dN/dt as a function of N . Here we estimate
the exponents associated to the scaling dN/dt∼Nβ for
three different domains that appear to characterise this data
set (here indicated as I, II and III). The three exponents β =
1, 1/2, 3/2 indicate different kinetic phases of innovation.
The two spindle diagrams (insets) correspond to the first (I)
interval (left) and the whole time series (right)

How is this space expanded? We will assume that
every element πj ∈ π has the same potential to attach
to other existing elements. We can consider a more
complex kinetic equation, namely:

dN

dt
= µ(t)N1+z (1)

where µ(t) is the attachment rate of inventions at a
given time. The parameter 0≤ z ≤ 1 weights the depar-
ture from the linear scenario. For z = 0 the above yields
to exponential growth. If a pure (pairwise) combination
scenario were at work, we would see z = 1, since any pair
of inventions is likely to interact. By solving equation
(1) we obtain

N(t) =

[
N−z(0)− z

∫ t

0

µ(τ)dτ

]− 1

z

(2)

For the simplest scenario where µ can be considered

constant, i. e. µ= 〈µ(t)〉= (
∫ t

0
µ(τ)dτ)/t, we can write

the previous equation as follows:

N(t) = (zµ)−1/z (ts − t)
−1/z

(3)

where ts is a finite time given by ts = 1/(zµNz
0 ) with

N0 =N(0). A very interesting feature of this solution
is the presence of a singularity: as we approach ts,
a divergence occurs in N . For the pure combination
solution with z = 1 we would observe a growth curve

2
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following:

N(t) =
1

µ

(
1

ts − t

)
(4)

which provides a prediction of how invention numbers
will increase under a neutral model where all inventions
(patents) are equally likely to combine.

In order to fit the last part (t > 1980) of the USPTO
data set (part III of the time series in figure 2) with the
hyperbolic growth prediction and estimate the param-
eters involved in defining it, we will make a logarithmic
transformation of the previous general equation as [25]:

lnN(t) = ln Γ + η ln(ts − t) (5)

where Γ = (zµ)−1/z and η =−1/z. Using this transfor-
mation, we can estimate the set of parameters asso-
ciated to the growth process. Following [25], we fixed
the critical time ts to a given year value and fitted the
remaining two (free) parameters. By using different ts
values, it is possible to determine the best fitting. For
our data set (figure 1, inset), we obtain a critical time
ts = 2027 and η = 0.87± 0.09. This gives z ≈ 1.14 and it
would thus approach the expected Ṅ ∼N2 hyperbolic
law§.

Is this a general result? An interesting observation
comes from plotting the rate of patent generation
(dN/dt) against the total number of patents N at a
given time. This is displayed in figure 2, where the
USPTO data reveal three domains of scaling. These
correspond to (I) the industrial revolution (II) the
historical period between the end of the IR and the
1990s and (III) the interval (1990− 2010). The last part
(III) is associated with the aftermath of the information
technology revolution associated to the rise of Internet.

The three domains seem to fit to three different types
of kinetics, i e. we would have, following the previous
scheme, three different dynamical laws, with dN/dt=
µNβ characterised by exponents βI ∼ 1.0, βII ∼ 0.5 and
βIII ∼ 2.0. For the later domain, we used the last part
of the time series from 1980 to the end of the time series.
The reason for this choice is the presence of a drop in
the time series of patent production that took place
due to new management policies by USPTO (12). The
last part seems consistent with the minimal hyperbolic
model, whereas the first two involve smaller exponents.

Of note, we can see that the expected linear law
associated to the patent dynamics within the IR implies
that technological change would lead to exponential
growth, whereas the second domain (which includes
two World Wars and the great depression) suggests a
sublinear dynamical growth equation. Two questions
emerge from this seemingly diverse phases. One is
whether or not a singularity should be expected and
the second the meaning of the scaling exponent β .
As will be shown below, a generalised model taking
into account two key features of the innovation process
provide answers to the previous questions.

§However deciding what part of the time series to take for the
interpolation is far from simple. Several economic, technological
and even patent-office related factors influence some of the rapid
changes found in the USPTO time series.

3. Generalized models

If our assumptions were correct, A critical horizon
is thus obtained, which indicates that a singularity
appears to exist around year 2027. Such prediction is
performed by using the last part of the time series.
However, accelerated patterns of innovation growth can
be seen at different time intervals, showing different
exponents. How can we explain these differences? When
are singularities expected to occur under these different
regimes?

Several simplifications have been made in the model
above. One is that a limited number of previous inno-
vations are combined among them to obtain a new
one. Another is that we assumed by default that all
innovations can contribute to future technologies, when
actually many will become obsolete and get replaced.
Some type of ageing factor needs to be considered.
Such ageing has been found to be present in different
types of growing networks [26-28] including different
forms collaboration among scientists and links among
innovations [17] and will be also studied here.

One way of including multiple innovations is to
consider the average number k of inventions that are
used to obtain new ones. On the other hand, we need
to define the way two elements might interact. This can
be done by considering a generalised integral equation:

dN

dt
=

∫ N

0

k. . .

∫ N

0

Γ(τ1, ..., τk)dτ1...dτk (6)

Here the kernel Γ(τ1, ..., τk) defines the likelihood that k
different patents interact in order to give a new inven-
tion. This general expression contains the hyperbolic
scenario introduced above as one special case when all
elements can equally interact and thus Γ = µ. To see
this, notice that we have now

dN

dt
=

∫ N

0

∫ N

0

µdτ1dτ2

= µ

(∫ N

0

dτ1

)(∫ N

0

dτ2

)
= µN2 (7)

From now on we will assume that the kernel can be
factorized: all inventions can interact in similar ways
and thus

Γ(τ1, ..., τk) =
k∏

l=1

Γ(τl) (8)

In that case, the previous equation reads now:

dN

dt
=

∫ N

0

k. . .

∫ N

0

k∏

l=1

Γ(τl)dτ1...dτk (9)

and thus our general model to be explored below reads
now:

dN

dt
=

k∏

l=1

[∫ N

0

Γ(τl)dτl

]
(10)
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Figure 3. Two phases predicted by the generalised model of
technological evolution with power law ageing. The white
area correspond to all parameter combinations allowing a
singularity to emerge through a hyperbolic growth.

3.1. Power law aging

This integral equation contains the number of inno-
vations required to further expand the technological
space. Now we need to introduce how ageing affects the
range of interactions. One choice is a power law Kernel,
namely

Γ(τl)∼ µ1/k(N − τl)
−γ (11)

where the scaling exponent γ ≥ 0 gives a measure of how
fast previous innovations become obsolete and are not
incorporated. This Kernel has been used in different
contexts, including in the analysis of collaborations
among researchers, which is a closely related problem
(15). In this case, the general model is written as

dN

dt
=

k∏

l=1

[∫ N

0

µ1/k(N − τl)
−γdτl

]
(12)

If we assume equivalence between all the components of
our system, all kernels being equal we obtain here:

dN

dt
=

[∫ N(t)

0

µ1/k(N − τ)−γdτ

]k

=
µ

(1− γ)k
N (1−γ)k (13)

By solving this equation, we can show that the
solution reads:

N(t) = [C0 + η(k, n)t]
1/(1−(1−γ)k)

(14)

The constants are defined by C0 =N
1−(1−γ)k
0 and

η(k, n) =
1− (1 − γ)k

(1 − γ)k
(15)

respectively.This equation will be consistent with a sin-
gularity provided that the scaling exponent is negative.

This leads to a critical condition:

k > kc =
1

1− γ
(16)

The phase diagram predicted by this critical boundary
is shown in figure 3, where we plot kc(γ). The two
domains showing or lacking a singularity are separate by
this curve. As we can see, singularities are expected even
for γ = 0 provided that k > 1. Similarly, when k = 2 we
have the standard pairwise reaction scheme described
above

3.2. Exponential aging

The power law kernel introduces a long tail and thus
long-memory effects. Although links with old inventions
are much rare, they can be established and thus a con-
tribution will always be expected. What is the impact
of using a different type of interaction Kernel involving
a more rapid decay that forbids new inventions to ”con-
nect” with very old ones?. This can be modelled with
an exponential decay of the form e−µ(N−α). As defined,
the smaller the value of µ, the longer the age (namely,
N − α) that patents can reach while being still able to
generate new inventions. Indeed, in the limit µ→ 0 all
the inventions would equally contribute (no matter their
age), recovering again the simple hyperbolic (pairwise)
scenario analyzed in section 2.

In order to illustrate the impact of this limited
memory, let us consider again the pairwise (k = 2)
scenario. The generation of new patents is now given
by

dN

dt
= µ

2∏

l=1

[∫ N

0

e−γ(N−τl)dτl

]

= µ′
[
e−γN − 1

]2
(17)

where µ′ = µ/γ2. By solving this equation we obtain an
implicit form:

(N −N0) +
1

γgγ(N)
−

1

γgγ(N0)
+

+
1

γ
ln

[
gγ(N)

gγ(N0)

]
= µ′ (t− t0) . (18)

where we used the notation gγ(x)≡ e−γx − 1. This
equation can be numerically solved and the result shown
in figure 4a for a given set of parameters that was chosen
to provide a similar range of time and N values than
the original series. We can appreciate from this diagram
that there is a delayed growth phase at the beginning
followed by an apparently linear growth in late stages.
In other words, the dynamics has no singularity. Is
that the case? Although solving the general problem
can be extremely cumbersome, we can deal with some
approximations that can be applied at different stages
of the system.

The first considers the case γ << 1 and the initial
phase of the expansion. If N is not large then γN << 1
and we can use the approximation e−γN ≃ 1− γN . on
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Figure 4. Transient hyperbolic growth and blackholes in combination models with limited memory. In (a) we display our
predicted growth curve N(t) and two approximations considering short time (dotted line) and long term (dashed line) scales.
The effective kernels for these two scales are displayed in the inset plots (b) and (c). The maximum value displayed in the τ
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imposed by the kernel implies that there is a time horizon beyond which no connections among inventions can be made. This
illustrated schematically in (d) where we shown the spindle diagram of the whole system π along with a subset ψ(t), first
appearing at the characteristic time t1/2 where the probability of citing the oldest invention π1 is half the maximum. All
inventions within this ”black hole” will be disconnected from the rest. In the present (top large circle) only new inventions
(filled circles) occupying the outer part of the circle can connect among them whereas they cannot link (light lines) with
those in the black hole (open circles). The parameter values used in (a)-(c) correspond to µ= 2× 105, t0 = 1750, N0 = 5000,
and γ = 2× 10−6.

Eq. (19) leading to:

N −N0 −
1

γ2

[
1

N
−

1

N0

]
+

+
1

γ
ln

[
N

N0

]
= µ′ (t− t0) . (19)

Given the condition γ << 1, the LHS of the previous
equation is governed by the quadratic terms of γ. Hence,
neglecting the first and last terms on the LHS, we obtain
the following approximate solution for the evolution of
N at initial stages of technological evolution:

N(t) =
1

γ2µ′ (ts − t)
(20)

where ts = 1/(µ′γ2N0) + t0. The previous equation pre-
dicts a singularity at some time in the future although
such singularity is in conflict with our approximation
and the hyperbolic growth is only a transient phe-
nomenon.

Let us know focus on the long-term (t→∞) dynam-
ics of the system. In this case it is sensible to assume
a very large number of existing patents, and hence
e−γN → 0. In this case, we can rewritte Eq. (19) as:

(N −N0)−
1

γ
+

1

γ2N0
−

1

γ
ln [γN0] = µ′ (t− t0) ,

(21)
where we have also used again e−γN0 ≃ 1− γN0. Thus,
from Eq. (23) it is straightforward to obtain the long-
term solution for the dynamics of N :

N(t) = µ′ (t− t0) + ε (22)

with ε=N0 + 1/γ − 1/(γ2N0) + ln [γN0] /γ.
Equation (24) reveals thatN exhibits a linear growth

dynamics when large values of t are considered. Note
that this long-term dynamics is notably different from
the hyperbolic dynamics predicted for initial stages of
evolution (see the explanation above). In figure 4 we
show the fits of these approximations to the exact
solution (obtained numerically). As we can see, the
analytic results confirm that the initial hyperbolic trend
(dotted curve)is eventually replaced by a slowdown
characterised by a linear process (dashed line) with no
technological singularity associated.

The previous results can be generalised to the k-
diversity scenario, where the new equation reads

dN

dt
= (−1)k+1µ

k∏

l=1

[∫ N

0

e−γ(N−τ1)dτ1

]
(23)

where the term (−1)k+1 is required in order to avoid
the unphysical situation in which the number of patents
decreases when combining an odd number of previous
inventions (note that a negative integration constant is
obtained when integrating e−x).

This general model leads to:
∫ N

N0

dÑ
[
e−γÑ − 1

]k = µ′

∫ t

t0

dt̃ (24)

which, at initial stages reads:
∫ N

N0

dÑ
(
γÑ
)k = µ′

∫ t

t0

dt̃, (25)

5



6 Technological singularities Ricard V. Solé et al.

and gives hyperbolic dynamics, whereas in the long-
term dynamics we have now:

∫ N

N0

dÑ = µ′

∫ t

t0

dt̃, (26)

again leading to linear dynamics.
An intuitive explanation for the change from early

hyperbolic to late linear dynamics is provided in the
insets of figure 4b-c. Here we show the kernel associated
to early (fig 4b) and late (fig 4c) times, and thus smaller
and larger numbers of innovations. Although the area
covered by Γ almost fills the plot when N ∼O(104), it
becomes smaller with largeN values (hereN ∼O(106)).
In Fig. 4b, the probability of recombining any existing
patent is higher than 90% of the maximum [i.e., 90%
of the probability of recombining the newest pattent
N(t), with t= 1963]. However, the probability of com-
bining patents existing at t= 2020 (Fig. 4c) folds to
approximately zero for the oldest patents. Then, we can
arbitrarily define a patent number πh(t) that delimits
the frontier between up-to-date patents and obsolete
patents (which will hardly ever been recombined again).
Specifically, we consider πh(t) to be the patent number
for which the probability of recombination is half the
maximum (as indicated by the dashed line in Fig. 4c).
Thus, the effect of ageing (or loss of memory) dominates
in the long term (Figs. 4a and c) and the effective rate
of innovation become linear. Such slowdown prevents
the system from approaching a divergent dynamics.

These results can be graphically interpreted as shown
in figure 4d. Here we use again the spindle diagram
showing how the universe (or space) of innovations
experiences an accelerated growth at early stages of
development. Novel patents such as πj will be dis-
tributed over the outer parts of the patent space (a
circle at each time step) and connect with others such
as πi. After a critical time t1/2, some inventions start
to become obsolete or forgotten. From this time on,
the expansion speed stabilises, and both the universe of
inventions and the ”blackhole” ψ(t) at its center (which
represents the area of obsolete technology) grow at the
same constant speed. Inventions within the blackhole
(such as πk in figure 4d) cannot be used and thus no
information about them can cross the obsolescence fron-
tier. Our technological memory establishes the distance
between these two boundaries in the innovations space,
and this distance determines the number of up-to-date
inventions, which in turn determine the expansion rate
of the innovation space.

4. Discussion

The nature and tempo of innovation is a difficult
and timely topic. It has been the focus of attention
from evolutionary biologists, economists and physicists
alike. Inventors get inspiration from previous, existing
designs, while they push forward the boundaries of inno-
vation. In searching for a theory of technological change,
the combinatorial nature of technological innovation
seems to be an essential component of human creativity.
By combining previous designs into novel inventions,
there is a potential for an explosion of novelties, which

could eventually move towards a singularity. How can
we test such possibility? Patent citations are a privi-
leged window into such process, since they provide a
first approximation to both the growth of inventions and
their interactions over time. The accelerated pattern
of patent growth suggests that a super linear process
of innovation is taking place and available evidence
indicates that this is at least partially associated to
combinatorial processes (18).

In this paper we have explored a simple class of
models that include both the richness of combinations
and how rapidly the relevance of previous inventions
fades with time. These two features can be seen as
two opposing forces: the diversity of potential previous
inventions to be combined powers combinatorial design,
while the obsolescence of the same inventions makes
them less likely to contribute to combinations. Our goal
was not as much as to fit data than understand the basic
scenarios where singularities might emerge when both
features are included.

We have shown that long-memory kernels permit the
presence of singularities under some conditions, while
kernels involving a characteristic time scale of ageing
forbid divergences to occur. The first class predicts two
different phases, which reminds us of a picture of inno-
vation defining a phase transition between sub-critical
and super-critical phases (29). The second provides a
plausible explanation of why singularities might fail to
be observed, while the transient dynamics of innova-
tion appears hyperbolic. Further investigations should
analyse other temporal trends (including the patterns
of fluctuations) associated to these class of models and
a more details analysis of available time series. Existing
models of evolution of innovations (30,31) can provide
very useful tests to the ideas outlined here.
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